AKD PDMM[®] User Guide

Document Edition: C, October 2013 Valid for Software Revision 2.7 Valid for AKD PDMM firmware version: 1.10 Part Number: ManualOrderCode, adjust in target

KOLLMORGEN

Keep all manuals as a product component during the life span of the product. Pass all manuals to future users / owners of the product.

KOLLMORGEN

Because Motion Matters[™]

Trademarks and Copyrights

0.1 Copyrights

Copyright © 2009-13 Kollmorgen

0.2 Trademarks

KAS and AKD PDMM are registered trademarks of Kollmorgen. Kollmorgen is part of the Danaher Company. EnDat is a registered trademark of Dr. Johannes Heidenhain GmbH EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH Ethernet/IP is a registered trademark of ODVA, Inc. Ethernet/IP Communication Stack: copyright (c) 2009, Rockwell Automation HIPERFACE is a registered trademark of Max Stegmann GmbH PROFINET is a registered trademark of PROFIBUS and PROFINET International (PI) SIMATIC is a registered trademark of SIEMENS AG Windows is a registered trademark of Microsoft Corporation PLCopen is an independent association providing efficiency in industrial automation. INtime® is a registered trademark of TenAsys® Corporation. Codemeter is a registered trademark of WIBU-Systems AG. SyCon® is a registered trademark of Hilscher GmbH. Kollmorgen Automation Suite is based on the work of: Qwt project (distributed under the terms of the GNU Lesser General Public License - see also GPL terms)

- Zlib software library
- Curl software library
- <u>Mongoose</u> software (distributed under the MIT License <u>see terms</u>)
- JsonCpp software (distributed under the MIT License see terms)
- <u>U-Boot</u>, a universal boot loader is used by the AKD PDMM (distributed under the <u>terms</u> of the GNU General Public License). The U-Boot source files, copyright notice, and readme are available on the distribution disk that is included with the AKD PDMM.

All other product and brand names listed in this document may be trademarks or registered trademarks of their respective owners.

0.3 Disclaimer

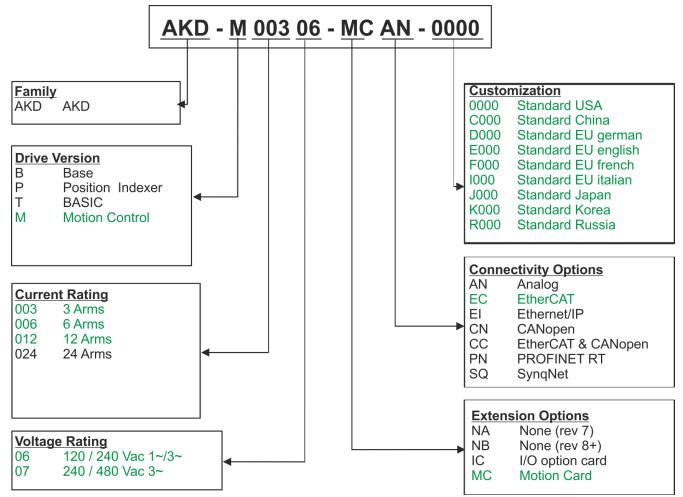
1 Welcome to AKD PDMM User Guide

Welcome to the AKD PDMM User Guide, a guide for installing, setting up, and using an AKD PDMM. Complete product documentation in pdf or online help format is included on your installation disk. Product manuals are also posted on the <u>Kollmorgen website</u> and are updated on the website as needed between releases. Check the website for the most current manuals.

The documentation available on the Kollmorgen website includes the following:

Related documents for the AKD PDMM series include:

- *AKD PDMM Quick Start* (also provided in hard copy). This guide provides instructions for initial drive setup and connection to a network.
- *AKD PDMM Installation Manual* (also provided in hard copy for EU customers). This manual provides instructions for installation and drive setup.
- AKD PDMM Users Manual. This manual describes how to use your drive in common applications. It also provides tips for maximizing your system performance with the AKD PDMM.
- Accessories Manual. This manual provides documentation for accessories like cables and regen resistors used with AKD PDMM. Regional versions of this manual exist.


2 AKD PDMM Models

AKD PDMM drive models are available in a variety of combinations of features. The part number identifies the features included in your model.

NOTE

AKD PDMM is only available for EtherCAT field busses.

The figure below shows part number identification for drive features. Features available in the AKD PDMM are marked bold green.

The customization code includes language version of printed material for European countries:

- D000 for German
- E000 for English
- F000 for French
- 1000 for Italian

3 Software Setup

3.1 Install and Start the KAS IDE

Once the Kollmorgen Automation Suite Integrated Development Environment (KAS IDE) installation is complete, click the IDE icon to launch the program.

NOTE

The KVB software used for developing an HMI display does not install with the KAS IDE and must be installed separately.

Begin a new project in the KAS IDE by selecting **File > New**. This will launch the **Add a New Controller** window.

Welcome to the controller crea Do you want to create a new o	tion wizard. controller or connect to an existing one?	
Name	Туре	
8" Standard Controller	Panel Controller	
10" Standard Controller	Panel Controller	
10" Performance Controller	Panel Controller	
15" Performance Controller	Panel Controller	
15" Hi-Performance Controller	Panel Controller	
17" Hi-Performance Controller	Panel Controller	
Standard Box	Box Controller	
Performance Box	Box Controller	
Hi-Performance Box	Box Controller	
Hi-Performance Rackmount	Rackmount Controller	
PDMM	Drive Based Controller	

Figure 4-1: Add a New Controller

Select your AKD PDMM model from the list and click Next. You will then be prompted to select an application template:

Choose an application	plication template
-Motion Engine	
PipeNetwork	
PLCopen	
C Library	
Name	Description
2 axes	A two axes application with Pipe network

Figure 4-2: Select Application Template

Choose from PipeNetwork, PLCopen, or Library, and click Finish. The controller will then be added to the project view.

To associate the project with the IP address of the PDMM controller, right click on the Controller option in the Project View.

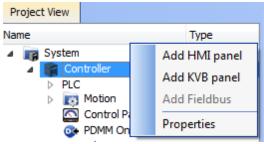
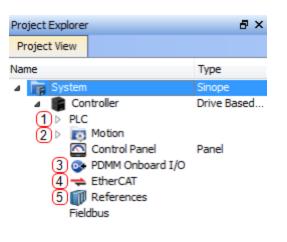


Figure 4-3: Controller Selection

Select Properties and the following screen appears:

💻 [#] Controller Pr	operties [#]
Address [IP or COM]	10.8.41.54
Version	
Controller type	
O PAC	PDMM
ОК	Cancel


Figure 4-4: Controller Properties

Type in the IP address of the PDMM, set the Controller Type to PDMM and click OK.

3.2 KAS IDE Project View

The KAS IDE contains tools for configuring the EtherCAT network, setting up and tuning the drives, adding and configuring HMIs, and creating a PLC program. For more complete information see the KAS IDE User Guide.

Once a project (new or saved) is opened, the user can open a variety of items to build a project from the Project Explorer:

1. Create

PLC Programs

- 2. Add Motion
- Configure Resident I/O
- Configure Drives and Remote I/O
- 5. Add Additional Reference Documents

Figure 4-5: Project View

3.3 Configuring the Drives and Remote I/O

All drives, including the drive in the PDMM itself and the Remote I/O, can be configured by the IDE. In order to connect to an EtherCAT device you must first compile your project. After the project is compiled you must connect to the target:

- 1. Compile Project
- 2. Connect to Tar-

get

Figure 4-6: Compile and Connect

Next click on the EtherCAT item in the project view to bring up the EtherCAT Devices screen in the IDE workspace. Click on Scan Devices and the IDE will launch a view which automatically identifies your connected device(s). Click OK, to add these devices to the project.

	1					🔎 Scan Devic
ŧ	Name	Model	FW Version	Mapped to Axis	Simulated	PDO Selection
L	AKD_1	AKD-P00306-NAEC	01-07-02-000	(None) 🗸 🔻	N/A	AKD
2	AKD_2	AKD-P00306-NAEC	(Unknown)	(None) (2) -]N/A	AKD
	Coupler_3		(Unknown)	N/A	Yes	N/A

 Go to the EtherCAT Devices view and press Scan Devices
 Mapped to Axis in the Application

Figure 4-7: Scan Devices & Mapped to Axis

The devices are added to the project view:

😑 🔫 EtherCAT				
🕀 📷 AKD_1	AKD Drive			
🗊 👹 AKD_2	AKD Drive			
💼 📰 Coupler_3	KBus Coupler			
🔤 í 🗊 References				
Figure 4-8: Devices Added to Project				

To communicate directly with a drive without running a project, first compile and download the project:

Step 1: Compile Project

Step 2: Download Project

- 1. Compile Project
- 2. Download Pro-

Figure 4-9: Compile and Download

Online Configuration Mode must also be active. Click on the EtherCAT item in the project tree and then click on the Online Configuration Mode button next to Scan Devices:

ject

Online Configuration Mode		🔎 Scan Devices
---------------------------	--	----------------

Figure 4-10: Online Configuration Mode

Online Configuration Mode is now active. To configure a particular item in the EtherCAT network, click on the item in the project tree. A set of screens will open in the work space that enable the user to completely configure the selected drive:

Main		BasicFunctions	EtherCAT	CamProf	ile1	EtherCAT: AK	D_1
Enable Stop Torque	mode 💉 Clear Faults	•					
🕥 Overview 🕨	Power 📀 Feedback	🔘 Motor 🕞 Motor Foldback	💿 Brake 🙌 Limits	(i) Current Loop	🔟 Velocity Loop	o 🕖 Position Loop	M Service Motion
	Overview						
Name:	AKD_1						
Drive Model:	AKD-800307	*					
Drive Type:	2 - EtherCAT						
Drive Active:	0 (Drive inactive)		drive is inactive because: software enable is not active				
Drive Display:	٥Ø	Blink Blink O Display	hardware enable is not active	3.			
More >>							

Figure 4-11: AKD GUI screens

Additionally, the setup wizard will guide you through a set of configuration steps:

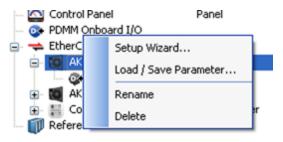


Figure 4-12: Setup Wizard

3.4 Where To Go From Here

Depending upon your need, you should either continue using this manual or use the KAS IDE web help.

• For more information about the KAS IDE embedded WorkBench views, see chapters Using Embedded Workbench Views through Using Parameters and the Terminal Screen (pg 93).

 For more information about programming your application and system, see the KAS IDE Online Help. The best place to start is Using KAS IDE > Creating a Project > Steps 1 - 15.

4 Initial Drive Setup

4.1	Initial Drive Setup	. 13
4.2	Display Codes	. 13
4.3	AKD PDMM Setup Wizard	14

4.1 Initial Drive Setup

The <u>AKD PDMM Quick Start Guide</u> provides details for initial drive setup. Initial drive setup consists of the following general steps:

Hardware Installation:

- 1. Install the drive on your conductive panel and connect the Protective Earth ground.
- 2. Connect the logic power you will need to operate all of the control logic to X1.
- 3. Connect the motor power to X2.
- 4. Connect the feedback to X10.
- 5. Connect the inputs and outputs you will be using on X7 and X8.
- 6. Bring AC power to the unit and connect AC power to X3 or X4.
- 7. Connect drive communications to X11.
- Confirm that you can communicate with the drive and that your PC is linked to the AKD PDMM.

Software Installation and Drive Communication Setup:

- 1. Install and start the interface software (KAS IDE).
- 2. Set the drive IP address using the S1 and S2 switches.
- 3. Configure the drive using the Setup Wizard.

KAS IDE System Requirements

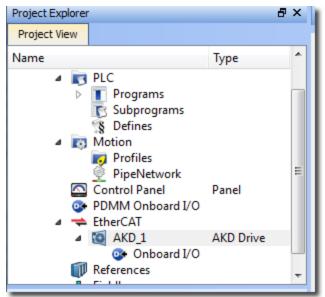
Required Components: Microsoft .NET Framework 4.0

Supported Operating Systems:

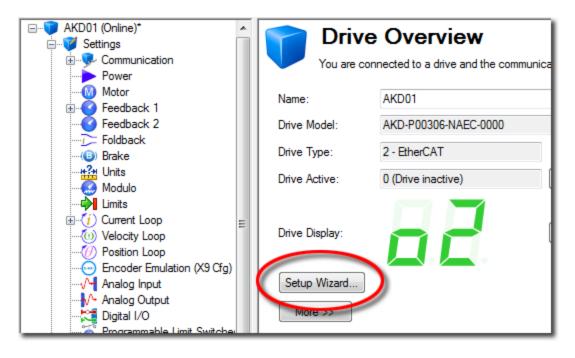
- Windows XP
- Windows Vista
- Windows 7
- Windows 8

4.2 Display Codes

During drive operation the drive display shows the following codes depending on the drive status.


Display Code	Status
00	Normal operation, current mode, no faults
01	Normal operation, velocity mode, no faults
o2	Normal operation, position mode, no faults
F [3 digit code,	Fault (see Fault and Warning Messages)
flashing]	
n [3 digit code,	Warning (see Fault and Warning Messages)
flashing]	
I,P [IP address]	Displaying drive IP address

Display Code	Status
	Powered on and FPGA loading. If continuous then operational and resident
	FPGA images are corrupt.
[.]	Drive enabled
[.] (flashing)	Drive in an internal dynamic brake mode (DRV.ACTIVE (pg 247) = 3).
dd	Operational started reboot, waiting for the resifnet to start.
d2	Firmware download: corrupted operational FPGA; resident FPGA is functional.
d3	Firmware download: HW download (HW switch was pressed - Rev 3 and higher).
d4	Firmware download: Corrupted operational FW.
d5	Firmware download: SW download (download command was issued from the oper-
	ational FW).
d9	Start firmware download
dL	Loading image process is running.
dF (flashing)	Failure during firmware download.
Sb	Special mode: Burn-in
Fr	Blackfin Reset
][Resident completed and waiting for the operational to start
FP	Kernel Panic
FE	Blackfin Exception


4.3 AKD PDMM Setup Wizard

The Setup Wizard contains step-by-step instructions for configuring a drive for the first time and generating a simple test motion. You can access the Setup Wizard from the Drive Overview screen or by right clicking on the drive name.

1. Access the Setup Wizard by double-clicking on the drive name in the project view.

- Enable Online Configuration mode from the toolbar, by pressing the "Toggle Online Configuration Mode" button.
- 3. After the drive is connected, you can press the Setup Wizard button in the Drive Overview screen

The Setup Wizard is useful during the initial setup. The wizard confirms your connection with the drive and leads you through a series of steps to quickly get your drive up and running. With plug and play feedback devices, several steps are skipped (feedback, brake) because the drive automatically configures these settings. For all systems, you can select the units you want to use, configure your operation mode, tune the system, and perform some simple jog moves within the wizard. After you are comfortable with the basic system setup, you can save your settings to the drive and exit the wizard.

5 Configuring Drive Power

5.1	Power	17
5.2	Operating Voltage	17
5.3	Direct DC Mains Operation	17
5.4	Regeneration	19

5.1 Power

5.1.1 Drive Setup for Power and Bus

The **Power** screen allows you to confirm Power Bus settings. Review the data on the screen to be certain the bus voltage is at the appropriate levels you expect (approximate input line AC voltage * 1.4). The other values are the appropriate limits for over voltage and under voltage for the particular drive. You can select the undervoltage fault mode to trigger either only when the drive is enabled or always.

External Regeneration (pg 19) parameters can be set from the Regen screen.

From the **Power** screen, you can view and configure the drive power settings as follows:

Button or Dialog Box	Description	Parameter
Measured Bus Voltage	Reads the current DC bus voltage.	VBUS.VALUE (pg 466)
Over Voltage Fault Level	Reads the over voltage fault level.	VBUS.OVFTHRESH (pg 463)
Under Voltage Fault Level	Reads the under voltage fault level.	VBUS.UVFTHRESH (pg 464)
Operating Voltage	Sets the operating voltage.	VBUS.HALFVOLT (pg 462)
Under Voltage Fault Mode	Sets under voltage mode.	VBUS.UVMODE (pg 465)

See Regeneration (pg 19) for more information about regen resistors and sizing regen resistors.

5.2 Operating Voltage

Operating voltage can be selected by the user to allow AKD PDMM-xxx07 (480VAC) drives to work on 240VAC input supplies.

The VBUS.HALFVOLT parameter has an effect on the following voltage-thresholds:

- DC-bus over-voltage threshold (see VBUS.OVFTHRESH (pg 463)).
- The regen-resistor enable/disable voltage thresholds.
- The inrush-relay enable/disable voltage thresholds.

A power-cycle is needed after changing the value and saving the parameter on the NV memory of the Drive, since the voltage thresholds mentioned above are read during the boot-sequence of the Drive.

5.3 Direct DC Mains Operation

Direct DC input is available on all standard AKD PDMM models. The DC input should be run into the AC input connection. Positive and negative DC lines should use L1 and L2 connections (polarity is not critical). L1 and L2 connections are found on either the X3 connector or the X4 connector depending on the model.

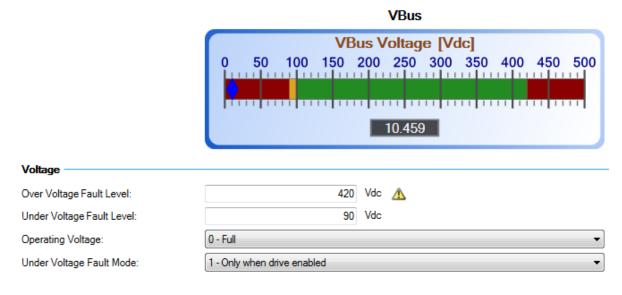
(see Mains supply connection (X3, X4) (pg 147) for more information on this connection).

The nominal level of DC voltage applied must be compatible with the voltage fault levels in the drive. You must also consider voltage variations in the DC power supply above and below the nominal value so that nuisance faults are avoided.

When you determine the maximum nominal DC voltage applied to the drive, you should also consider the regeneration circuit, in addition to the over voltage level. Running the drive slightly below the over voltage level is not possible because the drive does not have the capability to dissipate regenerated energy. This

practice can also be harmful to the regen circuit. A good practice is not to exceed the nominal DC voltage produced by a standard AC installation. For the AKD PDMM-zzzzz06, 340 VDC is the equivalent DC voltage for a 240 VAC supply and for the AKD PDMM-xxxx07, 680 VDC is the equivalent DC voltage for a 480 VAC supply.

