AKD2G Ethernet IP Standard Cyclic I/O Assembly and Explicit Messaging Axis 1 Rev. A 7/26/2024
In this application note, we’ll demonstrate the different command types supported by the AKD2G Ethernet IP drive using the Standard Assemblies (connection) specific to Axis 1. While the PLC screenshots demonstrate using an Allen Bradley PLC (Compactlogix in this case) the methods are not AB specific but part of the Ethernet IP protocol using the AKD2G Ethernet IP drive. We have not tested nor officially support other Ethernet IP masters beyond Micrologix1400 (explicit only), Compactlogix, and Contrologix. If your master supports cyclic I/O Assembly Messenging and you are able to map and establish communications, then this document will likely assist in understanding how to accomplish similar tasks that our AOIs for AB perform. Again we do not guarantee compatibility except for the AB PLCs listed. If you are using Compactlogix or Contrologix, this application note may help you understand how the AKD2G Ethernet IP Communications (and AOIs) work behind the scenes. After covering cyclic messaging, examples of a read and write parameter via explicit messaging will be given.
Various commands and functions from the AKD2G Ethernet/IP Manual and the Standard Assembly 101 & 102:
[image: image1.png]
This application note will cover:
· Cyclic messaging

1. Command Type 0x05 Torque
2. Command Type 0x06 Position Move
3. Command Type 0x07 Jog Move
a. In velocity mode

b. In position mode

4. Command Type 0x08 Velocity Setpoint
5. Command Type 0x09 Motion Task
6. Command Type 0x1B Set Attribute of Position Controller Object
7. Get Attribute of Position Controller Object method
8. Command Type 0x1F
a. Read Parameter via Polled IO
b. Write Parameter via Polled IO
9. Homing Method
10. Running A Stored Motion Task Sequence
· Explicit Messaging
11. Write Parameter via Explicit Messaging
12. Read Parameter via Explicit Messaging
Foreword about Cyclic Messaging

In the case of using the AB Compactlogix for this application note, the following connection was created to access the I/O assemblies. In any case it is important to understand how the structure and controller tags are declared. How each byte of the Command (Output) and Response (Input) assemblies are accessed will vary from PLC to PLC manufacturer. See your PLC’s documentation for these details.

The AKD2G is setup as a Generic Ethernet Module where you give it a Name (in this case AKD2G) and setup the Connection Parameters (Note the 128 byte size of both Input and Output).

[image: image2.png]
Once the Connection is created (the above Module is given the name “AKD2G”) the controller tags are created with the same naming convention and below it can be seen there are 128 bytes (SINT) for the Input of the Ethernet Module and 128 bytes (SINT) for the Output of the Ethernet Module.
[image: image3.png]
Further expanding the AKD2G:I.Data and AKD2G:O:Data each byte in the 128 byte array can be viewed. When each byte is expanded each bit is further addressed.
For example (only Outputs shown):
[image: image4.png]
A key to comprehension of the assemblies are the charts in the AKD2G Ethernet/IP manual called Standard Command Assembly Data Structure and Standard Response Assembly Data Structure.
Note in the chart the leftmost column indicates Bytes for Axis 1 and the next column to the right indicates the bytes for Axis 2.

[image: image5.png]
 [image: image6.png]
1. Command Type 0x05 Torque

From the AKD2G Ethernet/IP Manual:
[image: image7.png]
The manual indicates in the steps above to issue a message to the Position Controller which is necessary if changing Axis op modes (AXIS#.OPMODE) in the application and the Command Source must be Fieldbus. If the Axis will always be in Torque mode and control then the Command Source and Op Mode can be set with Workbench and saved to device.

This application note will follow the procedure as indicated above for demonstration.

The Attribute number from the Drive Objects section of the manual is obtained as follows:

[image: image8.png]
See the section Command Type 0x1B Set Attribute of Position Controller Object for more details.

Axis 1 will be demonstrated.

Using the following structure the following must be set:

Byte 2= Command Type= 1B (Position Controller)

Bytes 4-7=Attribute Number=3 (Operation Mode)

Byte 24-27=Attribute Data/Setting=2 (Torque Mode)

Note the mode numbers in attribute 0x03 do not coincide with the convention used with the DRV.OPMODE or displayed on the front of the AKD (i.e. o0=torque mode, o1=velocity mode, o2=position mode).

[image: image9.png]

Note it is assumed the command assembly data bytes for Axis 1 (Bytes 0-63) are cleared (all zeros) prior to setup of this command.

[image: image10.png]
Expanding Byte 0 of the output data displays the 8 bits of the Control Word for Axis 1.
[image: image11.png]
Per the manual.

[image: image12.png]
To Set the Attribute of the Position controller transition the load/start bit from 0->1.
[image: image13.png]
On Load/Start the drive changes to Fieldbus and Torque Mode.
Note 1: Torque Mode via the position controller is the only time with Ethernet IP the AXIS#.CMDSOURCE will change to/use “Fieldbus”. In most other applications and commands the AXIS#.CMDSOURCE will be “Service”.
Note 2: Setting the Op Mode via the Position Contoller Object to Torque also changes the AXIS#.CMDSOURCE to the appropriate “Fieldbus”. The Torque Move command type 0x05 does not set the command source nor the op mode to the required settings. They must be set either by Workbench or the Position Controller PRIOR to issuing the Torque Move or it will result in a communications error timeout.