The voltage fault levels are also shown in the **Power** screen and depend on the voltage level of drive used. Voltage ranges are as follows:


Model	Under Voltage Level	Over Voltage Level
AKD PDMM-	90 VDC	420 VDC
zzzz06		
AKD-zzzz07	380 VDC	840 VDC

You can view bus voltage values in the **Power** screen as shown below:

Power

Monitor and configure the different power values.

5.4.1 Overview

Regeneration, or "shunting", dissipates energy from the DC bus during deceleration of the motor load. During deceleration, the motor acts as a generator that pumps energy back into the system. If this energy is not dissipated, then the bus energy level can exceed acceptable levels (VBUS.OVFTHRESH (pg 463)). If the system exceeds the maximum bus voltage, then the drive generates an over voltage fault (F501) and shuts down. A regeneration resistor, or regen resistor, is an external device that dissipates excess energy and allows the drive to function normally during deceleration.

Follow these steps to determine the regen needs for your system and to configure the drive for regen:

- 1. Calculate motor peak and continuous regenerative energy and use this value to size the regen resistor.
- 2. Select a compatible regen resistor.
- 3. Configure regen parameter values in <u>EWV</u>¹.

Button or Dialog Box	Description	Parameter
Regen Resistor Type	Sets the regen resistor type to either -1-External Regen or 0-Internal Regen (if available).	REGEN.TYPE (pg 434)
External Regen Resistance	Sets the external, user-defined regen resistor resistance (only visible for external regen).	REGEN.REXT (pg 433)
External Regen Heat Up Time	Sets the external regen resistor thermal protection time con- stant (only visible for external regen).	REGEN.TEXT (pg 433)
External Regen Power	Sets the regen resistor's power fault level for an external regen resistor (only visible for external regen).	REGEN.WATTEXT (pg 435)
Regen Power	Reads the regen power (only visible for external regen).	REGEN.POWER (pg 432)

From the Regen view, the following drive regen settings can be viewed and configured.

5.4.2 Regen Resistor Options

Select "-1 External Regen" from the **Regen. Resistor Type** box (REGEN.TYPE (pg 434)) to view the **Select Resistor** drop-down box.

¹Embedded Workbench Views

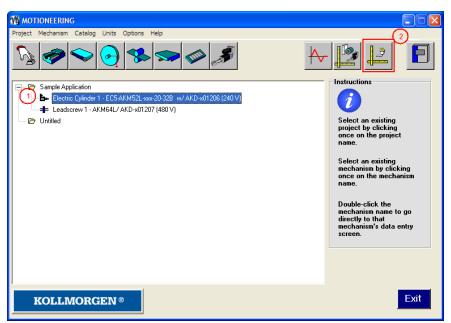
Regen. Resistor					
Regen. Resistor Type:	-1 - External Regen 🔹		Select Resistor:	<user defined=""></user>	-
External Regen Resistance:	330	Ohm		BAFP-100-33 BAFP-200-33	DE-201437 DE-201438
External Regen Heat Up Time:	100.000	s		BAR-250-33 BAR-500-33	DE-106254 DE-106255
External Regen Power:	1,000	w		BAR-1500-33 BAS-3000-33	DE-106258 DE-201407
Regen. Power:	0	w		<user defined=""></user>	

The **Select resistor** drop-down contains pre-sized resistors for your drive. Select the model regen resistor that you are using and the drive will populate the remainder of the fields. If you are using a nonstandard resistor, then choose **<User defined>** and fill in the appropriate values for your resistor.

NOTE If you use a nonstandard resistor, contact Kollmorgen technical support to confirm that the nonstandard resistor will work correctly with your system.

5.4.3 Calculating Motor Peak Energy and Regen Resistor Size

In order to determine whether or not your system requires a regen resistor, you must calculate the peak kinetic energy that the motor generates during deceleration and the continuous regeneration energy created by the motor. If this energy exceeds the drive capacity, then you need a regen resistor. In many cases, peak or continuous regenerated energy does not exceed the drive capacity and no regen resistor is needed.


The calculation for peak kinetic energy requires values for several factors that affect the generation of energy in a motion system:

- Load inertia
- Motor inertia
- Motor speed from which deceleration occurs
- Time required to decelerate

Regen resistor sizing information for your particular application can be calculated using the Motioneering® Application Engine. You can download this program here:

http://www.kollmorgen.com/website/com/eng/support/design_tools/motioneering.php

After you install and set up this program, highlight your application (1) and then click on the Power Supply Sizing icon (2).

The application then displays the regen sizing tool; see the application help for further sizing assistance.

Power supply sizing				
🗁 Project: Sample Applic	ation	List drives of	type: AKD	•
🔅 Mechanism	B⊗ Selected system		% rated power	watts
Leadscrew 1	AKM64L/ AKD-x01207 (480	V)	57.8	3050.8
Bus power	Power	requirements		
Determine by:	3050.8			
O Continuous mechanism				
 Mechanism with motio Estimated machine to 	- Bedene	eration requiremen	<u>its</u>	
O Maximum rated system	178.0			
O Custom	198.5			E
	2730.:		watts (heak)	
Regeneration		tions —		
Determine by:		Select one or mo		
O Simultaneous peak de		control key for c Select bus powe		
20.0 % Duty cycle	, •••	methods, and re calculated.		
		calculateu.		
				Exit
Multiple servo amplifiers (the combined regeneration	can be coupled via the DC bu in power.	s connection and	thus share	Exit

21

5.4.4 Selecting a Compatible Regen Resistor

After you calculate the appropriate resistor size, compare the results with the capabilities of the drive and, if necessary, select an external regeneration resistor which matches these capabilities from the chart below. The resistors shown below are included in the KAS IDE setup. If you do not find a match for your application, please contact the Kollmorgen customer support team for further assistance.

NA Part Number	EU Part Number	Resistor Type			AKD PDM- M-x-				AKD PDM- M-x-	AKD PDM- M-x-
			00306	00606	01206	02406	00307	00607	01207	02407
BAFP-100-		External Res-	Х	х	Х					
33	201437	istor, 100 W, 33								
		ohms								
BAFP-200-	DE-	External Res-	х	х	х					
33	201438	istor, 200 W, 33								
		ohms								
BAR-250-	DE-	External Res-	Х	Х	Х		Х	х	Х	
33	106254	istor, 250 W, 33								
		ohms								
BAR-500-	DE-	External Res-	х	х	х		Х	х	х	
33	106255	istor, 500 W, 33								
		ohms								
BAR-1500-	DE-	External Res-	х	х	х		х	х	х	
33	106258	istor, 1500 W, 33								
		ohms								
BAS-3000-	DE-	External Res-	х	х	х		х	х	х	
33	201407	istor, 3000 W, 33								
		ohms								
BAR-600-	DE-	External Res-								х
23	200613	istor, 600 W, 23								
		ohms								
BAR-1000-	DE-	External Res-								х
23	200614	istor, 1000 W, 23								
		ohms								
BAS-2000-	DE-	External Res-								х
23	200615	istor, 2000 W, 23								
		ohms								
BAS-3000-	DE-	External Res-								х
23	200616	istor, 3000 W, 23								
		ohms								
BAS-4000-	DE-	External Res-								х
23	200617	istor, 4000 W, 23								
		ohms								

NA Part Number	EU Part Number	Resistor Type	PDM- M-x-	PDM- M-x-	PDM- M-x-	PDM-	PDM- M-x-	M-x-	PDM-	M-x-
BAR-500-	DE-	External Res-				Х				
15	201439	istor, 500 W, 15								
		ohms								
BAR-1000-	DE-	External Res-				х				
15	201440	istor, 1000 W, 15								
		ohms								
BAS-2000-	DE-	External Res-				х				
15	103871	istor, 2000 W, 15								
		ohms								
BAS-3000-	DE-	External Res-				Х				
15	103872	istor, 3000 W, 15								
		ohms								
BAS-6000-	DE-	External Res-				х				
15	103873	istor, 6000 W, 15								
		ohms								

5.4.5 Configuring Regen Parameter Values

If you use an external regen resistor, then you must configure three regen parameter values. These values are automatically inserted in KAS IDE if the resistor is pre-sized. The chart below summarizes these three additional values:

- External Regen Resistance (REGEN.REXT, ohms)
- External Regen Heat Up Time (REGEN.TEXT, seconds)
- External Regen Power (REGEN.WATTEXT, watts)

These parameters allow the regen resistor to function properly and dissipate power appropriately for your system.

NA Part Num- ber	EU Part Number	Resistor Type (all resistors UL recognized)	Resistance ohms (REGEN.REX- T)	Heat Up Time s (REGEN.TEX- T)	Power Rating W (REGEN.WATTEX- T)
BAFP-100-33	DE-201437	External Res- istor, 100 W, 33 ohms	33	16.5	100
BAFP-200-33	DE-201438	External Res- istor, 200 W, 33 ohms	33	27.5	200
BAR-250-33	DE-106254	External Res- istor, 250 W, 33 ohms	33	22.0	250

NA Part Num-	EU Part	Resistor Type	Resistance	Heat Up Time	Power Rating
ber	Number	(all resistors UL	ohms	s	w
		recognized)	(REGEN.REX-	(REGEN.TEX-	(REGEN.WATTEX-
			Ť)	`Т)	T)
BAR-500-33	DE-106255	External Res-	33	33.0	500
		istor, 500 W, 33			
		ohms			
BAR-1500-33	DE-106258	External Res-	33	25.7	1,500
		istor, 1500 W, 33			
		ohms			
BAS-3000-33	DE-201407	External Res-	33	77.0	3,000
		istor, 3000 W, 33			
		ohms			
BAR-600-23	DE-200613	External Res-	23	27.5	600
		istor, 600 W, 23			
		ohms			
BAR-1000-23	DE-200614	External Res-	23	27.5	1,000
		istor, 1000 W, 23			
		ohms			
BAS-2000-23	DE-200615	External Res-	23	77.0	2,000
		istor, 2000 W, 23			
		ohms			
BAS-3000-23	DE-200616	External Res-	23	84.3	3,000
		istor, 3000 W, 23			
		ohms			
BAS-4000-23	DE-200617	External Res-	23	77.0	4,000
		istor, 4000 W, 23			
		ohms			
BAR-500-15	DE-201439	External Res-	15	33.0	500
		istor, 500 W, 15			
		ohms			
BAR-1000-15	DE-201440	External Res-	15	27.5	1,000
		istor, 1000 W, 15			
		ohms			
BAS-2000-15	DE-103871	External Res-	15	77.0	2,000
		istor, 2000 W, 15			
		ohms			
BAS-3000-15	DE-103872	External Res-	15	84.3	3,000
		istor, 3000 W, 15			
		ohms			

NA Part Num- ber	EU Part Number	Resistor Type (all resistors UL recognized)	ohms	Heat Up Time s (REGEN.TEX- T)	Power Rating W (REGEN.WATTEX- T)
BAS-6000-15	DE-103873	External Res- istor, 6000 W, 15 ohms	15	91.7	6,000

Related Parameters

REGEN Parameters (pg 431) VBUS.OVWTHRESH (pg 463) VBUS.VALUE (pg 466)

6 Configuring Motor Settings

6.1	Motor	27
6.2	Feedback 1	31
6.3	Non-Plug and Play Feedback Devices	34
6.4	Foldback	35
6.5	Brake	38

6.1 Motor

6.1.1 Overview

The **Motor** screen is used to set up or confirm the parameters of the motor that is connected to the drive. In certain cases, based on the feedback type, the motor parameters will automatically be set. The drive will auto-detect feedback devices that are preset with the appropriate feedback and motor parameters when MOTOR.AUTOSET is set to 1 (default). The values the drive uses for commutation and current and velocity loop gains will be populated automatically.

If your motor does not have a plug and play feedback device, then you must turn off the motor autoset feature as shown in the screenshot below (MOTOR.AUTOSET = 0) and select the appropriate motor from the motor parameter database.

rvice 🝷	0 - Torque Mode	 Dis 	able & Clear Faults	Save To	o Drive Connect			
	Motor							
U	These parameters describe the motor attached to this drive.							
	Motor Name:		AKM11B-ACCN1-00		Select Motor			
	Motor Type:		0 - Rotary	•	Create Motor			
	Motor Autoset:		0 - Off	•				
	Peak Current:			4.650	Arms			
	Continuous Current:	:		1.160	Arms			

All of the appropriate Kollmorgen motors compatible with the AKD PDMM drive are contained in the motor database. For motors that are not listed, click **Select Motor** to open a custom motor view in which you can input the appropriate motor parameters.

6.1.2 Motor Setup

When motor autoset is on (MOTOR.AUTOSET = 1), the AKD PDMM will automatically configure motor parameters from the data stored in a supported feedback device (Kollmorgen motors with SFD, Endat, BiSS, Hiperface and Hiperface DSL). If your motor is detected automatically, the parameters in the Motor view are shaded and not accessible. If you have a non-plug and play standard device (such as an incremental encoder or resolver), you can use this screen to enter the standard AKM, Cartridge motor, DDR, or DDL motor. Other motors can be configured from the Selecting a Motor (pg 28) screen.

6.1.3 Using the Motor View

The Motor view displays parameters related to the specific motor attached to the drive as follows:

- Motor Name: The motor part number read from the autoset device, or the name from the motor database. When entering a custom motor name, the motor name should not contain any spaces.
- Motor Type: This field allows you to select the proper parameters for a rotary motor or a linear motor (linear motors are a future feature).
- Motor Autoset: This setting to allows the drive to automatically set up a plug and play motor (MOTOR.AUTOSET = 1). With Motor Autoset turned off (MOTOR.AUTOSET = 0), you can access the motor database to select a catalog or custom motor.

The next set of parameters displayed are specific to the electrical and mechanical characteristics of the motor connected to the AKD PDMM drive.

- Peak Current: Motor peak current rating in Amps rms.
- Continuous Current: Motor continuous current rating in Amps rms.
- Inertia: Motor rotor inertia in Kg-cm^2.
- Torque Constant: Motor torque contant in Nm/Arms.
- Inductance: Motor rated inductance in milliHenries
- Motor Poles: Number of motor poles.
- Maximum Speed: Motor maximum rated speed
- Motor Resistance: Motor winding resistance in Ohms.
- Maximum Voltage: Motor maximum rated voltage in Volts rms.
- Motor Phase: Motor phase offset (used to set motor commutation as required for most devices this is set to 0).
- Coil Thermal Constant: Motor coil thermal time constant in mHz.

6.1.4 Selecting a Motor

The **Select Motor** button opens a screen in which you can configure a non-plug and play motor or custom motor.

Select Motor						
Motor Select the motor that is attached to the drive.						
To attach a motor, first select Motor family and then Motor series.						
Motor Family:						
AKM Series						
Frame/Winding: Mount: Shaft: Connectors: Brake: Feedback: AKM11B • × • × • • •						
To create new or edit existing custom motors: Custom Motors						
	OK Close					

When this screen is opened, KAS IDE displays by default the motor matched to the current motor name attached to the drive. KAS IDE searches matching motor as follows:

- 1. KAS IDE first checks the motor name with custom motors for a match.
- 2. If a match is not found, then KAS IDE checks the name with the standard motors database for a match.
- 3. If a match is not found, then an AKM motor is selected.

For non-plug and play motors, a database of catalog motors is available based on the different Kollmorgen motor families. When you select a motor family, a part number is displayed according to the selected motor family. You can change the part number as needed, and the complete motor name will be displayed according to your selection. This complete motor name is sent to drive. The portions of the part number labeled in bold are required values.

6.1.5 Configuring Custom Motors

From the Select Motor screen, click on **Custom Motor** to create and edit custom motors in the following screen:

Oustom Motors	vish to modify from the list and edit its individual (properties on the right	Leam more about this topic
Custom Motors:			Ŭ.
Name	Name:	AKM22C	A
AKM22C	Туре:	Rotary	▼
	Inertia	0.160	kg cm² 🔻 🗾
	Maximum Speed:	8000.000	RPM 👻 🛅
	Thermal Time Constant:	6.000	s 🔻 🥫 🗉
	Torque Constant	0.601	N m/A 👻 🛅
	Inductance:	35.400	mH 👻 🛅
	Continuous Current:	1.359	A
	Peak Current:	5.593	A
	Pole Pairs:	3	
	Maximum Voltage:	480	Vms
	Coil Thermal Constant:	10.131	mHz
	Resistance:	20.000	Ohm
	Electrical Phase:	0	deg 👻
New Dup	olicate Delete Import	Export	Apply OK

In this view, you can import or export a motor parameter file, or create a custom motor of your choice. The appropriate parameters must be chosen as listed. Several of the parameters allow you to select an alternate unit of measure. When building a custom motor file, do not use blank spaces in the name you choose. Once you have configured one or more custom motors, if you select a custom motor from the list and click **OK**, then the selected custom motor will be displayed in the **Select Motor** screen.

The actions available in the custom motor screen include:

- New. Allows you to start a new custom motor (with default values) or load a catalog motor you may want to modify.
- Duplicate. Makes a copy of the highlighted motor in the custom motor list.
- Delete. Deletes the highlighted motor in the customer motor list.
- Import. Allows you to import a motor file (*.motor) from another location
- Export. Allows you to save the highlighted motor file (*.motor) to another location
- Apply. Accepts the values you have entered for the specific motor files you are entering.
- OK. Returns you to the Motor Selection screen.

When entering any of the motor data, be certain the units are correct. The AKD PDMM drive uses the motor parameters to set up the various feedback loops and limits associated with the motor selected. Note that if you select a custom motor from the list and click **OK**, then that selected custom motor will be displayed in the Select Motor screen.

6.1.5.1 Validating Motor Parameters

When you click **OK** in the **Select Motor** screen, KAS IDE validates the range with the drive. If any error is found, an error screen is displayed. Click **Continue** to set the motor parameters in the drive. Click **Cancel** to close this screen.

If errors occur while setting the motor parameters, an error screen indicates which parameters require additional attention.

6.1.6 Motor Derating

Motor derating occurs while using a motor in the AKM or VLM series. If a brake is selected or a feedback type other than Resolver is selected, the continuous current will be derated.