Using Workbench to verify the modal change for Axis 1 in the top toolbar.
[image: image14.png]
Next to set the torque value in this mode, first turn the load/start bit in the control word off.

[image: image15.png]
It is recommended to clear the command assembly fo Axis 2 (bytes 0-63) from the previous command before proceeding.
[image: image16.png]
Next to setup the Torque Move per the command type 0x05 method:
[image: image17.png]
 Set the torque value in bytes 4-7. Values are in mA (i.e. 100 mA).

[image: image18.png]
Note it is assumed the command assembly data byte are clears (all zeros) prior to setup of this command.

Byte 2 is the command type which must be 0x05 for a Torque Move.

The Torque Move setup should appear as follows:

[image: image19.png]
Next enable Axis 1 by setting bit 7 of byte 0 to a value of 1.

[image: image20.png]
[image: image21.png]
In Workbench in the bottom status bar Axis 1 is shown as Active (enabled).

[image: image22.png]
Once you are ready to start the torque move, bit 0 (load/start bit) in the control word must be triggered with a transition from 0->1.
[image: image23.png]
In Workbench from the Current Loop screen->Status tab the current command is as expected (0.100 Arms).

[image: image24.png]
Also from the Terminal note AXIS1.IL.CMDU is not used and the fieldbus writes directly to the AXIS1.IL.CMD.

[image: image25.png]
To set a different setpoint, change the data in bytes 4-7 and then set the control word start bit to 0 and then back to 1 for the new setpoint to take effect.
2. Command Type 0x06 Position Move

[image: image26.png]
Bit 2 of the Control Word specifies if the Position Move is absolute (0) or incremental/relative (1).
[image: image27.png]
The manual indicates in the steps above to issue a message to the Position Controller which is necessary if changing Axis op modes (AXIS#.OPMODE) in the application and the Command Source must be Fieldbus. If the Axis will always be in Position mode and control then the Command Source and Op Mode can be set with Workbench and saved to device.

This application note will follow the procedure as indicated above for demonstration.

The Attribute number from the Drive Objects section of the manual is obtained as follows:

[image: image28.png]
See the section Command Type 0x1B Set Attribute of Position Controller Object for more details.

Therefore, using the following structure for Axis 1, the following must be set:

Byte 2= Command Type= 1B (Position Controller)

Byte 4-7=Attribute Number=3 (Operation Mode)

Byte 24-27=Attribute Data/Setting=0 (Position Mode)

Note the mode numbers in attribute 0x03 do not coincide with the convention used with the AXIS#.OPMODE (i.e. 0=torque mode, 1=velocity mode, 2=position mode).

[image: image29.png]
Note it is assumed the command assembly data bytes for Axis 1 (Bytes 0-63) are cleared (all zeros) prior to setup of this command.

[image: image30.png]
To trigger the command, set the load/start bit in the control word (bit 0) to 1.

[image: image31.png]
Per the manual:

[image: image32.png]
Workbench should indicate Axis 1 is in Fieldbus and Position Mode for Axis 1.
[image: image33.png]
Note writing a 0 to the Op Mode of the Position Controller will change both the Command Source to Fieldbus and the Op Mode to Position.
If the drive is not enabled, the enable can be set by bit 7 in the control word shown below with a 0->1 (rising edge) transistion.
[image: image34.png]
[image: image35.png]
It is recommended to clear the command assembly for Axis 1 (Bytes 0-63) from the previous command before proceeding.

First clear the load/start bit:

[image: image36.png]
Clear the rest of the command assembly for Axis 1 (Bytes 0-63):
[image: image37.png]
To setup the position move, the following profile was used. This application note assumes the default Ethernet/IP units are used (65536=1 rev, 1rps, 1 rev/s^2).
[image: image38.png]
Although Workbench Units are not related to Ethernet/IP Scaling, for this demonstration the Units for Axis 1 were set to agree.

[image: image39.png]
Position

10 revs with the given scaling is 65536*10 or 655360 converted to hex is 0A 00 00.

[image: image40.png]
Velocity

1 rps (or 60 RPM) is 65536 or converted to hex 01 00 00.

[image: image41.png]
Accel/Decel

1000 rev/s^2 or 60000 rpm/s or 65536000 converted to hex is 03 E8 00 00

[image: image42.png]
To setup the profile, the command assembly must be populated with the data above.

Recall:

[image: image43.png]
[image: image44.png]
Next choose whether the move is to be an absolute.
Bit 2 of the Control Word specifies if the Position Move is absolute (0) or incremental/relative (1).
[image: image45.png]
In this application note, incremental (relative) is chosen.

[image: image46.png]
After homing (not shown here) the current position is 0.000

[image: image47.png]
On the trigger (Load/Start bit) the fbus parameters are loaded with values and the move also executes/starts.

[image: image48.png]
[image: image49.png]
From the Watch window after the move is completed:
[image: image50.png]
Alternatively the Position Command and Position Feedback can be viewed under Axis1->Settings->Position Loop->Status tab.
[image: image51.png]
The AXIS1.FBUS parameters can be viewed under Device Settings->Communication->Ethernet/IP->Axis 1->Motion tab.