Resolver with no brake (no derate):

Motor			
These parameters describe the	motor attached to this drive.		
Motor Name:	AKM11B-ACCNR-00	Select Motor	
Motor Type:	0 - Rotary, Permanent Ma 🔻	Create Motor	
Motor Autoset:	0 - Off 🔹		
Continuous Current:	1.160	Ams	
Peak Current:	4.650	Arms	
Select Motor	2010	101	×
	nat is attached to the drive. Motor family and then Motor series		
Frame/Winding: Mou AKM11B • A To create new or edit existing Custom Motors	▼ C ▼ C	ors: Brake: Feedback: ▼ N ▼ R· ▼	
			OK Close

SFD with no brake (derated):

Motor Name:	AKM11B-ACCNC-	-00	Select Motor	
Motor Type:	0 - Rotary, Perma	nent Ma 💌	Create Motor	
Motor Autoset:	0 - Off	-		
Continuous Current:		1.144	Ams	
Peak Current:		4.650	Ams	
elect Motor		20.075		Σ
<u> </u>	r that is attached to the dr		😮 Leam mor	re about this top
Select the moto To attach a motor, first sele			🔁 Leam mor	re about this top
Select the moto To attach a motor, first sele Motor Family: AKM Series				re about this top
Select the moto To attach a motor, first sele Motor Family: AKM Series	tot Motor family and then M	Motor series.	Brake: N Feedback: N Image: Image	ation
Select the moto To attach a motor, first sele Motor Family: AKM Series Frame/Winding:	A C V	Notor series.	Brake: Feedback:	ation

6.1.7 Motor Temperature

The motor temperature settings are located in the motor temperature view.

Device Topology 🛛 📮	Motor Tempe	ratura		
🔺 🤿 Start Page		lature		
🔺 🧊 BSC (Online)*	Monitor the motor temperature	and configure faults/warnings.		
🔺 😈 Settings				
D Section Communication	Thermal Resistor Type:	0 - PTC 🔹		
Power	meimai Resistor Type.	U-FIC +		
🔺 🚺 Motor	Actual Motor Temperature :	0	Ohm	
Notor Temperature	Actual Motor remperature .		Unini	
Feedback 1	Fault Level :	1,330	Ohm	0 means no faults
Feedback 2				
🔁 Foldback	Warning Level :	0	Ohm	0 means no warnings
(B) Brake	_			•
Hara Units				
🤜 Modulo	Many motors have a the	mistor embedded in their windings.		
🙌 Limits	Many motors have a the The thermistor is usually	mistor embedded in their windings. connected through the feedback conne	ector.	
I Current Loop				
N Service Motion				
🦂 Encoder Emulation (X9 (

Related Parameters

MOTOR Parameters (pg 379)

6.2 Feedback 1

The Feedback view allows you to configure the primary position feedback device fitted to your motor.

When you select your feedback device from the Feedback Selection list, the appropriate feedback configuration choices appear below the dial.

6.2.1 Overview

The AKD PDMM offers a variety of feedback solutions, which allow you to optimize your system based on your specific machine needs. The available feedback options include Resolver, SFD, sine-cosine encoder, Endat 2.1, Endat 2.2, BiSS, Hiperface, incremental encoder, as well as line-count, single, and absolute variations. Your motor model number will indicate the type of feedback that you have.

Kollmorgen motors with digital feedback devices (such as SFD, Endat, BiSS and Hiperface, Tamagawa) are plug and play. With these motors, all feedback and motor settings are configured automatically. Third party motors or Kollmorgen motors with non-digital feedback types require that parameters be entered manually. See Non-Plug and Play Feedback Devices (pg 34)).

		Primary	Secondary
Resolver	Std & Multi pole	Yes	No
SFD		Yes	No
Incremental (Digital)	With Halls and Index	Yes	No
Encoder	No Halls with Index	Yes	Yes
	No Halls with No Index	Yes	Yes
Analog Sin/Cos Encoder	With Digital Halls	Yes	No
	With Digital Halls and Analog	No	No
	Index		
	No Halls and No Index	Yes	No
EnDAT 2.1	Single & Multi Turn	Yes	No
EnDAT 2.2	All Digital	Yes	Yes
	Analog / Digital	Yes	No
BiSS	All Digital (Mode C)	Yes	No
	Analog / Digital	Yes	No
Hiperface	Analog / Digital; Single & Multi	Yes	No
	Turn		
	All Digital	No	No

The following table lists current support for primary and secondary feedback:

6.2.2 Using Feedback Options

Use the **Feedback** screen to set up your system to match the proper feedback device. By default, the drive uses the **Auto** setting to detect feedback devices. This setting allows the drive to test the feedback device to see if it is a recognized plug and play device. If the drive recognizes the device, then all the parameters for that device and motor are loaded into the drive. Both the feedback and the motor information are now present in the drive and the system is operable.

If the feedback is a non- plug and play device, then you can choose from the list of supported devices in **Feedback Selection** list and then enter the line count manually. The following sections describe each supported device available in the **Feedback Selection** list and the input information required to configure each device.

6.2.2.1 Auto

This is the default setting and is used to determine if a plug and play device is available. If a plug and play device is available, the **Auto** mode is replaced by the feedback device detected, along with the appropriate resolution settings.

6.2.2.2 None

This setting can be used if no feedback device is connected to the X10 connector. This may be the case if FB2 or FB3 is used for position or velocity control.

6.2.2.3 Incremental Encoder

The incremental encoder is a non-plug and play device. Incremental encoders are available in a variety of line counts. If you select an incremental encoder option, the encoder resolution must be entered into the **Rotary Encoder Resolution** box. The units for this field are in counts per revolution, which is post-quad-rature (multiplies the lines per revolution by 4).

6.2.2.4 Sine Encoder

Sine encoders are offered with different data communication protocols. These include Endat, BiSS, Hiperface, and others. A standard sine-cosine encoder with simple analog communication is not a plug and play device. As with the incremental encoder, the line count is entered in the **Rotary Encoder Resolution** box.

6.2.2.5 Endat 2.1, Endat 2.2

Endat-based sine are plug and play compatible, and the system will properly recognize these encoders. With the AKD PDMM set in **Auto**, this encoder type is detected and the feedback and motor parameters are loaded automatically.

6.2.2.6 BiSS

BiSS will be plug and play in a future release. Currently, the device is programmed with the motor and feedback information and once selected will sets up the feedback and motor parameters in the AKD PDMM.

6.2.2.7 Hiperface

Hiperface is a plug and play device that will be supported in a future release.

6.2.2.8 Resolver

The resolver feedback option is not plug and play. When selecting the resolver option, three specific parameters are set by default for the standard AKM resolver: phase lag, transformation ratio, and feedback poles. Currently, the AKD PDMM does not support non-Kollmorgen standard resolver options.

6.2.2.9 SFD

Smart Feedback Device (SFD) is Kollmorgen's most popular plug and play device. SFD allows for quick and easy setup from the **Auto** mode, which automatically configures the drive with the motor and feedback parameters.

6.2.3 Initial Position Check

NOTE This feature is currently only available in AKD PDMM sercos[®] III drives.

Use the initial position check to determine whether homing is required at power-up. The initial position check compares the difference between the position it measures at power-up with a position stored in fast non-volatile memory (FB1.INITPSAVED (pg 305)) before the last power-down. The parameter FB1.INITPSTATUS (pg 306) will read whether the position difference is within an acceptable user defined window (FB1.INITPWINDOW (pg 306)).

6.3 Non-Plug and Play Feedback Devices

To set up a AKD PDMM drive with a non-plug and play feedback device (for example a resolver or an encoder), you must select a motor from the list of standard or custom motors or enter the motor parameters manually. Once the motor data is entered into KAS IDE, an initial set of parameters can be calculated and downloaded to the drive.

6.3.1 Parameters

The following parameters can be initialized to their default values or calculated from user-supplied motor data:

IL.KP	IL.LIMITN	VL.KP	PL.KI = 0 (Default Value)
IL.KFFACC	IL.LIMITP	VL.KI	PL.INTINMAX = 0.419 (Default
			Value)
IL.KBUSFF	IL.PWMFREQ	VL.LIMITN	PL.INTOUTMAX = 0.419
			(Default Value)
IL.FRICTION	IL.KVFF	VL.LIMITP	MOTOR.IPEAK
IL.OFFSET	IL.FOLDFTHRESHU	VL.THRESH	MOTOR.ICONT
IL.INTEN	IL.FOLDWTHRESH	VL.KVFF	MOTOR.PITCH
IL.IVFB	IL.MFOLDD	PL.KP	MOTOR.POLES
IL.KPDRATIO	IL.MFOLDT	PL.KD = 0 (Default	MOTOR.TYPE
		Value)	

6.3.2 Calculations

KAS IDE uses the following equations to calculate parameter values.

Current Loop

The current loop proportional gain (IL.KP) must be such that the current loop closed loop crossover frequency/bandwidth (BW) nominal is the lesser of 2000 Hz or (PWM Frequency/4).

Then, with this frequency:

IL.KP = $2^{*}\pi^{*}$ (desired bandwidth in Hz)*(motor L line-line in H)

Setting the D and Q components

Velocity Loop

VL.KP = (2*π*75)*(2*Jm/Kt) = 300*PI*Jm/Kt VL.KI = 5

Slider Tuning

The slider tuning algorithm in KAS IDE currently uses the following algorithm.

Input - Motor Data

The values for inertia, Jm (Kg / cm2), and torque constant, Kt (Nm/A), are obtained from either the SFD or the motor model number that you select.

Constants

Velocity Loop Bandwidth – BW = The default value is 75Hz. Input - Inertia Ratio – Q = The default is 1.

Output - Control Loop Gains

VL.KP = 2 * π * BW * Jm * (1+Q) * 0.0001/Kt VL.KPI = BW*0.08 -1 (minimum of 1) PL.KP = BW/5

6.4 Foldback

The foldback feature in the AKD PDMM protects both the motor and the drive from overheating. Two current foldback algorithms run in parallel in the drive: the drive foldback algorithm and the motor foldback algorithm. Each algorithm uses different sets of parameters. Each algorithm has its own foldback current limit, IL.DIFOLD (drive foldback) and IL.MIFOLD (motor foldback). The overall foldback current limit is the minimum of the two at any given moment.

IL.IFOLD = min (IL.DIFOLD, IL.MIFOLD).

Foldback is not the same as current limits. Instantaneous current limits for the drive are set by the positive peak current (IL.LIMITP) and negative peak current (IL.LIMITN) in the Limits view in <u>EWV</u>¹. The foldback algorithms may reduce the current output to the motor in spite of the current limit settings.

6.4.1 Drive Foldback

The drive foldback algorithm monitors current feedback; since this is a monitoring function, the drive foldback parameters are not user configurable. If the current feedback exceeds the continuous current rating of the drive (DRV.ICONT), then the algorithm decreases the current to the DRV.ICONT level. For example, under a step command input condition, the foldback algorithm allows maximum peak current (DRV.IPEAK) output from the drive for a short period of time (up to IL.DFOLDD time), after which the

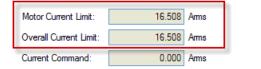
¹Embedded Workbench Views

drive begins an exponential foldback (with time constant of IL.DFOLDT) of the current to the drive's continuous current.

It takes a few seconds for the exponential decay to drop from the drive's peak current to its continuous level. A recovery time, when the feedback current is below DRV.ICONT level, is required to allow current above DRV.ICONT level again. A recovery time of IL.DFOLDR with 0 current allows the drive to apply DRV.IPEAK current for IL.DFOLDD time.

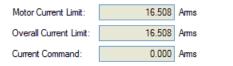
6.4.2 Setting up motor foldback

Motor foldback is set up automatically when using a plug and play motor or when a particular motor is selected from the EWV database.


If you are using a custom motor, use the Motor view in EWV to set custom values needed for foldback configuration. The parameter entries required for the drive to apply motor foldback protection properly are coil thermal constant (MOTOR.CTFO), peak current of the motor (MOTOR.IPEAK), and continuous current of the motor (MOTOR.ICONT). These values are used to setup the algorithm for motor foldback.

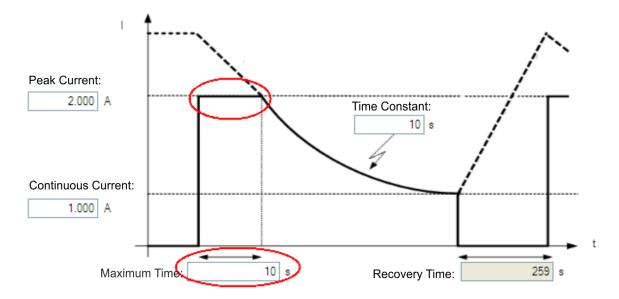
6.4.3 Setting Fault and Warning Levels

The **Motor Current Limit** and **Overall Current Limit** boxes show status variables that are constantly updated by the foldback algorithm. As current is applied above the drive or motor continuous rating, the capacity for the application of peak current starts to decrease. The motor current limit and overall current limit are actively decreased. If the move profile requires less than continuous current rating for a period of time, the Motor Current Limit and Overall Current Limit begin to increase until they reach maximum foldback capacity once again.

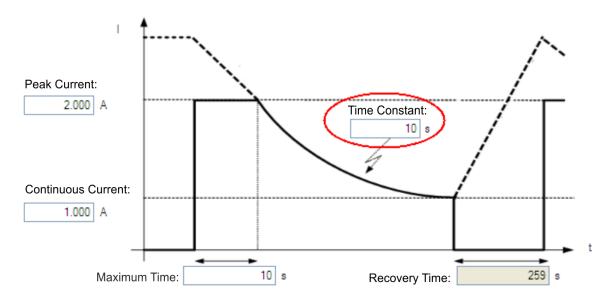

When Motor Current Limit or Overall Current Limit < Warning Level, an n524 status warning is triggered. When Motor Current Limit or Overall Current Limit < Fault Level, an F524 fault is triggered and the drive power stage is disabled. The load then coasts to a stop.

In the **Foldback** screen, setting the Warning Level to 0 turns off the warning feature. Otherwise, the Warning Level must be set above the Fault Level, but below the Motor Current Limit and Overall Current Limit to trigger a warning.

Fault Level:	9.000	Arms
User Fault Level:	9.000	Arms
Warning Level:	0.000	Arms

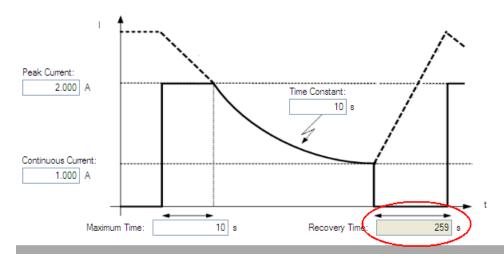

If User Fault Level is set above Fault Level, the User Fault Level will be ignored. The User Fault Level is used to increase the time the drive is operated in foldback mode without faulting. For instance if the default Fault Level is 9.000 Arms and a User Fault Level is set to 7.5 Arms, the Fault Level is changed to 7.5 Arms. This configuration effectively increases the time that foldback will be applied to the drive before faulting.

Fault Level:	7.500	Arms
User Fault Level:	7.500	Arms
Waming Level:	0.000	Arms

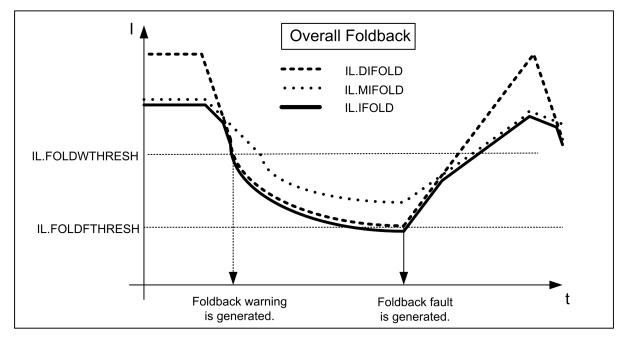

6.4.4 Motor Peak Current Time

Peak current (MOTOR.IPEAK) along with coil thermal constant (MOTOR.CTFO) are used to determine the maximum time the motor can sustain peak current. The maximum time (IL.MFOLDD) is displayed in the **Foldback** screen as shown below:

6.4.5 Motor Foldback Ramp


Once the maximum time for motor peak current has elapsed, if the move profile still demands peak current from AKD PDMM, the drive will exponentially lower the current applied to the motor. The Time Constant (IL.MFOLDT) dictates the profile. A smaller time constant represents a steeper decline in current applied to the motor.

6.4.6 Motor Recovery


Once the peak motor current available has reached the continuous current of the motor, the motor needs Recovery Time (IL.MFOLDR) to cool down. Full Recovery Time (IL.MFOLDR) at 0 current is required for the motor to reach full maximum capacity in the shortest amount of time. The drive can command a cur-

rent less than continuous current to continue driving the load, but the recovery time for full maximum capacity is increased.

6.4.7 Overall Foldback

The overall limit is the momentary minimum value between the drive foldback and the motor foldback. The overall foldback is shown in the diagram below. You can set the warning and the fault levels as shown in the diagram.

6.5 Brake

The brake output on connector X2 controls a mechanical brake that optionally may be fitted to a motor. The brake is applied and released relative to the **Drive Active** state of the drive. You can modify the release and apply delays using the parameters shown below.

Button or Dialog Box	Description	Parameter
Brake ControlState	Sets whether the motor has a brake.	MOTOR.BRAKE

Button or Dialog Box	Description	Parameter
Time to Release	The time, set by the user, required to	MOTOR.TBRAKERLS
	mechanically disengage the brake.	
	After this time, motion commands are	
	accepted.	
Time to Apply	The time, set by the user, required to	MOTOR.TBRAKEAPP
	mechanically engage the brake. After	
	this time, the drive will disable.	

6.6 Using Position Capture

6.6.1 Overview

Position capture allows you to precisely determine what the motor position (or drive clock time) was when a specific event triggers. The AKD PDMM drive uses two independent captures, which operate similarly.

Position capture is used in precision environments, where the motor may be moving at very high velocities, an IO is triggered, and you must know exactly where the motor was when the event occurred. Homing algorithms often use position capture.

Position capture will capture the motor position (or drive clock time) when the capture trigger is activated. The position capture or drive lock time capture will happen in less than 3 microseconds of the input transition. This assumes the use of high speed input 1 or 2 with the filter turned off. The capture engine can be re-armed and ready for another capture in less than 62.6 microseconds. This capture engine allows the position capture to obtain more accurate results than those obtained using the scope or recorder clock.