The profile sent over Ethernet/IP can be viewed and verified on this tab.
[image: image52.png]
Another relative move by the same distance can be triggered by changing the load/start bit 0 in th control byte.
If desired, the Relative bit 2 in the control byte can be changed from 1 to 0, and the move profile data (i.e. target position) can be changed in the command assembly and the load/start bit can be changed from 1->0 and then 0->1 for a rising edge to trigger a new move but absolute.
3. Command Type 0x07 Jog Move

Note: This command works differently in velocity mode (AXIS1.VL.CMD is set; homing is unnecessary) than in position mode (A repeating move profile is used to perform the jog; homing is necessary).

General description of Command Type 0x07 Jog Move

[image: image53.png]
Jogging (Velocity Mode)

In velocity mode the flow of command data is as follows:
[image: image54.png]
The manual indicates in the steps above to issue a message to the Position Controller which is necessary if changing Axis op modes (AXIS#.OPMODE) in the application and the Command Source must be Fieldbus. If the Axis will always be in Velocity mode and control then the Command Source and Op Mode can be set with Workbench and saved to device.

This application note will follow the procedure as indicated above for demonstration.

The Attribute number from the Drive Objects section of the manual is obtained as follows:

[image: image55.png]
See the section Command Type 0x1B Set Attribute of Position Controller Object for more details.

Therefore, using the following structure for Axis 1, the following must be set:

Byte 2= Command Type= 1B (Position Controller)

Bytes 4-7=Attribute Number=3 (Operation Mode)

Byte 24-27=Attribute Data/Setting=1 (Velocity Mode)

[image: image56.png]
Note it is assumed the command assembly data bytes for Axis 1(Bytes 0-63) are cleared (all zeros) prior to setup of this commnd.

[image: image57.png]

To execute the attribute write (and change of Op Mode) transition the load/start bit 0 in the control byte from 0->1 (rising edge).
[image: image58.png]
[image: image59.png]
Checking via Workbench, Axis 1 should be in Fieldbus Command Source and Velocity Op Mode.
[image: image60.png]
It is recommended to clear the command assembly for Axis 1 (Bytes 0-63) from the previous command before proceeding.

First clear the load/start bit:

[image: image61.png]
Clear the rest of the command assembly for Axis 1 (Bytes 0-63):
[image: image62.png]
To setup the jog velocity, accel, and decel this application note assumes the default Ethernet/IP units are used (65536=1 rev, 1rps, 1 rev/s^2).

[image: image63.png]
Although Workbench Units are not related to Ethernet/IP Scaling, for this demonstration the Units for Axis 1 were set to agree.

[image: image64.png]
Next, assuming the default Ethernet IP units of 65536 and a desired velocity of 600 rpm,

Velocity=10 rps (600 rpm)=65536*10=655360 which is “0A 00 00” hex.
[image: image65.png]
Accel and Decel units of 65536 rev/s^2 and a desired accel/decel of 60000 rpm/s,

Accel=Decel=1000 rev/s^2 (60000 rpm/s) =65536*1000=65536000 which is “03 E8 00 00” hex.
[image: image66.png]
Set the command assembly for the given parameters above:

[image: image67.png]
[image: image68.png]
Next, per the manual bit 3 (Direction) where Positive=1 and Negative=0 sets the direction of the Jog.

[image: image69.png]
First I chose to jog in the negative First I chose to jog in the negative direction (bit 3=0).
If Axis 1 is not enabled transition bit 7 of the control byte 0->1 to enable the drive.
[image: image70.png]
The bottom status bar in Workbench indicates Axis 1 is enabled (Active).

[image: image71.png]
To start jogging Axis 1 transition the load/start bit 0 from 0->1 in the control byte.
[image: image72.png]
From the Workbench Watch window the velocity is -655360 eip counts/s or 10 rps or 600 rpm.

[image: image73.png]
The velocity command and feedback can also be viewed by navigating to Axis1->Settings->Velocity Loop->Status tab.

[image: image74.png]
Also note the jog profile values can be viewed as AXIS#.FBUS parameters in Workbench under Device Settings->Communication->Ethernet/IP->Axis 1->Motion tab.

It is important to note the velocity command setpoint is displayed as a positive value but the actual velocity command is negative because the Direction bit in the command byte is 0 (Reverse).
[image: image75.png]
Note AXIS1.VL.CMDU is not used in this case and the velocity command is sent directly to the AXIS1.VL.CMD.

[image: image76.png]
To stop jogging execute a smooth or hard stop. In this case I executed a Smooth Stop by transitioning bit 4 (Smooth Stop) in the control byte from 0->1.
[image: image77.png]
[image: image78.png]
The velocity command goes to 0.

[image: image79.png]
To jog in the forward direction I cleared the load/start bit 0 and smooth stop bit 4 and then set the direction to 1 (forward).

[image: image80.png]
[image: image81.png]
On a retrigger of the load/start bit transition 0->1 (rising edge). Axis 1 jogs in the forward direction.

[image: image82.png]
Axis 1 jogs at 655360 eip counts/s or 10 rps or 600 rpm.

[image: image83.png]
[image: image84.png]
Also note the jog profile values can be viewed as AXIS#.FBUS parameters in Workbench under Device Settings->Communication->Ethernet/IP->Axis 1->Motion tab.

Note the direction of the jog is determined by the Direction bit in the control byte.

[image: image85.png]
Note AXIS1.VL.CMDU is not used in this case and the velocity command is written directly to the AXIS1.VL.CMD.