6.6.2 Configuring Position Capture

To configure the position capture, select **Position Capture** from the **Settings** group:

Positio	on Capture							
	be able to capture the position	n of the axes						
Position Capture 0 —	Position Capture 0							
			Capture Paramete	rs				
Capture Mode:	0 - Single-shot Position	•	Source:	0 - DIN 1 🔻	·			
Capture FB Source:	3 - Standard position	•	Edge:	1 - Rising Edge 🗸	·			
			Pre Condition					
	Am		Condition:	0 - Trigger edge (ignore preca 🔻	·			
Captured Value:	0.000	dea	Source:	0 - DIN 1	•			
captored value.	0.000 deg	ucy	Edge:	1 - Rising Edge 🔹	·			
Position Capture 1—								
•			Capture Paramete	15				
Capture Mode:	4 - Auto-armed position	•	Source:	0 - DIN 1 👻	·			
Capture FB Source:	3 - Standard position	-	Edge:	1 - Rising Edge	ſ			
		Pre Condition						
	Armed		Condition:	0 - Trigger edge (ignore preca 💌	·			
Captured Value:	0.000	dea	Source:	0 - DIN 1 -	·			
Captureu value.	0.000	ucy	Edge:	1 - Rising Edge 🔹	-			

Setting the Capture Source (CAP0.FBSOURCE, CAP1.FBSOURCE (pg 1))

CAP0.FBSOURCE and CAP1.FBSOURCE select the source of the captured value. Data for all source values is retrieved with CAP0.PLFB, CAP1.PLFB (pg 1).

Capture Source Values:

Value	Description
0	Captures from feedback 1 (FB1), independent of the value of PL.FBSOURCE. The units are the same as those used for PL.FB.
1	Captures from feedback 2 (FB2).
2	Captures from feedback 3 (FB3).
3	Standard position capture, which stores PL.FB (pg 410). The feedback number is determined by PL.FBSOURCE (pg 411).
4	Captures from EXTENCODER.POSITION (AKD BASIC drives only).

Setting the Trigger Source (CAP0.TRIGGER, CAP1.TRIGGER (pg 1))

The trigger source determines which input on the drive causes the position capture to trigger.

Trigger Source Options:

Option	Description
0-6	These options trigger on the Digital Input 1 pin through Digital Input 7 pin, respect-
	ively.
7-9	These options trigger on the X9 connector RS485 Input 1 pin through RS485 Input 3
	pin, respectively.
10	This option triggers on the primary encoder index.

Setting the Capture Mode (CAP0.MODE, CAP1.MODE)

The capture mode determines what information is saved on the drive when the capture triggers.

Capture mode options:

Option	Description
0 – Standard Pos-	Captures the motor position in drive units.
ition	
1 – Drive Internal	Captures the time of the trigger in ns.
Time	
2 – Distributed	Captures the network (Ethercat) distributed clock time.
Clock Time	
3 – Primary	Captures the motor postion triggering on primary encoder index. This mode auto-
Encoder Signal	matically rearms after each trigger.

If either **0** - **Standard Position** or **3** - **Primary Encoder Signal** is selected, delays may occur and are associated with feedback devices that are digital or interpolated .

Arming and Retrieving the Capture Value (CAP0.T, CAP1.T)

CAP0.EN arms the capture and CAP0.T retrieves the capture value. Once you have configured the capture, you must arm it before it will trigger. Click **Arm** (1) to arm the capture.

Once the capture is armed, when it triggers, the captured value will be displayed below the Arm button (2).

Setting the Capture Edge (CAP0.EDGE, CAP1.EDGE)

The capture edge determines which input state change triggers the capture.

Capture Edge Options:

Option	Description
1 – Rising Edge	Captures when the input signal goes high, from a low state.
2 – Falling Edge Captures when the input signal goes low, from a high state.	
3 – Both Edges	Captures any time the input signal changes state.

Setting the Pre-Condition Event: (CAP0.EVENT, CAP1.EVENT)

The Capture Pre-Condition Event gives the user more flexibility in setting what conditions must be present for the Capture to trigger.

Event Option	Description	
0 – No precondition	Capture triggers as soon as the capture edge occurs.	
1 – Trigger Edge after pre- condition	Captures triggers only when the precondition occurs before the capture edge occurs.	
2 – Trigger Edge while pre- condition = 1	Captures triggers only while the precondition is evaluated and is true while the capture edge occurs.	
3 – Trigger Edge while pre- condition = 0	Captures triggers only while the precondition is evaluated and is false while the capture edge occurs.	

Setting up a Pre-Condition for complex capture

Setting the Precondition Edge: (CAP0.PREEDGE, CAP1.PREEDGE)

The pre-edge determines what input state change triggers the precondition. This feature operates the same as the capture edge described above.

Setting the Pre-Condition Select: (CAP0.PRESELECT, CAP1.PRESELECT)

The preselect chooses what input source will trigger the precondition (based on the preedge setting, and the prefilter setting). This feature operates the same as the capture source described above.

6.6.3 Kollmorgen Test Reports

Position Capture test report based on performance testing by Kollmorgen:

```
Capture Accuracy with External Sensor

Drive: AKD-T00306-NBAN-000

Motor: AKM-21C

Feedback Type: Incremental type 2048 line encoder

Digital Input used: DIN1 (high speed input)

DIN1.FILTER = 0 (very important to set this to zero so fil-

tering does not delay the system response)

Sensor Used : IDC RP1 type mounted directly to the shaft. Com-

mon industrial limit switch.

MOVE.RUNSPEED = 1000 RPM

With the motor running at above speed and the capture mech-

anism armed, the drive was able to capture the position
```

within 30-70 counts (.17 - .40 degree) of accuracy or 27.5 - 64.0 micro sec.

```
Capture Accuracy with Internal Index from encoder
Drive - AKD-T00606-NBAN-000
Motor-AKM22G
Feedback Type - Incremental Encoder 2048 lines
MOVE.RUNSPEED = 1000 RPM
With the motor running at above speed and the capture mech-
anism armed, the drive was able to capture the position
within 10-20 counts (.05 - .11 degree) of accuracy or 9.5 -
18.0 micro sec.
```

Related Parameters

CAP Parameters (pg 1)

Using AKD PDMM in a Vertical Axis 7

NOTE For firmware versions 1-06 and later.

The drive should be configured to execute a controlled stop action in the event of a disable command (DRV.DISMODE = 2 or 3). This allows the motor to stop and the brake to be applied before the drive stops holding up the axis and removes power. With a vertical axis application where the motor is equipped with a brake that is controlled by AKD PDMM, it is recommended to set up the axis to immediately apply the brake in the event of the drive disabling for any reason. By setting MOTOR.BRAKEIMM (pg 382) = 1 (default is 0=off) the brake will be applied immediately in the event of the drive disabling.

Drive disabling can occur as a result of:

- Hardware Enable removed
- Software Enable removed
- Safe Torque Off (STO) activated
- Fault Condition
- Controlled Stop Input any input configured as (DINx.MODE = 13 controlled stop)

NOTE For a digital input initiated controlled stop (A fault that results in controlled stop. See Fault and Warning Messages (pg 102)), or a software disable that is configured for a controlled stop (see DRV.DISMODE (pg 256)), the brake will be applied at the end of the controlled stop.

It is still important to setup the brake delays. This can be done in the brake screen in EWV¹. These brake delays are used to delay the disabling of the power stage when motion is stopped and the drive is disabled. This is only pertinent for Controlled Stop and Software Disable of the drive. This prevents a slight drop of the load between the disable and the brake engagement. In other cases (Fault, Hardware Enable, STO) hardware disconnection prevents AKD PDMM from delaying the disable.

There is an advanced setting for the Hardware Disable. A programmable delay is available on the HW Enable input so the drive can hold the load before the disable. With a vertical load some movement could occur when the drive is disabled with a hardware input because the power stage was disabled immediately, before the brake could apply. DRV.HWENDELAY (pg 272) is available which will delay the disabling of the power stage. During this delay time, the drive will apply the brake immediately and simultaneously attempt to follow normal disable procedures. The value is limited to a maximum of 167 ms. During this time, the drive will attempt to bring the load velocity to 0 RPM. If DRV.HWENDELAY = 0, the feature is off (this is default).

¹Embedded Workbench Views

Vertical Applic- ation Desired Response	Customer Dis- able Condi- tion	Configuration Needed	Parameter Settings Needed	
Controlled stop when possible. If not possible, apply motor brake imme-	Normal dis- able E-stop, or safety con- dition Fault CS	Command CS using input. Do not disable power stage or com- mand other disables until CS completes and brake applies. Do not disable power stage or command other disables until CS completes and brake applies.	DRV.DISMODE = 2. Controlled stop then disable. Set: DRV.DISTO , CS.VTHRESH , CS.DEC , CS.TO .	
diately.	Fault Dynamic Brake	N/A	N/A	
	Fault Power stage disable	None	MOTOR.BRAKEIMM = 1	
Controlled stop when possible. If not possible, dynamic brake.	Normal dis- able E-stop, or safety con- dition	Command CS using input. Do not disable power stage or com- mand other disables until CS completes and brake applies.	DRV.DISMODE = 3. Controlled stop then disable. Set: DRV.DISTO , CS.VTHRESH ,	
	Fault CS	Do not disable power stage or command other disables until CS completes and brake applies.	CS.DEC , CS.TO .	
	Fault Dynamic Brake	N/A	N/A	
	Fault Power stage disable	None	MOTOR.BRAKEIMM = 1	

8 Configuring with Linear Motors

8.1 Connecting a DDL Motor to an AKD PDMM Drive

Before Connecting a DDL motor to an AKD PDMM drive, the following tasks must be accomplished:

- Integrate motor coil and magnet way onto a bearing structure so that the motor moves freely (rubber stops at the end of travel are recommended, especially during commissioning).
- Linear scale is integrated to the assembly and set up with the correct alignment and airgap to provide an appropriate sinusoidal or digital feedback signal.
- Determine the resolution of the Linear Scale in micrometers (microns) per cycle (this will be listed in the documentation of the linear scale).

Connect Hall sensor, Linear Scale, and motor temperature cables through the ACI-AKD PDMM cable assembly to the AKD PDMM's X10 Feedback Connector.

Connect the motor power leads to the AKD PDMM motor power connector X2 with the following connections:

Red -> U

White -> V

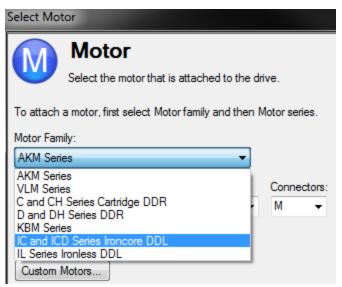
Black -> W

Yellow / Green -> PE

Apply 24 volt logic power to the AKD PDMM and launch KAS IDE from a computer to interface with the AKD PDMM drive. From the Motor view in \underline{EWV}^1 , click Select Motor.

1
Т

Motor


These parameters describe the motor attached to this drive.					
Motor Name:	AKM22C-ACMNC-00	Select Motor			
Motor Type:	0 - Rotary 💌	Create Motor			
Motor Autoset:	0 - Off 🔹				

NOTE

If "Select Motor" is grayed out, Motor Autoset may need to be set to "0 –Off" to enable the Select Motor option.

On the Select Motor screen, for Motor Family select either IC and ICD Series Ironcore DDL or IL Series Ironless DDL. On the Select Motor screen for "Name" select the appropriate motor part number.

¹Embedded Workbench Views

Click OK.

From the main tree, under Settings, select Feedback 1.

Under Feedback Selection, select either **10 – Incremental Encoder with Halls**, or **20 – Sine Encoder with Halls** to correspond to the Linear Scale that is integrated with the motor.

Feedback 1 ()	X10)		
The primary position feedback t	fitted to your motor.		
Feedback Selection:	-1 - Auto Identify	•	
Feedback Identified:	-1 - Auto Identify 10 - Incremental Encoder with Halls 11 - Incremental Encoder without Halls		
If you rotate the motor shaft you should see the dial move.	20 - Sine Encoder with Halls 21 - Sine Encoder without Halls 30 - Endat 2.1 31 - Endat 2.2 32 - BiSS Analog 33 - Hiperface 34 - BiSS Mode C Renishaw 40 - Resolver 41 - SFD (Smart Feedback Device)		
Motor Autoset:	42 - Tamagawa Serial 43 - Network Cyclic Feedback 44 - Network Cyclic Feedback via FB2		
Position Feedback:	50 - Reserved (do not use) 63 - Simulated Motor		Counts16Bit
Drive Direction:		0	
Position Feedback Poles:		2	

Goto Wake And Shake Configuration

Using the resolution of the Linear Scale in Microns per cycle, the Sine Cycles/Magnet Pitch is determined. Use the following:

- 1. Take the reciprocal of resolution to get cycles per micron
- 2. Multiply by 1000 to get cycles per millimeter
- 3. Multiply by 32 millimeters per Magnet Pitch to get Sine Cycles/Magnet Pitch

For example, if the resolution of the Linear Scale is 40 microns per cycle, then the Sine Cycles/Magnet Pitch would be 800.

The Linear Scale phase direction must be verified. Watch the Feedback 1 screen in EWV. When the coil assembly is moved in the direction of the cable exit (think of pulling the coil by the cable), the Position Feedback should increase positively in value and in the motor graphic, the gray block should move to the right. If the direction is opposite, then the A+ and A- signals on the Linear Scale must be swapped to correct the phase direction.

The motor is now ready for velocity loop and position loop compensation.

9 Configuring General Drive Settings

9.1	Limits	
9.2	Enable/Disable	51
9.3	Controlled Stop	54
9.4	Dynamic Braking	
9.5	Emergency Stop	
9.6	Under Voltage Fault Behavior	60

9.1 Limits

This screen allows you view and modify the various drive limits.

Button or Dialog Box	Description	Parameter
Current Limits		
Positive Peak Cur- rent	The maximum positive current allowed.	IL.LIMITP (pg 363)
Negative Peak Cur- rent	The maximum negative current allowed.	IL.LIMITN (pg 362)
Velocity Limits		
Positive Speed Limit	The maximum speed allowed in the positive direction.	VL.LIMITP (pg 486)
Negative Speed Limit	The maximum speed allowed in the negative direction.	VL.LIMITN (pg 484)
Over Speed Limit	The threshold velocity for an over speed fault.	VL.THRESH (pg 490)
Position Limits		
Maximum Position Error	The maximum position error. If the position error PL.ERR is larger than PL.ERRFTHRESH, then the drive generates a fault	PL.ERRFTHRESH (pg 406)
Position Limit 0	The minimum position the drive can reach before gen- erating a negative software position fault.	SWLS.LIMIT0 (pg 454)
Position Limit 1	The maximum position the drive can reach before gen- erating a positive software position fault.	SWLS.LIMIT1 (pg 455)
Acceleration Lim- its		
Acceleration	The acceleration ramp used to profile some types of motion.	DRV.ACC (pg 246)
Deceleration	The deceleration ramp used to profile some types of motion.	DRV.DEC (pg 253)
Motor Limits	Motor limits are set through the Motor Foldback Screen (see Foldback (pg 35))	

9.1.1 Limits

The limits screen covers most of the basic system limits, including current, velocity, and position.

- **Current Limits:** The current limits are set based on the drive ratings. You can change these limits to be lower then the default values for the drive, however, this may effect the expected performance of your application.
- Velocity Limits: The velocity limits are set based on the motor ratings. You can modify these settings above the ratings of the motor if the application requires some overhead, but be aware the motor has mechanical limitations and may be damaged if run above those limits. It is best to leave these at the default ratings for the motor selected.

- Position Limits: The position limits can be set based on your specific machine application requirements. The Maximum Position Error can be set to cause a fault when the position error exceeds the value you insert here. Each limit switch can be either the lower or the upper software limit switch register, depending on the value of SWLS.EN. If only one limit switch is enabled (SWLS.EN = 1 or 2), then SWLS.LIMIT0 is the lower limit, and SWLS.LIMIT1 is the upper limit. If both limit switches are enabled (SWLS.EN = 3), then whichever switch is set to a larger value is the upper limit, the motor will stop and display the warning n107. As the motor reaches the upper limit, the motor will stop and display the warning n108.
- Acceleration Limits: This field allows you to raise accelerations to give the system crisp moves. These limits default to a low value, so you may wish to change these after the mechanics and other sections of your system are defined.

9.2 Enable/Disable

9.2.1 Enable Modes

The AKD PDMM offers several options for hardware and software enables, as well as safe torque off (STO) to cover a variety of conditions.

Hardware Enable Mode

The AKD PDMM has two methods hardware enable methods. These methods are controlled by DRV.HWENMODE. Mode 0 allows for the drive to enable and clear faults on the rising edge of the hardware enable input. Mode 1 will NOT clear any faults on the rising edge of the hardware enable input, allowing you to review any current faults and manually clearing.

Software Enable Default

In addition, the Software Enable has two methods for enabling the AKD PDMM. These are controlled by DRV.ENDEFAULT. Default 0 leaves the software in the disabled state upon start-up. Default 1 enables the software upon start-up.

9.2.2 Disable Modes

Use DRV.DISMODE to select the method for stopping the drive.

Disable					
Disable Mode:	0 - Disable axis immediately				
Disable Timeout:	0 - Disable axis immediately 1 - Dynamic brake immediately 2 - Controlled stop then disable 3 - Controlled stop then dynamic brake	ns			

Mode 0: Immediately disable drive.

With this condition, the drive will immediately disable the power stages and the driven motor will either coast to a stop or in the case of a vertical or overhung load axis, will fall abruptly. If a brake is present, the

brake will be applied according to MOTOR.TBRAKEAPP. Using Digital Input mode 13, you can achieve a controlled stop as described in Mode 2.

Mode 1: Dynamic Brake to a stop.

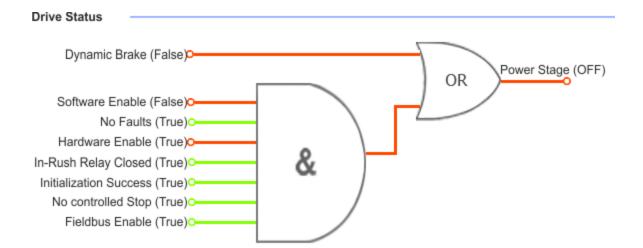
In this situation, the drive will use the dynamic brake feature and stop motion quickly, and then disable the power stage. In most cases, the driven motor will stop quickly (pending the joules available and load circumstances). In the case of an overhung or vertical load, the driven motor will attempt to stop, but then will continue to allow the load to fall if no measures have been taken to secure the load.