[image: image86.png]
To stop jogging, I set the smooth stop bit in the control byte.

[image: image87.png]
The velocity command goes to 0.

[image: image88.png]
Jogging (Position Mode)
In position mode the flow of command data is as follows:

[image: image89.png]
In position mode, jogging is accomplished differently compared to when command type 0x07 (Jog Move) is commanded in velocity mode. In position mode jogging is accomplished using a repeating move (move profile) and in position mode prior to jogging the axis must be homed.

The manual indicates in the steps above to issue a message to the Position Controller which is necessary if changing Axis op modes (AXIS#.OPMODE) in the application and the Command Source must be Fieldbus. If the Axis will always be in Position mode and control then the Command Source and Op Mode can be set with Workbench and saved to device.

This application note will follow the procedure as indicated above for demonstration.

The Attribute number from the Drive Objects section of the manual is obtained as follows:

[image: image90.png]
See the section Command Type 0x1B Set Attribute of Position Controller Object for more details.

Therefore, using the following structure for Axis 1, the following must be set:

Byte 2= Command Type= 1B (Position Controller)

Bytes 4-7=Attribute Number=3 (Operation Mode)

Byte 24-27=Attribute Data/Setting=0 (Position Mode)

Note the mode numbers in attribute 0x03 do not coincide with the convention used with the AXIS#.OPMODE (i.e. 0=torque mode, 1=velocity mode, 2=position mode).

[image: image91.png]
Note it is assumed the command assembly data bytes are cleared (all zeroes) for Axis 1 (Bytes 0-63) prior to setup of this commnd.

[image: image92.png]
To trigger the command, set the start bit in the control word (bit 0) to 1.

[image: image93.png]
Per the manual:

[image: image94.png]
Workbench should indicate the drive is in Service Position Mode and the display should show Fieldbus and Position Mode for Axis 1.

[image: image95.png]
Note writing a 0 to the Op Mode of the Position Controller will change both the Command Source to Fieldbus and the Op Mode to Position.

Before proceeding it is recommended to clear the command assembly data of the previous command for Axis 1 (Bytes 0 to 63).
Toggle the Load/Start bit back to 0.

[image: image96.png]
Clear other data:

[image: image97.png]
To setup the jog velocity, accel, and decel this application note assumes the default Ethernet/IP units are used (65536=1 rev, 1rps, 1 rev/s^2).

[image: image98.png]
Although Workbench Units are not related to Ethernet/IP Scaling, for this demonstration the Units for Axis 1 were set to agree.

[image: image99.png]
Next, assuming the default Ethernet IP units of 65536 and a desired velocity of 600 rpm,

Velocity=10 rps (600 rpm)=65536*10=655360 which is “0A 00 00” hex.

[image: image100.png]
Accel and Decel units of 65536 rev/s^2 and a desired accel/decel of 60000 rpm/s,

Accel=Decel=1000 rev/s^2 (60000 rpm/s) =65536*1000=65536000 which is “03 E8 00 00” hex.

[image: image101.png]
Set the command assembly for the given parameters above:

[image: image102.png]
[image: image103.png]
Next, per the manual bit 3 (Direction) where Positive=1 and Negative=0 sets the direction of the Jog.

[image: image104.png]
First I chose to jog in the negative First I chose to jog in the negative direction.

If Axis 1 is not enabled transistion bit 7 of the control byte 0->1 to enable the drive.

[image: image105.png]
The bottom status bar in Workbench indicates Axis 1 is enabled (Active).

[image: image106.png]
Axis 1 must be homed prior to triggering the Jog command in position mode.

This can be accomodated by sending an explicit message to AXIS#.HOME.MOVE or to the Position Controller object and attribute for the home move.

[image: image107.png]
To start jogging Axis 1 transition the load/start bit 0 from 0->1 in the control byte.

[image: image108.png]
From the Workbench Watch window the velocity is -655360 eip counts/s or 10 rps or 600 rpm.

[image: image109.png]
The velocity command and feedback can also be viewed by navigating to Axis1->Settings->Velocity Loop->Status tab.

[image: image110.png]
Also note the jog profile values can be viewed as AXIS#.FBUS parameters in Workbench under Device Settings->Communication->Ethernet/IP->Axis 1->Motion tab.

It is important to note the profile setpoints are all displayed as positive values except the Position which is a negative number because the Direction bit in the command byte is 0 (Reverse). The Position value is 32 revolutions in the same units as Position units on the Units screen for Axis 1.
[image: image111.png]
Note AXIS1.VL.CMDU is not used in this case and the velocity command AXIS1.VL.CMD is function of the move profile running in Position mode.

[image: image112.png]
To stop jogging execute a smooth or hard stop. In this case I executed a Smooth Stop by transitioning bit 4 (Smooth Stop) in the control byte from 0->1.

[image: image113.png]
[image: image114.png]
Axis 1 Jogging stops.
[image: image115.png]
To jog in the forward direction I cleared the load/start bit 0 and smooth stop bit 4 and then set the direction to 1 (forward).

[image: image116.png]
On a retrigger of the load/start bit transition 0->1 (rising edge). Axis 1 jogs in the forward direction.

[image: image117.png]
Axis 1 jogs at 655360 eip counts/s or 10 rps or 600 rpm.

[image: image118.png]
[image: image119.png]
Also note the jog profile values can be viewed as AXIS#.FBUS parameters in Workbench under Device Settings->Communication->Ethernet/IP->Axis 1->Motion tab.

It is important to note the profile setpoints are all displayed as positive values and the Position value is also positive because the Direction bit in the command byte is 1 (Forward). The Position value is 32 revolutions in the same units as Position units on the Units screen for Axis 1.

[image: image120.png]
Note AXIS1.VL.CMDU is not used in this case and the velocity command AXIS1.VL.CMD is function of the move profile running in Position mode.
[image: image121.png]
To stop jogging, I set the smooth stop bit in the control byte.

[image: image122.png]
Axis 1 forward jogging stops.
[image: image123.png]
4. Command Type 0x08 Velocity Setpoint

[image: image124.png]
The chart below has the direction bit (bit 3) in the control word high which is forward. This isn’t mentioned in the description for command type 8 but it has an effect and in fact can be changed on the fly as well where the drive will decelerate if running and then reverse in the opposite direction to the target speed set in bytes 12-15 (Axis 1).
[image: image125.png]
[image: image126.png]
Units Scaling:
In Workbench navigate to Device Settings->Communication->Ethernet/IP->Axis1->Scaling tab.

In this application note the default scaling of 65536 eip counts/s and eip counts/s^2 will be used.

[image: image127.png]
Next since the accel and decel in the command assembly are not used (ignored) when using Command Type 0x08 (Velocity Setpoint), the accel (AXIS1.FBUS.ACC) and decel (AXIS1.FBUS.DEC) must be set either in Workbench or the Position Controller Object.

In Workbench navigating to the Ethernet/IP->Axis1->Motion tab the Accel and Decel listed under the group Motion Profile are the accel/decel used with Command Type 0x08 (Velocity Setpoint).
[image: image128.png]
These can also be set by the Position Controller Object attributes 8 and 9 as shown below.

[image: image129.png]
The manual indicates in the steps above to issue a message to the Position Controller which is necessary if changing Axis op modes (AXIS#.OPMODE) in the application and the Command Source must be Fieldbus. If the Axis will always be in Velocity mode and control then the Command Source and Op Mode can be set with Workbench and saved to device.

This application note will follow the procedure as indicated above for demonstration.

The Attribute number from the Drive Objects section of the manual is obtained as follows:

[image: image130.png]
See the section Command Type 0x1B Set Attribute of Position Controller Object for more details.

Therefore, using the following structure for Axis 1, the following must be set:

Byte 2= Command Type= 1B (Position Controller)

Bytes 4-7=Attribute Number=3 (Operation Mode)

Byte 24-27=Attribute Data/Setting=1 (Velocity Mode)

[image: image131.png]
Note it is assumed the command assembly data bytes for Axis 1 (Bytes 0-63) are cleared (all zeroes) prior to setup of this command.

[image: image132.png]
To execute the attribute write (and change of Op Mode) transition the load/start bit 0 in the control byte from 0->1 (rising edge).

[image: image133.png]
[image: image134.png]
Checking via Workbench, Axis 1 should be in Fieldbus Command Source and Velocity Op Mode.

[image: image135.png]
It is recommended to clear the command assembly for Axis 1 (Bytes 0-63) from the previous command before proceeding.

First clear the load/start bit:

[image: image136.png]
Clear the rest of the command assembly for Axis 1 (Bytes 0-63):
[image: image137.png]
From the Standard Command Assembly Data Structure:

[image: image138.png]
Write 0x8 to the Command Type field (byte 2) in the command assembly for Axis 1.
[image: image139.png]
To enable errors write a 0x14 in byte 3 (Axis 1) of the command assembly and read the response in byte 3 of the response assembly:

[image: image140.png]
Response notes:
[image: image141.png]
[image: image142.png]
Per the above there is no current error.

[image: image143.png]
Next set the velocity setpoint in bytes 12-15 (Axis 1). In this case, the setpoint is hex “0a 00 00” or 655350 in EIP units or 10 rps or 600 rpm.

[image: image144.png]
If Axis 1 is not enabled, the enable can be set by bit 7 in the control word shown below with a 0->1 (rising edge) transistion.

[image: image145.png]
[image: image146.png]
The Status Bar in Workbench indicates Axis 1 is Active (Enabled).

[image: image147.png]

In this example the direction bit 3 in the control byte will be set to 1 for forward direction.

[image: image148.png]
Enable velocity setpoint following for Axis 1 by setting bit 0 of the control byte to 1.
[image: image149.png]
Axis 1 accelerates up to the target velocity and per the description for command type 8, as long as the load/start bit is high, the velocity data in bytes 12-15 can be changed on the fly. As mentioned before bit 3 (direction) can be changed on the fly as well.
From Workbench the velocity command and feedback for Axis 1 can be observed under Axis 1->Velocity Loop->Status tab.

[image: image150.png]
For demonstration the velocity setpoint will be changed on the fly.
First convert setpoint value to hex (in this case 30000=7530h).

[image: image151.png]
In this case -20000=FF FF B1 E0 h (4 bytes).