Note: for Modes 2 and 3, you can access the Controlled stop section to set the values of the controlled stop deceleration rate, the velocity threshold, and time in velocity threshold to deactivate the drive.

Mode 2: Controlled stop, then disable.

In this mode, a controlled stop will take place based on a variety of parameters that you set. First, the driven motor will decelerate at a controlled rate (CS.DEC) until one of two things happens. 1) The motor reaches the velocity limit set (CS.VTHRESH) for a period of time (CS.TO), or 2) The drive emergency time out is reached (DRV.DSTO). Once either of these cases is reached, the power stage will be disabled (and brake applied if present)

Mode 3: Controlled stop, then dynamic brake.


Similar to Mode 2, the motor will decelerate at a controlled rate (CS.DEC) until CS.VTHRESH is reached for a period of time (CS.TO). The drive will then dynamically brake and disable under the same conditions as described in Mode 2.

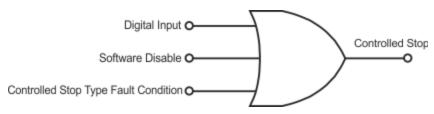
The Disable Timeout Setting determines the amount of time the drive will follow the disable mode before it deactivates the drive regardless of method chosen and alerts with an Emergency Timeout Fault.

All disable modes operate based on the type of disable command received. Any critical faults, hardware disable, or STO disable immediately turn off the power stage, and the motor will coast or free fall, depending on how the motor is secured.

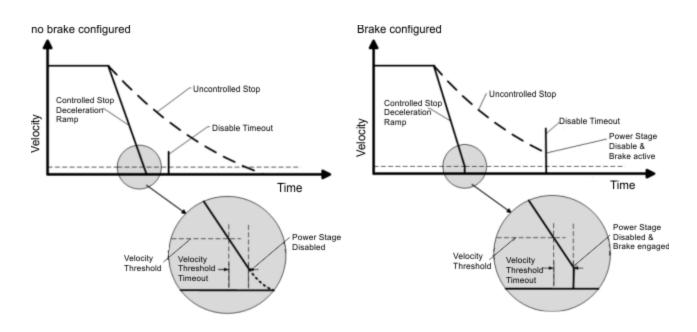
9.2.3 Drive Status

The **Drive Status** area is displayed below the settings area and includes a graphical representation of drive active status with different sets of inputs. If the input or output is enabled, then it is shown in green; if the input or output is disabled, then it is shown in red. The inputs to the OR and & (AND) gates identify which conditions are true (green) or false (red) and follow the normal logic for & (AND) and OR gates. This diagram is useful in finding which input may be preventing the drive from being enabled. Click **More** to see the details of how the control stop is executed displayed both logically and graphically.

9.2.4 Controlled Stop


The Controlled Stop area displays values for parameters associated with controlled stop.

Button or Dia	Description	Parameter
log Box		
Velocity	Sets the velocity threshold for controlled stop process.	CS.VTHRESH
Threshold		(pg 221)
Velocity	Sets the velocity threshold, which is the time value for the drive	CS.TO (pg 220)
Threshold Timeout	velocity to be within CS.VTHRESH before the drive disables	
Deceleration	Sets the deceleration value for the controlled stop process.	CS.DEC (pg
		219)
Control stop	Displays the list of digital inputs configured to controlled stop	
Input	mode separated by ','. When no controlled stop mode is con-	
	figured, this box displays the message: No CS Input	
	Configured.	
	Configure Input link will opens the Digital I/O screen where you	
	can configure the controlled stop mode.	


9.2.5 More/Less Button

The **More** button reveals the status diagram for the controlled stop configuration. It also displays the block diagram for the control stop. Two block diagrams available: one for a brake fitted and another for no brake.

Control stop status diagram

Controlled Stop Block Diagram

9.3 Controlled Stop

In a controlled stop, drive motion is brought to a standstill in a controlled manner. The drive commands a zero velocity from the motor. The motor decelerates at the prescribed deceleration value (CS.DEC (pg 219)).

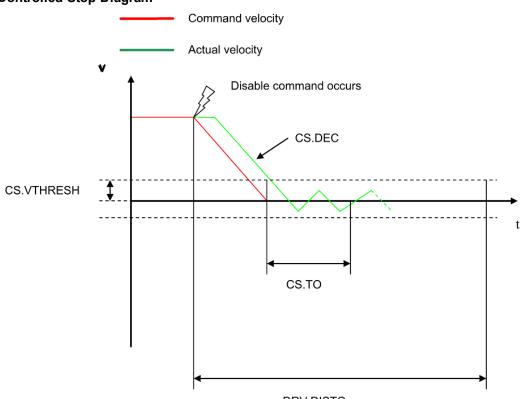
A controlled stop can occur in three ways:

- The user configures a programmable digital input to mode 13 using DINx.MODE. For example, if DIN1.MODE 13 is applied, digital input 1 is set to controlled stop.
- Either a controller or the user (through the EWV¹ terminal window) initiates a software disable (DRV.DIS) command .
- A fault initiates a controlled stop from the drive. See Fault and Warning Messages (pg 102) for the faults which initiate a controlled stop.

The controlled stop mechanism is activated in the following cases:

1. DRV.DISMODE = 2 and user executes DRV.DIS from the terminal or EWV disable buttons.

NOTE You must disable the drive in order to set DRV.DISMODE.


- DRV.DISMODE = 2 and user executes DRV.DIS from a fieldbus connected to the drive.
- 3. A fault happens for which the reaction evolves controlled stop (CS). After the CS is executed, the drive disables.
- 4. A digital input mode (DINx.MODE) is set to 13. If the digital input state changes (active high or low according to DINx.INV) the CS is executed, and then the drive disables.
- 5. HW limit switch: A digital input is defined as a positive (negative) limit switch (DINx.MODE 18 or 19). When the limit switch is met, the CS mechanism starts running. In this case, the parameter DRV.DISTO is not active.

¹Embedded Workbench Views

6. SW limit switch: SWLS defines an active SW limit. When the limit is met, the CS mechanism starts running. In this case, the parameter DRV.DISTO is not active.

Use the drive CS parameters to configure a controlled stop as follows:

- 1. CS.DEC: Deceleration ramp that is used for disable.
- CS.VTHRESH: Velocity 0 threshold. The motor shaft is considered as stopped as soon as the actual velocity (filtered through a 10 Hz filter, such as VL.FBFILTER) is within ± CS.VTHRESH.
- CS.TO: Velocity 0 time. The actual velocity must be consecutively within 0 ± CS.VTHRESH for the time CS.TO, before the drive completes the CS process. This value is used since the motor can overshoot out of the VEL0 window depending on the gains, deceleration ramp, motor inertia and so on.
- 4. DRV.DISTO: Disable time out. This parameter sets an overall and independent running check as to whether or not the drive can achieve the disable state. If the VEL0 window set in step 3 is too small, it is possible that the drive may never reach the end of the CS process. The DRV.DISTO parameter and functionality addresses this issue by disabling the drive after the DRV.DISTO time elapses, even if the CS process did not end.

Controlled Stop Diagram

DRV.DISTO

When configuring the controlled stop feature, please note the following:

- If the HW limit switch is active and any of the other CS activated, the only difference will be that in this case the DRV.DISTO will limit the time before disabling the drive.
- If the value of DRV.OPMODE of the drive is current mode, the drive will not execute the CS but instead stop immediately.

 Set DRV.DISTO to an appropriate value that will allow the motor to decelerate from any velocity to 0 with DRV.DEC. This value must also allow the motor to afterwards remain within VL.FB for CS.TO consecutively within 0 ± CS.VTHRESH.

The drive issues a fault FF703 (pg 121) in case that the DRV.DISTO counter expires during a controlled stop procedure.

Related Parameters and Commands

CS Parameters (pg 218) CS.STATE (pg 220): Reads the current state of controlled stop process (0 = controlled stop is not occurring. 1 = controlled stop is occurring). DIN1.MODE TO DIN24.MODE (pg 229) DRV.DIS (pg 256) DRV.DISTO (pg 259) DRV.DISMODE (pg 256) Related topics: Emergency Stop (pg 57) 1 Digital Inputs and Outputs Fault and Warning Messages (pg 102)

9.4 Dynamic Braking

Dynamic braking is a method to slow a servo system by dissipating the mechanical energy in a resistor driven by the motor back EMF. The drive has a built in advanced dynamic braking mode which operates fully in hardware. When activated, the drive shorts the motor terminals in phase with the back EMF (q axis) but continues to operate the non-force producing current loop (d-axis) with 0 current. This action forces all of the dynamic braking current toward stopping the motor current and insures the fastest stopping of motor terminal current.

The drive hardware also limits the maximum dynamic braking motor terminal current via the DRV.DBILIMIT parameter to prevent the drive, motor, and customer load from encountering excessive currents/forces. When the current is not being limited, the mechanical energy is dissipated in the motor terminal resistance. When the current is being limited, energy is returned to the drive bus capacitors. When the amount of returned energy raises the bus capacitor voltage enough, the drive activates the regeneration control to start transferring the returned energy to the regen resistor. This resistor could be internal or external to the drive depending on drive model and drive wiring.

Whether and how the drive uses dynamic braking mode depends on the drive disable mode (DRV.DISMODE) setting.

9.4.1 Drive Regeneration

When the servo motor is slowing down at a rate faster than friction and motor losses would slow the motor, then mechanical energy can be returned to the drive. This returned energy initially drives the internal bus voltage upwards. When the returned energy is high enough, the regeneration control transfers the excess returned energy into the regeneration power resistor. If the regeneration control cannot fully

handle the power returned (for example, because there is not a regen resistor present or its resistance value is too high), then the bus voltage will continue to rise and a bus over voltage fault will happen and disable the drive completely, which allows the motor to freewheel.

AKD PDMM-x00306 to AKD PDMM-x00606

These units do not have an internal regeneration resistor. In many applications machine friction, motor losses, and the limited bus capacitor energy absorption handles the application. But, depending on the exact application requirements, an external resistor can be connected.

AKD PDMM-x01206 to AKD PDMM-xzzz07

These units have an internal regeneration resistor plus the capability to connect an external resistor if higher power levels are needed.

Related Topics

See section 6.14 Dynamic Braking in the AKD PDMM Installation Manual for detailed information on dynamic braking.

DRV.DISMODE (pg 256)

DRV.DBILIMIT (pg 252)

9.5 Emergency Stop

9.5.1 Stop / Emergency Stop / Emergency Off

The control functions Stop, Emergency Stop and Emergency Off are defined by IEC 60204. Notes for safety aspects of these functions can be found in ISO 13849 and IEC 62061.

NOTE

The parameter DRV.DISMODE must be set to 2 to implement the different stop categories. Consult the *AKD PDMM User Guide* for configuring the parameter.

Functional safety, e.g. with hanging load (vertical axes), requires an additional mechanical brake which must be safely operated, for example by a safety control.

Set parameter MOTOR.BRAKEIMM to 1 with vertical axes, to apply the motor holding brake immediately after faults or Hardware Disable.

9.5.1.1 Stop

The stop function shuts down the machine in normal operation. The stop function is defined by IEC 60204.

NOTE The Stop Category must be determined by a risk evaluation of the machine.

Stop function must have priority over assigned start functions. The following stop categories are defined:

Stop Category 0

Shut-down by immediate switching-off the energy supply to the drive machinery (this is an uncontrolled shut-down). With the approved safety function STO the drive can be stopped using its internal electronics (IEC 61508 SIL2).

Stop Category 1

A controlled shut-down, whereby the energy supply to the drive machinery is maintained to perform the shut-down, and the energy supply is only interrupted when the shut-down has been completed.

Stop Category 2

A controlled shut-down, whereby the energy supply to the drive machinery is maintained.

Stop Category 0 and Stop Category 1 stops must be operable independently of the operating mode, whereby a Category 0 stop must have priority.

If necessary, provision must be made for the connection of protective devices and lock-outs. If applicable, the stop function must signal its status to the control logic. A reset of the stop function must not create a hazardous situation.

9.5.1.2 Emergency Stop

The Emergency Stop function is used for the fastest possible shutdown of the machine in a dangerous situation. The Emergency Stop function is defined by IEC 60204. Principles of emergency stop devices and functional aspects are defined in ISO 13850.

The Emergency Stop function will be triggered by the manual actions of a single person. It must be fully functional and available at all times. The user must understand instantly how to operate this mechanism (without consulting references or instructions).

NOTE The Stop Category for the Emergency Stop must be determined by a risk evaluation of the machine.

In addition to the requirements for stop, the Emergency Stop must fulfil the following requirements:

- Emergency Stop must have priority over all other functions and controls in all operating modes.
- The energy supply to any drive machinery that could cause dangerous situations must be switched off as fast as possible, without causing any further hazards (Stop Category 0) or must be controlled in such a way, that any movement that causes danger, is stopped as fast as possible (Stop Category 1).
- The reset must not initiate a restart.

9.5.1.3 Emergency Off

The Emergency Off function is used to switch-off the electrical power supply of the machine. This is done to prevent users from any risk from electrical energy (for example electrical impact). Functional aspects for Emergency Off are defined in IEC 60364-5-53.

The Emergency Off function will be triggered by the manual actions of a single person.

NOTE The result of a risk evaluation of the machine determines the necessity for an Emergency Off function.

Emergency Off is done by switching off the supply energy by electro-mechanical switching devices. This results in a category 0 stop. If this stop category is not possible in the application, then the Emergency Off function must be replaced by other measures (for example by protection against direct touching).

9.6 Under Voltage Fault Behavior

You can adjust the conditions for an under voltage fault using VBUS.UVMODE in the <u>EWV</u> Terminal (pg 94) View:

VBUS.UVMODE = 1 (default)

The drive will not report an under voltage fault unless the drive is enabled and VBUS.VALUE falls below VBUS.UVFTHRESH

VBUS.UVMODE = 0

The drive will report an under voltage condition any time VBUS.VALUE falls below VBUS.UVFTHRESH.

When an under voltage fault occurs, the drive is disabled and issues the following alerts:

- EWV alert: 502 Bus Under Voltage
- Drive LED alert: Left LED displays [F], right LED displays [u-V].\
- Fault relay output turns on.

11 Tuning Your System

11.1	Introduction	.63
11.2	Slider Tuning	.63
11.3	Tuning Guide	.64

11.1 Introduction

Most servo systems require some level of tuning (setting up the desired response of the system usually with the load attached). This can be done through several methods available within \underline{EWV}^1 .

Slider Tuning - Slider tuning offers a very simplistic approach to tuning and can get you underway quickly. With this method, just the proportional and integral gains are adjusted based on the desired bandwidth you wish to achieve. You can take into account your load inertia if it is known. None of the Bi-quad filters are impacted by the slider tuning.

Performance Servo Tuner - This is an easy way to get a more sophisticated tuning accomplished. The details of how the PST works are included in the advanced section of this subject. However, the PST approach is a simple one-button solution that lets the system configure all of the tuning parameters for you. The PST is a robust solution to get your sytem tuned and ready to operate in a wide variety of mechanical configurations and loads.

Manual Tuning - Certain applications may require manual tuning where you set the gains and filters based on the specific performance you are looking for. You may also need to "tweak" the tuning that was set up in either the slider or the PST section to optimize your application performance.

11.2 Slider Tuning

This view allows you to vary the tuning of your drive using the slider.

11.2.1 Gentle, Medium, and Stiff

These buttons select three of the most common bandwidths:

- Gentle works in all but the most challenging situations.
- Medium is the default and works in most situations.
- Stiff works for unloaded motors.

11.2.2 The Slider

As you drag the slider to the right, the stiffness increases. In many situations, you cannot drag the slider fully to the right side because the system will become unstable.

11.2.3 Inertia Ratio

If you know the inertia ratio of your load, then entering it can improve the performance of your system. If you do not know the inertia of your load then \underline{EWV}^2 will assume a ratio of 1:1, which will give good performance in many configurations. The inertia ratio is the ratio of your load with respect to the inertia of your motor.

¹Embedded Workbench Views

²Embedded Workbench Views

11.3 Tuning Guide

11.3.1 Overview

This section covers tuning the velocity and position loops in the AKD PDMM. Servo tuning is the process of setting the various drive coefficients that are needed for the drive to optimally control the servo motor for your application. There are different ways to tune, and several are covered here. We will give you guidance on what the different methods of tuning are and when to use them.

The AKD PDMM works in three major operation modes: torque, velocity, and position operation mode. No servo loop tuning is required for torque mode. Velocity loop and position loop tuning are covered below.

The AKD PDMM has an auto tuner that will provide the tuning that many applications will need. This section describes the tuning process and how to tune the AKD PDMM, specifically for cases where the user does not want to use the auto tuner.

Tuning in this section will focus on tuning in the time domain. This means that we will look at the velocity or position response vs. time as the criteria we use to decide how well tuned a control loop is tuned.

11.3.2 Determining Tuning Criteria

Choosing the proper specifications for a machine is a prerequisite for tuning. Unless you have a clear understanding of the type of performance needed to push the machine into production, the tuning process will cause more problems and headaches than it solves. Take time to layout ALL the requirements of the machine—nothing is too trivial to consider.

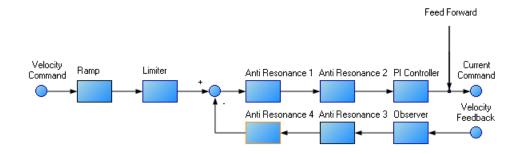
- Determine what the most important criteria are. The machine was likely designed and developed with a certain performance in mind. Include ALL performance criteria in the specification. Do not concern yourself with whether or not the criteria sound scientific. (i.e. If the motion needs to visibly look smooth, put it in the specification. If it can't have any noise, put it in the specification.) At the end of the development phase, the machine's performance should match the performance previously set in the specification. This will ensure that the machine meets its performance goals and that it is ready for production.
- Test the machine with realistic motion. Do not simply tune the machine to make short linear motion, when it will make long, s-curve motions in the real world. Unless you test the machine with realistic motion, there is no way to determine if it is ready for production.
- Determine some specific, quantitative criteria for identifying unacceptable motion. It's better to be able to tell when a motion is unacceptable than to try and figure out the exact point where acceptable motion becomes unacceptable. Here are some examples of motion criteria:
 - a. +/-x position error counts during the entire motion.
 - b. Settling within +/- x position error counts, within y milliseconds.
 - c. Velocity tolerance of x% measured over y samples.
- It is important to focus on the things that will get the machine into production with reliable performance, based on a fundamental understanding of the system.