[image: image152.png]
Change the values of Bytes 12-15 in the command assembly:

[image: image153.png]
[image: image154.png]
Again changing the values of bytes 12-15 in the command assembly:

[image: image155.png]
[image: image156.png]
One last example is to review a positive value of 65536 but this time the direction bit will be turned off (for reverse direction).
[image: image157.png]
[image: image158.png]
[image: image159.png]
5. Command Type 0x09: Motion Task

Command Type 0x09: Motion Task was added to the AKD2G drive to facilitate a block transfer of motion task profile data (i.e. position, velocity, accel, and decel). Note per the manual, this command loads data into a motion task but doesn’t initiate the task or motion. Once a motion task has been defined/loaded, use the block method (Block# and Start Block bit in the control word) to start a specific motion task. See Section 10 :Running A Stored Motion Task Sequence of this application note for more details on the Block Method.
[image: image160.png]
For this demonstration it will be assumed Axis 1 is in Fieldbus command source and Position op mode.

[image: image161.png]
Motion Task # 10 is arbitrarily chosen for demonstration and the following data will be used:

Byte 1 (Block #)= 10

Bytes 8-11 (Position)=22222 (decimal) or 56CE (hex)

Bytes 12-15 (Velocity)=65536 (decimal) or 10000 (hex)
Bytes 16-19 (Accel)= 655360 (decimal) or A0000 (hex)
Bytes 20-23 (Decel)=655360 (decimal) or A0000 (hex)
[image: image162.png]
This demonstration assumes the control word and command assembly data for Axis 1 (bytes 0-63) is cleared (all zeroes) prior to executing command type 0x09 Motion Task.
Populating the command assembly with data:
Set the Block Number in Byte 0.

[image: image163.png]
Set the Command Type in Byte 2 to 0x09.

[image: image164.png]
Set the Position, Velocity, Accel, and Decel values to be loaded.
[image: image165.png]
Prior to loading the motion task, motion task 10 in the table in Workbench is at the default values.

[image: image166.png]

To load the values, transition the load/start bit 0 in the control word from 0->1 (rising edge).

[image: image167.png]
Motion Task 10 in Axis 1 Motion Task table now has the values loaded from the PLC.

[image: image168.png]

In this example the default AXIS1.MT.CNTL=0 will be used which is a trapezoidal absolute move.
For more sophisticated move types, see the AKD2G Command Refernce for AXIS#.MT.CNTL and related AXIS#.MT parameters. Per the Command Type 0x09 Motion Task definition these parameters must be set prior to issuing the Block# and Start Block bit in the Control Word to execute a specific motion task number in the motion task table.

See Section 10: Running a Stored Motion Task Sequence for more details on the Block Method.

6. Command Type 0x 1B: Set Attribute of Position Controller Object
[image: image169.png]
Set Attribute is specific to the Position Controller object. I arbitrarily chose attribute 3: Operation Mode.
[image: image170.png]
[image: image171.png]
The Attribute number from the Drive Objects section of the manual is obtained as follows:

[image: image172.png]
Axis 1 will be demonstrated.

Using the following structure the following must be set:

Byte 2= Command Type= 1B (Position Controller)

Bytes 4-7=Attribute Number=3 (Operation Mode)

Byte 24-27=Attribute Data/Setting=2 (Torque Mode)

Note the mode numbers in attribute 0x03 do not coincide with the convention used with the DRV.OPMODE or displayed on the front of the AKD (i.e. o0=torque mode, o1=velocity mode, o2=position mode).

[image: image173.png]

Note it is assumed the command assembly data byte data for Axis 1 (Bytes 0-63) is cleared (all zeros) prior to setup of this command.

[image: image174.png]
Expanding Byte 0 of the output data displays the 8 bits of the Control Word for Axis 1.

[image: image175.png]
Per the manual.

[image: image176.png]
To Set the Attribute of the Position controller transition the load/start bit from 0->1.

[image: image177.png]
On Load/Start the drive changes to Fieldbus and Torque Mode.

Note 1: Torque Mode via the position controller is the only time with Ethernet IP the AXIS#.CMDSOURCE will change to/use “Fieldbus”. In most other applications and commands the AXIS#.CMDSOURCE will be “Service”.

Note 2: Setting the Op Mode via the Position Contoller Object to Torque also changes the AXIS#.CMDSOURCE to the appropriate “Fieldbus”. The Torque Move command type 0x05 does not set the command source nor the op mode to the required settings. They must be set either by Workbench or the Position Controller PRIOR to issuing the Torque Move or it will result in a communications error timeout.

Using Workbench to verify the modal change for Axis 1:

[image: image178.png]
Turn the load/start bit in the control word off.

[image: image179.png]
It is recommended to clear the command assembly for Axis 1 (Bytes 0-63) from the previous command before proceeding.

[image: image180.png]
7. Get Attribute of Position Controller Object Method:

[image: image181.png]
Get Attribute is specific to the Position Controller. In this example I arbitrarily chose Home Mode attribute 100 (decimal) and 64 (hex).

Axis 1 will be used in this demonstration.
It is assumed the command assembly data is cleared (all zeroes) prior to issueing the Get Attribute method.
As noted in the definition of the Get Attribute method it does not make use of byte 2 (command type) nor the Load/Start bit in the control word.

To Get Attribute set byte 28 to 16#64 (Home Mode) in the Command Assembly (Output Data).
[image: image182.png]
[image: image183.png]
The response came back as 7 which is correct (Home Mode=7-Find zero angle).