After you have constructed a detailed servo performance specification, you are now ready to start tuning your system.

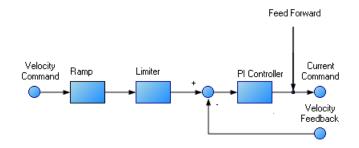
11.3.3 Before You Tune

In the worst case, if something goes wrong during tuning, the servo can run away violently. You need to make sure that the system is capable of safely dealing with a servo run away. The drive has several features that can make a servo run away safer:

- Make sure that the limit switches turn the drive off when tripped. If a complete run away occurs, the motor can move to a limit switch very quickly.
- Make sure the max motor speed is set accurately. If a complete run away occurs, the motor can reach max speed quickly and the drive will then disable.


11.3.4 Closed Loop Tuning Methods

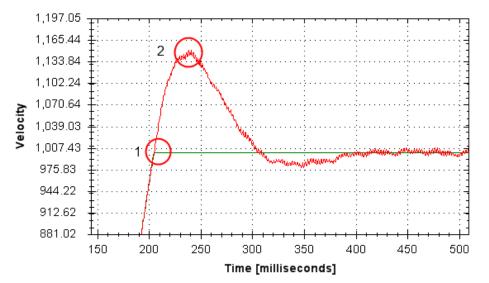
The closed loop control loop is responsible for the desired position and / or velocity (trajectory) of the motor and commanding the appropriate current to the motor to achieve that trajectory. The challenge in closed loop control loops is to make a system that not only follows the desired trajectory, but also is stable in all conditions and resist external forces, and do all of this at the same time.


When in velocity operation mode, only the velocity loop is tuned. When in position operation mode, both the velocity and position loops must be tuned.

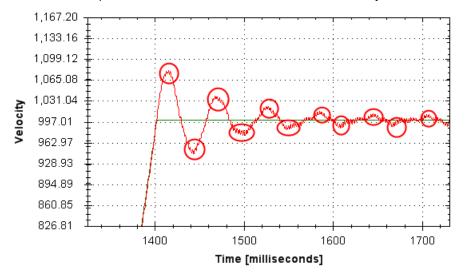
11.3.4.1 Tuning the Velocity Loop

The velocity loop on the AKD PDMM consists of a PI (proportional, integral) in series with two anti-resonance filters (ARF) in the forward path and two-anti resonance filters in series in the feedback path.

To perform basic tuning of the velocity loop, you can use just the PI block and set ARF1 and ARF2 to unity (no effect) and set the observer to 0 (no effect). Using just the PI block simplifies the process of tuning the velocity loop. To start tuning you can adjust the PI Controller block first. A simplified velocity loop without anti-resonant filters and observer is shown below. This is how you can think of the loop before the anti resonant filters and observer is used.


Procedure for simple velocity loop tuning:

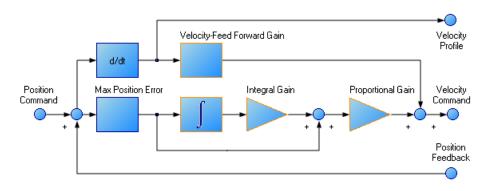
- Set DRV.OPMODE to velocity or position, as appropriate for your application. If DRV.OPMODE is set to position, set VL.KVFF to 1.0.
- 2. Set VL.KP to 0.
- 3. Set VL.KI to 0.
- 4. Set service motion to make a motion that is similar to the move speeds that will be used in the real application. Do not set the service motion to a speed higher than ½ of the maximum motor speed, to allow for safe overshoot during tuning. Set acceleration to an appropriate value for your application. Set service motion to reversing. Set time1 and time2 equal to 3 times the expected settling time for the system. 1.0 second is a reasonable value for time1 and time2, if you don't know the expected settling time.
- 5. Enable the drive and start the service motion. You should see no motion, as there are no velocity loop tuning gains at this point.
- 6. When adjusting VL.KP and VL.KI, below record VL.FB and VL.CMD. These are the traces that are used to determine the performance of the velocit loop.


Ch	annels	Time-base and Trigger	Service Mo	tion	Servo Gains	Observer	All Gains	AR F 🔹 🕨]
Id	So	urce	Color	Hide	Y Axis	Filter	Filter F	requen	
	1 Cu	rrent feedback (IL.FB)			Current			400	Idle
	2 Ve	locity command (VL.CM			Velocity			400	
	3 Ve	locity feedback (VL.FB)			Velocity			400	Stop Motion
	4 No	ne			Default			400	Enable Drive
	5 No	ne			Default			400	
	6 No	ne			Default			400	Start Recording
•								•	Refresh

- 7. Adjust VL.KP. Keep increasing VL.KP by a factor of 2 until you either:
 - · Hear an objectionable noise from the system (buzzing, humming, etc) or
 - See velocity overshoot. No velocity overshoot should be present when using only VL.KP.
 - When you reach one of the limits above, decrease VL.KP to the value where there were no objectionable noises or overshoot.
- 8. Adjust VL.KI. Increase VL.KI by a factor of 1.5 until you either:
 - Hear or see objectionable noise or shuddering from the system
 - See > 15% overshoot

• Here is an example of 15% overshoot. This is zoomed in view of a service motion commanded to 1000 RPM (location 1), where the overshoot peaks at 1150 RPM (location 2).

• Here is an example of 11 overshoots. Each overshoot is shown by a red circle.



- When you reach one of the limits above, decrease VL.KI to the value where there were no objectionable noises or overshoot.
- 9. Stop the service motion

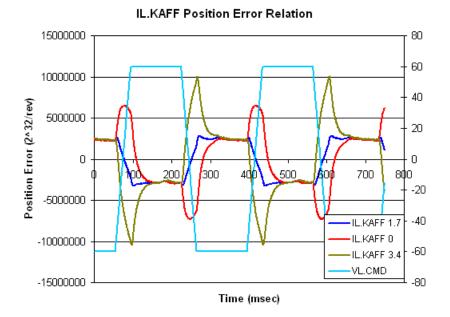
11.3.4.2 Tuning the Position Loop

The position loop is a second loop that builds upon a correctly tuned velocity loop to provide accurate control over position. The position loop is a simple element that consists of a PI loop. It is simplest to tune the P and I terms in the velocity loop and use only the P term in the position loop.

At most, use only three non-zero P and I terms from both the velocity loop and the position loop. One combination would be VL.KP, VL.KI, and PL.KP. Another valid combination would be VL.KP, PL.KP, and PL.KI. The VL.KP, VL.KI, and PL.KP combination is shown here.

Procedure for tuning position loop:

- 1. Set VL.KVFF to 1
- 2. Increase PL.KP until either:
 - You see 25% overshoot, or
 - You see > 3 overshoots, or
 - You hear objectionable noises from the system.
 - When you reach one of the limits above, decrease PL.KP to the value where there were no objectionable noises or overshoot.


11.3.5 Torque Feedforward Tuning Methods

The torque based feedforward terms on the AKD PDMM effectively model the physics of your motor and allow the drive to command the appropriate current, even before the encoder has time to send data back to the drive. Torque based feedforward terms allow you to lower following error with virtually no stability penalty.

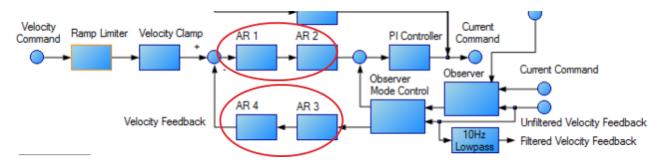
11.3.5.1 Shape Based Feedforward Tuning

To adjust IL.KAFF:

- Tune the VL.KP and VL.KI as shown above in the velocity loop tuning section. Set DRV.OPMODE to velocity (or set PL.KP and PL.KI to 0 and vl.kvff to 1).
- Set up a short, repeating service motion with accelerations that are representative of the moves you will use in your application (exact values for acceleration are not critical).
- Turn up IL.KAFF until the position error (PL.ERR) is proportional to the inverted velocity command. The adjustment of IL.KAFF will focus on removing bumps on acceleration and

deceleration. The picture below has an ideal value of IL.KAFF of 1.7.

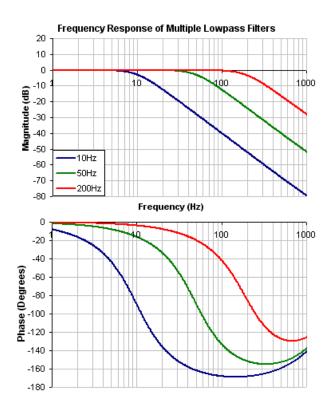
11.3.6 Using Anti-Resonance Filters


The AKD PDMM has four anti-resonance filters. Two filters are in the forward path and two are in the feedback path.

Similarities

• Both types are typically used to enhance stability and performance of the system.

Differences


- Forward path filters result in higher phase lag in closed loop system response.
- Forward path filters limit spectrum from reaching the motor / feedback path filters only filter the feedback after it has been to the motor.

11.3.6.1 Types of Anti-Resonance Filters

Low Pass

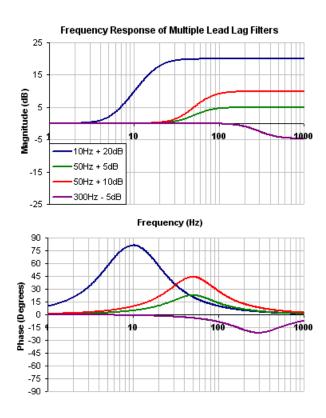
A low pass filter allows signals through below a corner frequency and attenuates the signals above the same corner frequency. The behavior at the corner frequency can be specified with the low-spass Q.

To specify a lowpass filter, you must specify the frequency and Q for both the zero and pole on anti-resonance filter 1. To do this, see the following example using the terminal commands that sets:

- Filter Type = Biquad
- Zero frequency = 700 Hz (This is the Lowpass cutoff frequency)
- Zero Q = 0.707
- Pole frequency = 5000 Hz
- Pole Q = 0.707

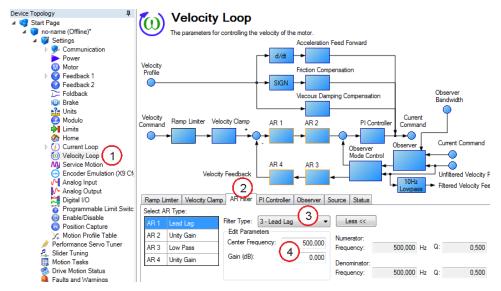
VL.ARTYPE10

VL.ARZF1700


VL.ARZQ1 0.707

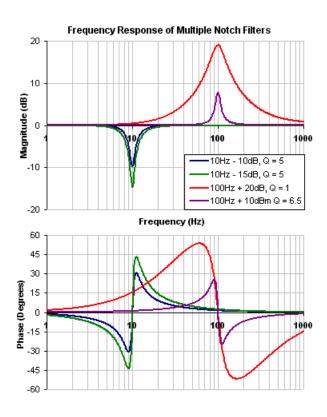
VL.ARPF1 5000

VL.ARPQ1 0.707

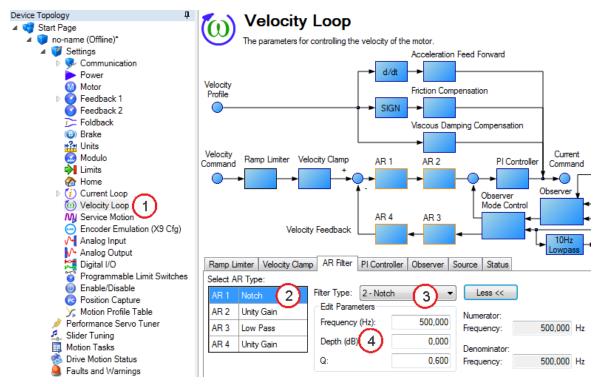

Lead Lag

A lead lag filter is a filter that has 0 dB gain at low frequencies and a gain that you specify at high frequencies. You also specify the frequency that the gain at which the transition occurs.

To specify a Lead Lag filter, you must specify the Center Frequency and high frequency Gain (dB). To do this, see the following example by clicking on the Velocity Loop:


Click on Velocity Loop tab (1), then select the AR1 Tab (2), using the Filter Type drop-down, select Lead Lag (3), lastly, enter the desired Center Frequency and Gain of the Lead Lag filter (4).

Notch

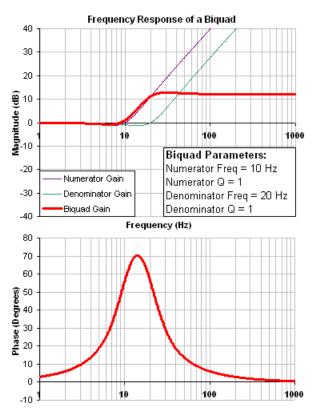

71

A notch filter changes gain at a specific frequency. You specify the frequency at which the gain change occurs (Frequency (Hz)), how wide of a frequency range the cut occurs (Q), and how much the gain changes (Notch Depth (dB)).

To specify a notch filter, you must specify the Frequency (Hz), Depth (dB) and Width (Q) of the notch. To do this, see the following example by clicking on the Velocity Loop:

Click on Velocity Loop (1), then select the AR1 Tab (2), using the Filter Type drop-down, select Notch (3), lastly, enter the desired Frequency, Depth and Q of the Notch filter (4).

Biquad

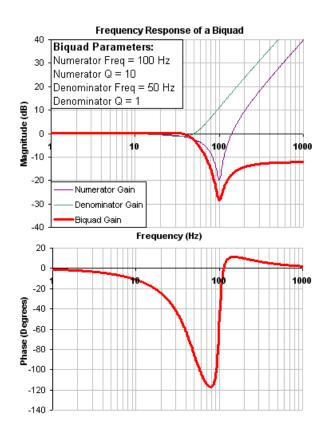

A biquad is a flexible filter that can be thought up as being made up of two simpler filters; a zero (numerator) and a pole (denominator). In fact, the pre-defined filters mentioned above are really just special cases of the biquad.

Both the zero (numerator) and the pole (denominator) have a flat frequency response at low frequencies and a rising frequency response at high frequencies. The transition frequency and damping must be specified for both the numerator and denominator.


Analyzing the numerator and denominator, the frequency response calculation is simple:

If the numerator and denominator are plotted in dB, the biquad response is numerator – denominator. Understanding how the numerator and denominator work is crucial in understanding how a biquad frequency response is created.

Below is an example of a biquad filter similar to a Lead Lag filter type. To help understand how to determine the frequency response of the biquad, the numerator and denominator response have been plotted. If the denominator is subtracted from the numerator, the biquad response is the result.



The biquad filter is very flexible, which allows custom filters to be designed. Below is an example of a resonance filter using a biquad. Notice how the high Q values affect the numerator and denominator. This gives a biquad frequency response similar to a mechanical resonance.

The previous two examples used a numerator frequency lower than the denominator frequency, yielding a positive gain in high frequencies. If the denominator frequency is lower than the numerator frequency, then high frequencies will have a negative gain.

Below is an example where the numerator frequency is higher than the denominator. Notice the high frequencies have a negative gain.

To specify a biquad filter, you must specify the frequency and Q for both the zero and the pole on anti-resonance filter 3. To do this, see the following example using the terminal commands that sets:

- Filter Type = Biquad
- Zero frequency = 100 Hz
- Zero Q = 0.7
- Pole frequency = 1000 Hz
- Pole Q = 0.8

VL.ARTYPE30

VL.ARZF3 100

VL.ARZQ3 0.7

VL.ARPF3 1000

VL.ARPQ3 0.8

11.3.6.2 Biquad Calculations

In the s-domain, the linear biquad response is calculated:

Biquad Frequency Response =
$$\frac{s^2 + \frac{\omega_N}{Q_N}s + \omega_N^2}{s^2 + \frac{\omega_D}{Q_D}s + \omega_D^2}$$

To convert from idealized s-domain behavior to a more realistic z-domain behavior, we convert using a pole / zero transform. To calculate the frequency response for an individual frequency:

$$t = 62.5 \,\mu \sec$$

$$N_{Rad} = 1 - (2Q_N)^{-2}$$

$$N_{2Unscaled} = 1$$

$$if(N_{Rad} > 0): N_{1Unscaled} = -2e^{-2\omega_N\zeta_N t}\cos(\omega_N t\sqrt{1-\zeta^2})$$

$$if(N_{Rad} \ll 0): N_{1Unscaled} = -2e^{-2\omega_N\zeta_N t} \cosh(\omega_N t \sqrt{1-\zeta^2})$$

$$N_{_{0Unscaled}} = e^{-2\omega_N\zeta_N t}$$

$$D_{_{Rad}} = 1 - (2Q_{_D})^{-2}$$

$$D_{2} = 1$$

$$if(D_{Rad} > 0): D_1 = -2e^{-2\omega_D\zeta_D t}\cos(\omega_D t \sqrt{1-\zeta^2})$$

$$if(D_{Rad} \ll 0): D_1 = -2e^{-2\omega_D\zeta_D t} \cosh(\omega_D t \sqrt{1-\zeta^2})$$

$$D_{_0} = \mathrm{e}^{_{-2\omega_D\zeta_Dt}}$$

AKD PDMM User Guide | 11.3.6.2 Biquad Calculations

$$N_{scale} = \frac{N_{\scriptscriptstyle 0Unscaled} + N_{\scriptscriptstyle 1Unscaled} + N_{\scriptscriptstyle 2Unscaled}}{D_{\scriptscriptstyle 0} + D_{\scriptscriptstyle 1} + D_{\scriptscriptstyle 2}}$$

$$N_{2} = N_{2Unscaled} \ / \ N_{Scale}$$

$$N_1 = N_{1Unscaled} / N_{Scale}$$

$$N_{_0} = N_{_0Unscaled} / N_{_{Scale}}$$

$$\angle_z = \omega t = 2\pi * \text{freq} * t$$

$$Num_{Re} = N_2 Cos(2 \angle_z) + N_1 Cos(\angle_z) + N_0$$

$$Num_{Im} = N_2 Sin(2 \angle_z) + N_1 Sin(\angle_z)$$

$$Den_{Re} = D_2 Cos(2 \angle_z) + D_1 Cos(\angle_z) + D_0$$

$$Den_{Im} = D_2 Sin(2 \angle_z) + D_1 Sin(\angle_z)$$

$$Gain_{dB} = 20 \log_{10} \left(\frac{\sqrt{Num_{Re}^{2} + Num_{Im}^{2}}}{\sqrt{Den_{Re}^{2} + Den_{Im}^{2}}} \right)$$

$$Phase_{deg} = \frac{180}{\pi} \left(\tan^{-1} \left(\frac{Num_{Re}}{Num_{Im}} \right) - \tan^{-1} \left(\frac{Den_{Re}}{Den_{Im}} \right) \right)$$

11.3.6.3 Common Uses Of Anti-Resonance Filters

Low pass filters in the feedback path. This is a common way to deal with noisy feedback sensors. When used in combination with noisy feedback sensors, significant reduction in audible noise can result.