[image: image184.png]
[image: image185.png]
[image: image186.png]
Per the definition if I change the home mode via Workbench, byte 24 should update:

[image: image187.png]
[image: image188.png]
8. Write Parameter (via polled IO command: static mapping)
Read Parameter (via polled IO command: static mapping)

Both of these operations use the same command type 0x1F and byte 6 determines whether the operation is a read or write. Note this is different than explicit messaging because this command type uses the polled IO (cyclic data) of the command and response assemblies.

[image: image189.png]
[image: image190.png]
Don’t forget if you were using the Get Attribute field previously to clear it when using the Read or Write Parameter command type.

[image: image191.png]
This demonstration assumes the command assembly bytes for Axis 1 (Bytes 0-63) have all been cleared (zeroes).
To write a value, I chose the home velocity parameter for Axis 1 (AXIS1.HOME.V)
From the AKD2G Ethernet/IP Objects List

[image: image192.png]
Both the decimal and hexadecimal Attribute value is shown and the Instance is 1.
Command Byte 2=16#1F

Attribute/parameter index)=

Byte 4=16#e0

Byte 5=16#17

Byte 6 bit 0= 1 (Write)

Byte 6 bits 1 to 7= 0 (non array parameter)

Byte 7 bits 0 to 7 =0 (non array parameter)
[image: image193.png]
Therefore Byte 6 is set to 1 and Byte 7 is set to 0.

[image: image194.png]
Set bytes 24-27 to the Parameter/Attribute Data.
I chose an arbitrary value to write: 12345 and converted it to hex: 3039

[image: image195.png]
[image: image196.png]
To write set the load/start bit in the control word from 0 to 1 (transition).

[image: image197.png]
[image: image198.png]
In Workbench and navigating to Axis 1->Home screen the Home Velocity has changed to the written value from the PLC.

[image: image199.png]
Read Parameter

To read the same parameter (Home Distance) I used the same command structure but set byte 6 bit 0 to 0 (read).
[image: image200.png]
[image: image201.png]
Set the load/start bit to 0 and then back to 1 to trigger the read.

[image: image202.png]
The response assembly data (read) appears in bytes 24-27.
[image: image203.png]
[image: image204.png]
From the Write Parameter data we know that 3039 hex is the value 12345 decimal.
9. Homing Method

[image: image205.png]
Set Attribute has already been covered. In this case, let’s assume the Home mode has already been set using that method or set via Workbench.

Homing Mode (in this case mode 7: Find zero angle):

[image: image206.png]
We will also assume Axis 1 is in Fieldbus Command Source, Position Mode, and enabled.
[image: image207.png]
[image: image208.png]
[image: image209.png]
The definition is given as follows (note the attribute ID in the chart above is decimal and the attribute ID given here is hex).

[image: image210.png]
Recall the Set Attribute method.

[image: image211.png]
[image: image212.png]
It is assumed the command assembly bytes for Axis1 (Bytes 0-63) are cleared (all zeroes) accept the enable bit 7 in byte 0 (the control word) prior to issuing the home command.

Byte 2 Command Type=16#1b

Bytes 4-7 Data/Attribute Number=16#65 (Decimal 101) Home Move

Bytes 24-27 Parameter/Attribute Data=16#01

[image: image213.png]

Set the attribute data (to write) to 1 in bytes 24-27.
[image: image214.png]
To start the move (trigger the command) toggle the load/start bit from 0 to 1 in the control word.

[image: image215.png]
Home move commences.

When home is complete (success), Status Word 1 bit 5 indicates the axis has been successfully homed.
[image: image216.png]
[image: image217.png]
Also in Workbench the home found and done illuminator lamps are green and the position feedback is 0.

[image: image218.png]
10. Running A Stored Motion Task Sequence
[image: image219.png]
I created 2 Motion Tasks using Workbench. Suppose one is for the extend and the other is the return or retract move on a linear axis. As shown Motion Task 1 is an absolute move to 655360 eip counts and Motion Task 2 is an absolute move to 0 eip counts.
[image: image220.png]
For Axis 1 the Block# is Byte 1 per the manual:

[image: image221.png]
The Start Block bit in the Control Word is Bit 1 as shown:
[image: image222.png]
Prior to triggering the load/start bit of the control word, it is assumed Axis 1 is homed and enabled.
From Axis 1 Home Screen and status bar in Workbench:

[image: image223.png]
[image: image224.png]
It is also assumed the command assembly data and control word for Axis 1 (Bytes 0-63) is clear (all zeroes) except bit 7 (enable) of the control word.
In the example, Motion Task 1 is the extend so, the Block# is set to 1 in byte 1 of the command assembly and bit 0 of the control word (byte 0) is checked to be low (0).

[image: image225.png]
To trigger the Motion Task, the start block (bit 1 of byte 0; control word of the command assembly) must be set from 0 to 1.
[image: image226.png]
Once the move is complete the final commanded and feedback positions can be checked using Workbench and you can see the target position of Motion Task 1 was reached.
[image: image227.png]
Bit 1 of Status Word 1 in Byte 0 will turn on (0->1) and Byte 1 of the Response Assembly (Input) will display the motion task # once the Start Block commences.
[image: image228.png]
[image: image229.png]
[image: image230.png]
[image: image231.png]
Note even after the “Block In Execution” bit turns 0 the Executing Block# in Byte 1 retains the last block # that was executed (1 in this demonstration).