Lead / lag filters in the forward path. This is a common way to achieve phase lead for control loops without exciting high frequency resonances.

Low pass filters in the forward path. This is a common way to limit high frequency energy from reaching a system that can not productively use energy at these high frequencies. This is also used to lower the effect of system resonances over a wide range of frequencies.

Notch filters are used to cancel system resonances. Notch filters are designed to be the opposite in amplitude of system resonances. Notch filters are applied to very specific frequencies, and therefore you must know your system resonance frequencies accurately to use them effectively.

12 Scope

12.1 Overview

The scope allows you to plot up to six different parameters from the drive. Use **Full View** and **Normal View** to toggle between the scope setup (normal) and a larger view of only the scope output (full). You can configure, save, and restore scope settings from the normal view. The lower right corner of the normal view also includes a box that indicates status and drive and scope control buttons (**Enable Drive**, **Start Recording**, and **Refresh**).

12.2 Using the Scope

Tab	Function
Channels	Select data source, plot axes, and plot appearance.
Time Base and Trigger	Select how much data to record and when to start recording the data.
Servo Gains	Adjust the servo loop gains.
All Gains	View all current tuning gains in the drive and manually edit gains.
AR1, AR2, AR3, AR4	Adjust filter settings.
Save and Print	Save the plot as a raw data file or as an image file; email the plot; print the plot;open the data file in Excel.
Measure	Display basic data read from the plots.
Cursors	Turn on the cursors and view the data at the cursor positions.
Display	Pan, zoom, and control the grid and background color.

You can set up scope plots using the tabs summarized below:

12.2.1 Scope Channels Tab

The **Channels** tab allows you to select and record up to six channels simultaneously. Select the data to record for each channel from the lists in the **Source**, **Color**, **Y-axis**, and **Filter** and **Filter Frequency** columns. Once a recording is shown on the scope screen, you can click **Hide** to remove a channel from the scope display.

Channe	Is Time-base and Trigger	Service Ma	tion M	otion Tasks	Servo Gains	Observer All Gain
Id S	Source	Color	Hide	Y Axis	Filter	Filter Frequency
1 0	Current feedback (IL.FB)			Current		400
2 \	/elocity_command(VL.CM			Velocity		400
3 \	/elocity feedback (VL.FB)			Velocity		400
4 1	Vone			Default		400
5 1	Vone			Default		400
6 1	Vone			Default		400

Id		Source	Color	Hide	Y Axis	Filter	Filter Frequency
	1	Current feedback (IL.FB)			Current		400
	2	Velocity command (VL.CM			Velocity		400
	3	Velocity feedback (VL.FB)			Velocity		400
	4	None			Default		400
	5	None			Default		400
	6	None			Default		400

12.2.1.1 Source Column

To set a channel to record, click the source you want to set and choose the appropriate channel. You can choose from None (no data is collected on that channel), preset trace types, or enter a user defined trace. Choosing "<User Defined>" allows you to record data from pre-defined locations. These locations are provided by the factory to collect less common values.

Chann	nels Time-base and Trigger	Service M	otion M	otion Tasks	Servo Gains	Observer All G	iains
Id	Source	Color	Hide	Y Axis	Filter	Filter Frequency	
1	Analog input signal (AIN.V/ 🗸			Analog I/O		400	
2	Analog input signal (AIN.VA 🔺]		Velocity		400	
3	Analog output user value (A Analog output value (AOU)			Velocity		400	
4	Bus voltage (VBUS.VALUE			Default		400	
	Current - U winding of moto Current - V winding of motor			Default Default		400	
0	Current command (IL.CMD)			Detault		400	
Chanr	nels Time-base and Trig	gger S	ervice I	Motion Se	ervo Gains	Observer A	NI Gains
Id	Source		Color	Hide	Y Axis	Filter	Filter Frequency
1	Analog input signal (AIN	l.V/ 🗸			Analog I/	0	400
2	Analog input signal (AIN	.V/ 🔨			Velocity		400
3	Analog output user valu				Velocity		400
4	Analog output value (AC Bus voltage (VBUS.VAL				Default		400
5	Current - U winding of m	oto			Default		400
6	Current - V winding of m Current command (IL.CI	otor			Default		400

12.2.1.2 Color Column

For valid sources, you can click on the color in the Color tab and choose a different color than the default, or create a custom color.

12.2.1.3 Hide Column

You can check the **Hide** box to hide a given plot trace. This feature can make it easier to focus on specific data as needed.

12.2.1.4 Y-Axis Column

The Y-axis column allows you to choose on which Y-axis the channel will be displayed. Several predefined Y-axis groups exists. Click on the item in the column to change the label for the trace.

12.2.1.5 Filter and Filter Frequency Column

Check this box and use the frequency column to apply a low pass filter to the data collected. The filter is applied when the data is collected. It is not applied to data already collected if this is checked after the data is collected.

12.2.2 Measure Tab

The measure tab displays basic data reads from the plots.

12.2.2.1 AC RMS

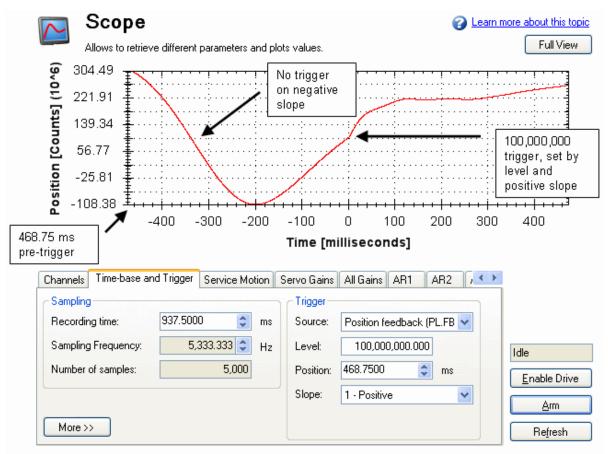
In the measure tab, the column labeled RMS displays AC RMS. True or full RMS is the full heating value of a signal and includes any DC terms in the value. AC RMS removes any DC value and gives only the RMS value as a measure of a signal's standard deviation.

True RMS = Sqrt{Sum(x[n]^2)/N} where N is number of points

```
AC RMS = Sqrt{(True RMS)^2 - (dc or average value)^2}
```

12.2.3 Scope Time-base and Trigger Tab

Use the **Time-base and Trigger** tab to select how much data to record and when to start (trigger) recording the data. You can set length of recording in ms and the sampling frequency in Hz. The number of samples is a calculated value displayed for reference. The trigger can be set to trigger immediately when you click **Start Recording** or to trigger when a specified value for a given signal is reached. The default **Time-base and Trigger** view specifies recording time, sampling frequency, and either an immediate trigger or a trigger based on a specified signal. Click the **More** button in this view to specify a given number of samples, sampling frequency, sampling interval, and access additional trigger options.


Channels Time-base an	d Trigger	Service Mo	tion	Motion Tasks	Servo Gains	Observer	All Gains
Sampling				Trigger			
Recording time:	62.5000	*	ms	Source:	Immediate		*
Sampling Frequency:		16,000.000	Hz	Level:	0	000.	
Number of samples:		1,000		Position:	6.2500	🔹 ms	
Sampling Interval:		62.5	μs	Slope:	0 - Negative		~
More >>	Repe	at Arming					

Connelline					
- Sampling			Trigger —		
Recording time:	62.5000 🗘	ms	Source:	Immediate	~
Sampling Frequency:	16,000.000	Hz	Level:	0.000	
Number of samples:	1,000		Position:	6.2500 🗘 ms	
Sampling Interval:	62.5	μs	Slope:	0 - Negative	v

In this tab, you can set length of recording in ms and the sampling frequency in Hz. The number of samples is a calculated value displayed for reference. You can also choose the trigger source to be **Immediate** (triggers as soon as you click the **Start Recording** button) or to be one of many predefined sources. If you choose a source other than **Immediate**, you can set the level, position, and slope for the trigger value.

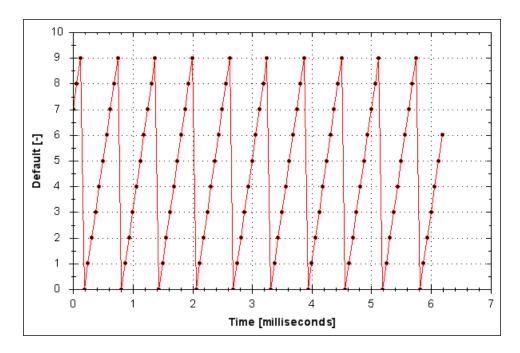
- Level sets the value of the source that triggers the recording to start.
- Position sets the amount of time that the scope displays before the trigger occurred.
- Slope sets whether the source data must pass the level value in a positive or negative direction.

An example of triggering is shown below:

12.2.3.1 Scope Time-base and Trigger, More View

Click More to display additional options for configuring the time-base and trigger.

Channels Time-base and Trigger	Service Motion	Motion Tasks	Servo Gains	Observer All G	iains	
Sampling		Trigger				
Recording time:	62.5000 ms	Type:	0 - Immediate	*		
Sampling Frequency: 16	,000.000 🗘 Hz	Source:	IL.FB			
Number of samples:	1,000	Level:	0	.000		
Sampling Interval:	62.5 µs	Position:		10 %		
Less << Rep	eat Arming	Slope:	0 - Negative	~		
Channels Time-base and	Trigger Servic	ce Motion	Servo Gains	Observer	All Gains	
Sampling			Trigger-			
Recording time:	62.5	5000 ms	Type:	0 - Immedia	te	*
Sampling Frequency:	16,000.00	0 🗘 Hz	Source:	IL.FB		
Number of samples:	1	.000	Level:		0.000	
Sampling Interval:		62.5 µs	Position:		10	%
Less <<	Repeat Arm	ing	Slope:	0 - Negative	е	~


In the **Sampling** area of this view, you can specify the recording length by entering a sampling frequency and a number of samples. Here, the recording time is a calculated value displayed for reference.

What is triggering?

Triggering allows you to precisely control the start point of data collected in the scope. For example, if you are looking for a large spike, you can set the trigger to start the scope to begin recording when it sees the large spike. This section describes the triggering functionality of the scope.

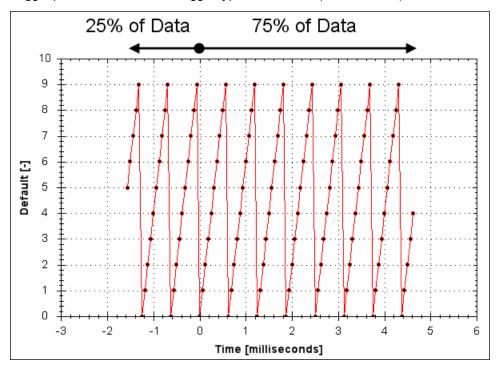
Test Signal

As an example, it is useful to examine variations on a record of a test signal that generates a sawtooth signal. The signal starts at 0 and increases by one every drive sample (1/16,000 second) to a maximum of 9, and then returns to 0. This signal continues indefinitely. The record of this signal is shown below.

12.2.3.2 Trigger Type

The **Trigger** area in the **More** view offers more flexibility than the default view. You can specify four types of trigger types (REC.TRIGTYPE):

- Immediate 0. This mode will start recording as soon as the recording command (REC.TRIG) is received by the drive.
- Command / On Next Command 1. This trigger type lets you specify a trigger on the next telnet command received by the drive. This is useful in a telnet session via Hyperterminal (or a similar program). <u>EWV</u>¹ is constantly sending telnet commands, so this is not typically used in a EWV session.
- Parameter / On Source Signal 2. This trigger type lets you specify a trigger source and set
 of conditions to trigger recording of data. This is very similar to the triggering used on oscilloscopes.
- Boolean 3. This trigger type lets you trigger on a boolean (0 or 1), such as drive active status.


12.2.3.3 Trigger Position

Trigger Position (REC.TRIGPOS) allows you to collect data that occurs before the trigger occurs. If you have a rare condition, you may want to see the conditions that led up to it. Trigger position lets you control how much signal is collected before the trigger condition occurred.

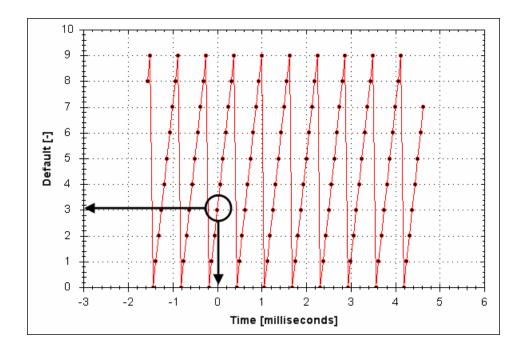
Trigger position is specified in units of percent (%). If you specify a trigger position of X%, X% of the data is before 0 ms in the data time and 100-X% (the rest of the data) is at or greater than 0 ms. In the picture below, trigger position is set to 25% (REC.TRIGPOS 25).

In the EWV scope, the 0 time point is clear. When collecting the data via REC.RETRIEVE or similar commands, the time is not returned, so some caution should be used when the trigger point is important to understand.

¹Embedded Workbench Views

Trigger position is not used in trigger type "Immediate" (TRIGTYPE 0).

12.2.3.4 Trigger Value

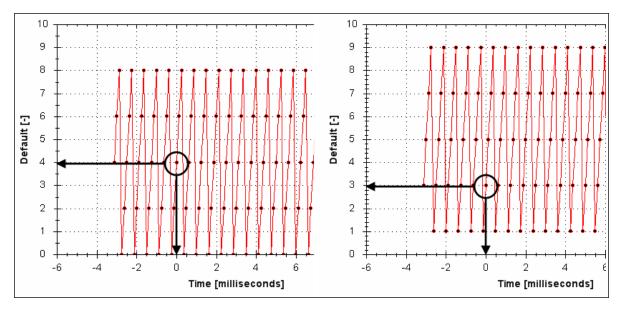

The trigger value (REC.TRIGVAL) specifies a target value that should trigger the recording to start. The trigger value is used in trigger type Parameter / On Next Signal only.

The trigger value is not used in the boolean trigger type. Use the trigger slope to set the polarity of the boolean trigger.

When the trigger slope is positive, the trigger value will trigger when:

- The trigger source is less than the trigger value in the previous recording sample
- The trigger source is greater than or equal to the trigger value in the current recording sample

Below is an example showing triggering of trigger value of 3 (REC.TRIGVAL 3) and positive trigger slope (REC.TRIGSLOPE 1). You can see that the recording triggers at time zero when the source reaches the value of 3.


When the trigger slope is negative, the trigger value will trigger when:

- The trigger source is greater than the trigger value in the previous recording sample.
- The trigger source is less than or equal to the trigger value in the current recording sample.

12.2.3.5 Effects of Recorder Gap

When the recording rate is less than 16,000 Hz (REC.GAP > 1), there can be some impact on the triggering of the recorder. When using pretriggering and a recording rate of less than 16,000 Hz, the trigger only evaluates every N samples, where N is the value of REC.GAP. Two effects result from this condition:

 You cannot be sure of the moment that the recorder is triggered any closer than N samples. An example of this is shown below where the trigger value is set to 3, the trigger slope is positive and the recorder gap is 2. Both examples are the same data, but one instance collected and triggered on the odd data. The other example collected and triggered on the even data.

 You can miss triggers, whose duration is less than N samples, where N is the value of REC.GAP. This is because the trigger is only evaluated every N samples.

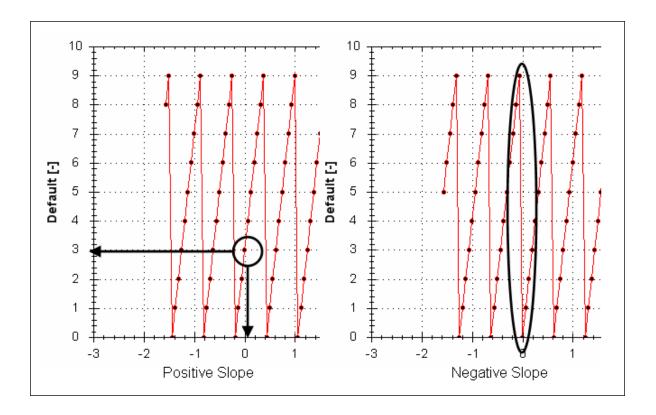
A workaround for the above effects is available by setting the recorder trigger position to zero (REC.TRIGPOS 0). This eliminates conflicts between pretrigger and post-trigger timing and will guarantee trigger evaluation every sample, eliminating the cases above.

12.2.3.6 Trigger Slope

Trigger Slope specifies whether you trigger on a positive or negative change in the trigger source. The effect of the trigger slope is different for trigger type Boolean and On Next Signal modes.

Boolean Trigger Type

When using Boolean type:


- A positive slope will trigger when the trigger source is 1
- A negative slope will trigger when the trigger source is 0

The boolean trigger type is a state trigger. There is no need to transition from 0 to 1 to trigger with the positive slope. If the trigger source is 1 from the start, the positive slope will immediately trigger.

On Next Signal Trigger Type

The "On Next Signal" trigger type allows you to specify if the recorder should trigger when the signal crosses the trigger level in the positive or negative direction. The signal only needs to reach the trigger level; it does not need to pass the trigger level.

In the examples below, the trigger value is set to 3 (REC.TRIGVAL 3.000). You can see that with positive slope, the trigger occurs exactly when the signal transitions from 2 to 3, because it reached 3. The negative slope case triggers when the signal transitions from 9 to 0, because it crossed 3 on the way.