To execute the return move, I set the start block bit in the control word to 0.
[image: image232.png]
Next I changed the Block # in Byte 1 of the command assembly to point to motion task 2.
[image: image233.png]
To trigger, I set the Start Block bit in the control word from 0->1.
[image: image234.png]
After the move was complete, I checked the final position in Workbench.
[image: image235.png]
Explicit Messaging

Unlike the other command types previously covered which used the polled IO (cyclic) data of the command and response assemblies, explicit messaging is independent of them and is “on demand” meaning you have to send the message every time you want to read or write to a drive parameter.

[image: image236.png]
To read or write a parameter using explicit messaging reference AKD2G Ethernet/IP Objects List where each AKD Parameter is listed with its corresponding Ethernet IP Instance, Data Size, and Data Type. For example:
[image: image237.png]
To correlate this to the PLC the parameters listed are in the following formats:
	Parameter Data Size
	Parameter Range
	Tag Data Type
	Tag Range

	Command (1 byte)
	0 or 1 (command will take any data and be processed)
	SINT
	-128 to +127

	1 Byte
	Check Workbench Help for range of each parameter
	SINT
	-128 to +127

	1 Byte Signed
	Check Workbench Help for range of each parameter
	SINT
	-128 to +127

	2 Byte
	Check Workbench Help for range of each parameter
	INT
	-32768 to +32767

	2 Byte Signed
	Check Workbench Help for range of each parameter
	INT
	-32768 to +32767

	4 Byte
	Check Workbench Help for range of each parameter
	DINT
	-2147483648 to 2147483647

	4 Byte Signed
	Check Workbench Help for range of each parameter
	DINT
	-2147483648 to 2147483647

	8 Byte
	Check Workbench Help for range of each parameter
	LINT
	-9223372036854775808 To 9223372036854775807

	8 byte Signed
	Check Workbench Help for range of each parameter
	LINT
	-9223372036854775808 To 9223372036854775807

For more information on AKD2G Explicit Messaging see the Web Help of the AKD2G Ethernet/IP and AKD2G Ethernet/IP with Studio 5000 manuals.

[image: image238.png]
[image: image239.png]
The following will detail a write and read of the same data size. Explicit Messaging is configured and executed using Rockwell’s MSG instruction in Studio5000. This will vary from mfg. and software.
10. Write Parameter Via Explicit Messaging
From the AKD2G Ethernet/IP Objects List I chose AXIS1.HOME.DIST.
[image: image240.png]
The MSG block is given a name in the Message Control Tag and then click on the […] button beside it to configure.

· Message Type-CIP Generic

· Service Type-Set Single Attribute (this sets the Service Code to 10 (Write)
· Set Class to 0x64 (Parameter Object)

· Set Instance to 1 (Axis 1)

· Set Attribute to 0x17d8 (AXIS1.HOME.DIST)

· Since this is a Signed32 data type (see above) set the Source Length to 4 bytes.

[image: image241.png]
· A tag will need to be created to store the Source for the data which is the “Source Element”. Click on the “New Tag…” button and define a tag with the DINT data type.
[image: image242.png]
Click Create.
Click the list box beside Source Element and selectc the tag you just created.

[image: image243.png]
Now the Source Element field should be populated.
[image: image244.png]
Next click on the Communication tab of the MSG configuration.
Click on the “Browse…” button to search for the path.

In my case the screen looks as follows (yours may be different). I clicked on the given AKD2G axis (in this case the only one “ETHERNET-MODULE AKD2G”. Click OK.
[image: image245.png]
The path is now configured.
[image: image246.png]
Click Apply and then OK.

Complete the trigger logic for the rung:

[image: image247.png]
In Workbench the Home Distance for Axis 1 is initially 0.000.
[image: image248.png]
In the PLC’s Watch window I set the value to be written to an arbitrary value of 12345.

[image: image249.png]
On trigger of the MSG (Explicit Message) the value is written.
[image: image250.png]
11. Read Parameter Via Explicit Messaging

From the AKD2G Ethernet/IP Objects List I chose AXIS1.HOME.DIST.

[image: image251.png]
The MSG block is given a name in the Message Control Tag and then click on the […] button beside it to configure.

· Message Type-CIP Generic

· Service Type-Get Single Attribute (this sets the Service Code to e (hex) (Write)

· Set Class to 0x64 (Parameter Object)

· Set Instance to 1 (Axis 1)

· Set Attribute to 0x17d8 (AXIS1.HOME.DIST)

[image: image252.png]
· A tag will need to be created for the Destination for the data (that is read) which is the “Destination Element”. Click on the “New Tag…” button and define a tag with the DINT data type.

[image: image253.png]
Click Create.

Click the list box beside Destination Element and selectc the tag you just created.

[image: image254.png]
Now the Destination Element field should be populated.

[image: image255.png]
Next click on the Communication tab of the MSG configuration.

Click on the “Browse…” button to search for the path.

In my case the screen looks as follows (yours may be different). I clicked on the given AKD2G axis (in this case the only one “ETHERNET-MODULE AKD2G”. Click OK.

[image: image256.png]
The path is now configured.

[image: image257.png]
Click Apply and then OK.

Complete the trigger logic for the rung:

[image: image258.png]
In Workbench set the Home Distance for Axis 1 to a value as desired.
For demonstration I will use 22222.

[image: image259.png]
On trigger of the MSG (Explicit Message) the value is read and the destination element tag of the MSG read is added to the Quick Watch in Studio5000.
[image: image260.png]
1