12.3 Scope Settings

Scope settings are used to store and retrieve the scope parameters. You can save multiple settings, called "presets", under different names. You can save, delete, import, or export the presets. The settings are stored in EWV project file (default.wbproj) and settings are common to all the drives in EWV.

Scope Settings		
Load at Startup:	None	-
Reload Current:	set1	•
Save		Set Default
Save As		Import
Delete		Export

12.3.1 Load a setting (preset) to Scope screen

In Scope Settings section, the existing presets are listed in the **Select Setting** box. To load a setting to the scope screen, select the desired preset from the **Select Setting** list.

12.3.2 Create a new preset

- 1. Modify any scope parameters.
- 2. Select the **Settings** tab.

3. Click Save As. The following dialog is displayed:

Enter Setting Name:		
sett2	ОК	Cancel

4. Enter the setting name and click **OK**. The current settings are saved as a preset with the given name and displayed in the list.

12.3.3 Save or delete preset

Save saves any modification to the open preset. Delete deletes the open preset.

12.3.4 Import preset

Import the presets contained in the selected settings file as follows:

1. Click on Import button and the following dialog will be displayed.

Import Settings
Select the settings file:
Select
Settings File Name:
C:\Documents and Settings\jayaramas\Desktop\New Folder\Sc
The selected settings file contains following Scope settings. Select desired setting to import.
✓ sett1 ✓ sett2
V sell2
Import Cancel

- 2. Select the settings file by clicking "Select..." button.
- 3. All the scope presets will be displayed contained in the selected settings file.
- 4. Select/Deselect the presets and then click on Import.
- 5. If preset name already exists in application the confirmation message will be shown to user to replace it or to ignore.

12.3.5 Export preset

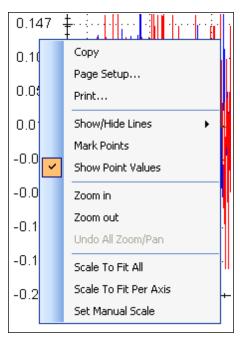
Export a preset to a file as follows:

1. Click **Export** and the following dialog is displayed:

Select the settings to export:	
✓ sett 1	
✓ sett2	
Colort Die Normer	
Select File Name:	٦
Export Close],

- 2. The existing presets are displayed and user can select/deselect the preset to export.
- 3. Select the file name to export.
- 4. Click **Export** to export the selected presets to a file.

12.3.6 Scope axis scaling and zooming


The scope provides two mechanisms for determining how you view the data:

- Scaling: you can choose the scale for the different axes.
- Zooming: you can choose a particular portion of the scope that you want to observe more in details, and then come back to previous scaling.

Two different scaling modes are provided on each axis:

- Manual: you can determine the minimum and maximum value of the axis (X or Y axis).
- Scale to fit: the program will compute a scale for this axis that will display all the curves bound to it (X or Y axis).

These functionalities are accessible through the contextual menu when right-clicking in the axis zone. A simple left-click in the axis zone will provide the manual range functionality. A supplementary functionality allows you to perform a scale to fit on all axes is also available, which allows a good overview.

The zoom functionality allows you to navigate in a portion of the graphic. When you reset the zoom, the initial scales are shown.

In the display tab, when "Remember Axis Scale" is set, the scales of the axes are kept between two sequential recordings. You can fine tune the scale to visualize a particular behavior and record a second time and see the same behaviour without having to redo all the tuning. When not checked, a scale to fit all will be performed after each record. This setting is reseted when exiting EWV and should be explicitly set at next startup.

12.3.7 Manual range per axis

After recording data, right click anywhere on the y-axis and select **Set Manual Scale** to open a dialog box to set the range for the axis. Enter the Y-axis minimum value and Y-axis maximum value. Click **OK** to reset the Y-axis to new range.

Manual Axis Range 🛛 🔀					
Axis Name: Current [Arms]					
Minimum:	-0.206				
Maximum:	0.235				
OK Cancel					

12.3.8 Unit display on Y axis

The unit on the Y-axis is displayed if all scope signals units are identical for that Y-axis. If different units apply to different signals, the units are displayed as [-]. For example, if the velocity Y-axis has signals VL.FB and IL.CMD, then the unit displayed is [-], since the units for these parameters are different. If IL.CMD is hidden, then the correct unit for VL.FB, rpm, is displayed.

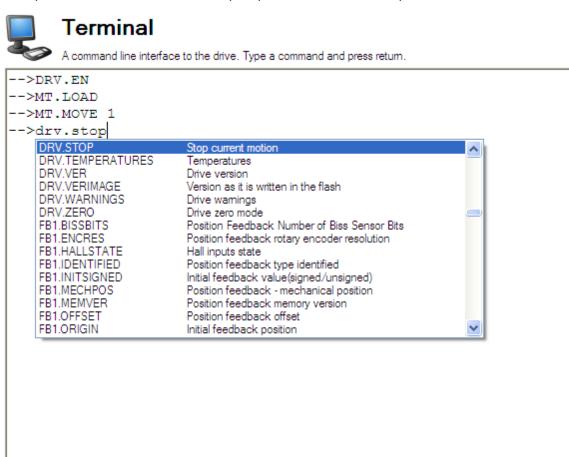
Related Parameters:

BODE Parameters (pg 203)

92

13 Using Parameters and the Terminal Screen

13.1	Terminal	94
13.2	Parameter List	97


13.1 Terminal

13.1.1 Overview

The terminal mode provides a quick and easy way to issue commands to the drive directly. Typically used by "power users" who are familiar with the command set, the terminal mode can help in setup, troubleshooting, and other diagnostic actions. When using the terminal mode, <u>EWV</u>¹ shows the parameter and command set in a popup view and uses an autocomplete tool to help you select the proper parameter or command. Right-click in the command entry area to open a popup menu for editing commands and for clearing the screen. The terminal also provides a macro editor that allows a series of commands to be executed via a single command (called a macro). Macros are useful when you must frequently execute a sequence of commands.

13.1.2 Using the Terminal

Click Terminal in the navigation tree to issue parameters and commands in the terminal mode. You can enter parameters and commands at the prompt as shown in this example:

Macro 5

Edit Macros...

The terminal supports the following keyboard shortcuts:

Macro 4

Macro 3

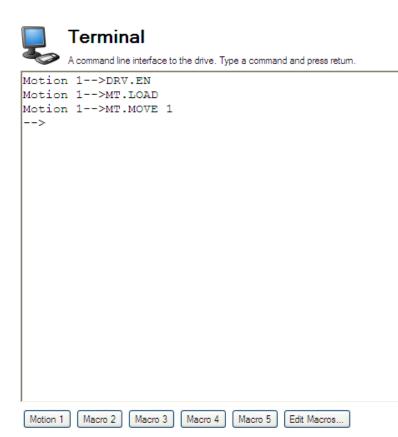
Macro 2

Macro 1

¹Embedded Workbench Views

Keyboard Shortcut	Description
F2	Executes the last command.
Up Arrow	Gets the previous command from the command history.
Down Arrow	Gets the next command from the command history.
CTRL+J	Shows the list of commands that the drive supports.
ESC	Hides the command list if command list is open. Clears the line if command list is not open.
Enter (Return)	Executes the current command. This command sends the text you have typed to the drive and then prints the text the drive returns on the next line.

13.1.3 Macros


Macros are a short sequence of instructions that can be sent to the drive using a single button. You can create up to five macros within the terminal mode using the macro editor. Each of the macros can be given a name and will appear as a button below the Terminal screen area. When you select the button, the command set tied to that macro will appear in the Terminal area and the commands will be executed. If there are commands which are not entered correctly, the terminal screen area will indicate the errors.

You can access macros and the macro editor from the buttons are located at the bottom of the terminal screen. Click a macro button to execute the associated macro. The **Edit Macros** button opens the macro editor used to create and edit macros. You can also assign custom names to the macro buttons with this editor.

Creating a Macro from Terminal commands

You can create a macro from a sequence of terminal commands as follows:

1. Enter the sequence of commands.

2. Copy the sequence of commands, then click **Edit Macro**. Select a macro from the tree on the left, then paste the sequence of commands into the Commands area of the Edit Macros window.

Edit Macros		
A Motion 1 (Macro 1) A Motion 1 (Macro 1) Macro 2 Macro 4 Macro 5	Name: Motion 1 Commands: DRV.EN MT.LOAD MT.MOVE 1	C Tel me more
Import Export.	Insert Delay	Close

Motion 1 Macro 2 Macro 3 Macro 4 Macro 5 Edit Macros...

3. Select **Save** to save your macro.

Macro Editor

The macro editor allows you to create and modify up to five macros.EWV automatically saves the macros that you create. If you exit KAS IDE and then start KAS IDE again, the macros you defined will still be available.

To create or edit a macro from the editor, open the **Terminal** screen and click on **Edit Macros** (located at the bottom of the screen). Select the macro you wish to edit from the tree on the left, then use the features described below to build the macro. You can add comments in the macro after the ";" symbol.

Button or Dialog Box	Description
Name	Allows you to give each macro a unique name. This name will be shown on the button in the terminal view.
Commands	Displays the commands that are sent to the drive when you use this macro. The response from the drive is displayed in the terminal.
Import	Overwrites the selected macro with the contents of a macro file exported from another computer.
Export	Sends the selected macro to a text file to that you can import into KAS IDE running on another computer.
Insert Delay	Inserts a step into the macro that causes a delay for a specified number of milliseconds before continuing. A line that starts with #delay 5000 will pause the execution of the macro for 5000 milliseconds.
Close	Closes this window and returns to the terminal view.

13.2 Parameter List

This screen displays a list of the current values of all the parameters that the drive supports. You can sort some of the rows by clicking the column headers.

Parameters

This page lists all the current values of all the drive parameters on the drive.

	Full Name	X	Value	Units	Parameter	Read/Write	X
	Analog Input						
	Analog input low	pass filter cutoff freq	5,000).000 Hz	AIN.CUTOFF	read-write	
	Analog input sig	nal deadband	0	0.000 V	AIN.DEADBAND	read-write	
	Analog Input Dea	adband Mode	0 - Deadband		AIN.DEADBANDMO	read-write	
	Analog input tore	que scale	0).001 Arms/V	AIN.ISCALE	read-write	
	Analog input mo	de	1 - Command Sour	ce	AIN.MODE	read-write	
	Analog input offs	et	0	0.000 V	AIN.OFFSET	read-write	
	Analog input pos	ition scale	0	0.000 Counts16	AIN.PSCALE	read-write	
	Analog input sig	nal	0	0.000 V	AIN.VALUE	read-only	
	Analog input vel	ocity scale	0).060 rpm/V	AIN.VSCALE	read-write	
Ŧ	Analog Output						
Ŧ	Bode						
Ŧ	Bus Volts						
Ŧ	Controlled Stop)					
Ŧ	Current Loop						
Ŧ	Digital Input						
Ŧ	Digital Output						
Ŧ	Drive						
Ŧ	Electronic Gea	ring					
Ŧ	Fieldbuses						
Ŧ	GUI Parameter	5					
+	Hardware Lim	t Switches					
Ŧ	Horning						
Ŧ	TCP/IP						
Ŧ	Motion Tasks						
Ŧ	Motor						
Ŧ	Position Captu						
Ŧ	Position Feedb	ack					
Ŧ	Position Loop						
Ŧ	Programmable	e Limit Switches					
Ŧ	Recorder						
+	Regen Resisto						
Ŧ	Service Motion						
+	Software Limit	Switches					
+	Units						
+	Velocity Loop						
Ŧ	Wake & Shake						
Ŧ	Misc						
	ton or Dia- Box	Description					
	fresh	Reads all the param	eters from the dr	ive and update	the contents of the t	able.	
Pri	nt	Sends the data that	you see on the s	creen to the pri	nter.		
eM	lail	Opens an email me	ssage and attach	es a comma se	eparated file to the er	mail mes-	
		sage.	-				

Button or Dia- log Box	Description
More/Less	Adds two more columns to the table with the range and default values for each para- meter.

This page intentionally left blank.

14 Faults and Warnings

14.1	Fault and Warning Messages	102	
14.2	Additional error and alarm messages AKD PDMM-M	122	
14.3	Clearing Faults	127	
14.4	Parameter and Command Error Messages	127	
14.5	Unknown Fault	132	

14.1 Fault and Warning Messages

When a fault occurs, the drive fault relay is opened, the output stage is switched off (motor loses all torque), or the load is dynamically braked. The specific drive behavior depends on the type of fault. The LED display on the front panel of the drive shows the number of the fault that occurred. If a warning is issued prior to the fault, the warning is shown on the LED and has the same number as the associated fault. Warnings do not trip the power stage of the drive or fault relay output.

The left side of the LED displays F for a fault or n for a warning. The right side displays the fault or warning number as follows: 1-0-1-[break]. The highest priority fault is displayed on the LED. Multiple faults may be present when a fault condition is occurring. Check the AKD PDMM<u>EWV</u>¹ Fault Screen or read the status of DRV.FAULTS through the controller or HMI for the entire list of faults.

Faul- t	Message/Warning	Cause	Remedy	Drive Response to Fault
F0		Reserved.	N/A	N/A
F10-	Firmware incompatible.	Installed firmware is	Load compatible firm-	Disable power stage
1		not compatible with	ware into the drive.	
		the drive hardware.		
n10-	The FPGA is a lab	The FPGA is a lab ver-	Load the released FPGA	None
1	FPGA.	sion FPGA.	version that is com-	
			patible with the oper-	
			ational firmware.	
F10-	Resident Firmware	Software failure detec-	Restart drive. If issue	Disable power stage
2	failed.	ted.	persists, contact tech-	
			nical support.	
n10-	Operational FPGA is	The FPGA minor ver-	Load the released FPGA	None
2	not a default FPGA.	sion is larger than the	version that is com-	
		operational firmware	patible with the oper-	
		default FPGA minor	ational firmware.	
		version		
F10-	Resident FPGA failed.	Software failure detec-	Restart drive. If issue	Disable power stage
3		ted. Load resident	persists, contact tech-	
		FPGA failure	nical support.	
		occurred (several		
		cases according to		
		flowchart, including		
		incompatible image to		
		FPGA type and field-		
		bus type).		

¹Embedded Workbench Views

Faul-	Message/Warning	Cause	Remedy	Drive Response to Fault
τ F10-	Operational EDCA	Software failure detec-	Restart drive. If issue	
	Operational FPGA			Disable power stage
4	failed.	ted. Load operational	persists, contact tech-	
		FPGA failure	nical support.	
		occurred (several		
		cases according to		
		flowchart).		
F10-	NV Memory Stamp.	Non-volatile memory	Reset the drive to default	Disable power stage
5		stamp is corrupted or	memory values using	
		invalid.	Parameter Load in EWV.	
F10-	NV Memory Data	Non-volatile memory	Reset the drive to default	Disable power stage
6	(might occur when	data is corrupted or	memory values using	
	downloading firmware).	invalid. When this	Parameter Load in EWV.	
	, ,	fault occurs after a		
		firmware download, it		
		is not an indication of		
		a problem (clear the		
		fault and perform a		
		"save" to the drive).		
n10-	Positive switch.	Positive software pos-	Move the load away from	Controlled stop
7		ition limit is	the limits.	Controlled Stop
		exceeded.		
n10-	Negative switch.	Negative software	Move the load away from	Controlled stop
8		position limit is	the limits.	
		exceeded.		
F12-	Homing Error.	Drive did not finish	Check homing sensor,	Controlled stop
1		homing sequence.	homing mode, and hom-	
			ing configuration.	
F12-	Invalid motion task.	Invalid motion task.	Check motion task set-	Disable power stage
3			tings and parameters to	
n12-			make sure that the val-	
3			ues entered will produce	
			a valid motion task.	
F12-	Fieldbus Sync frames	The fieldbus lost syn-	Check fieldbus con-	Controlled stop
5	lost.	chronization.	nection (X5 and X6 if you	
5 n12-	1031.			
5			are using EtherCAT; X12	
5			and X13 if you are using	
			CANopen) or the set-	
			tings of your EtherCAT	
			or CANopen master.	

Faul- ≁	Message/Warning	Cause	Remedy	Drive Response to Fault
r F12-	Bode plot too much	Too much movement	Check that the system is	Dynamic braking
6	movement.	was created during a	closed loop stable. Refer	
n12-		Bode plot. Motor is	to the system tuning	
6		unstable and is not fol-	guide.	
		lowing drive instruc-		
		tions.		
F12-	Incomplete Emergency	Incomplete emer-	Disconnect power from	Dynamic braking
7	Procedure.	gency stop procedure	drive and check emer-	
		(problem with the	gency stop procedure.	
		emergency stop		
		motion task).		
F12-	Mpoles / Fpoles not	Ratio of motor poles	Change to a compatible	Disable power stage
8	integer.	to feedback poles	feedback device.	
		must be a whole num-		
		ber.		
F12-	Fieldbus Heartbeat	Heartbeat lost.	Check CANopen	Controlled stop
9	lost.		cabling. Reduce bus	
			load or increase the heart-	
			beat update time.	
F13-	Secondary feedback	5V power supply was	Check X9 connection.	Disable power stage
0	supply over current.	shorted out on X9.		
F13-	Secondary feedback	Problem in secondary	Check secondary feed-	Disable power stage
1	A/B line break.	feedback detected.	back (X9 connection).	
F13-	Secondary feedback Z	Problem in secondary	Check secondary feed-	Disable power stage
2	line break.	feedback detected.	back (X9 connection).	
	Fault number changed			Disable power stage
F13-	to to F138. See F138			
3	for details.			
F13-	Secondary feedback	Feedback signals	Check X9 connection.	Disable power stage
4	illegal state.	were detected in an		
		illegal combination.		
F13-	Fault on FB2 is pre-	Attempt to issue	Change opmode or home	Disable power stage
5	venting remote com-	motion task before	axis.	
n13-	mutation for FB1.	the axis is homed.		
5		Axis must be homed		
		before motion task		

Faul-	Message/Warning	Cause	Remedy	Drive Response to Fault
ч F13-	Firmware and FPGA	The FPGA version	Load the FPGA version	Disable power stage
6	versions are not com-	does not match the	that is compatible with	
Ŭ	patible.	firmware FPGA ver-	the firmware.	
		sion constants.		
n12	Homing and feedback	The configured hom-	Change homing mode	None
n13- 7	mismatch	ing mode is not sup-	Change homing mode.	
'	mismatch	ported by the motor		
		. ,		
		feedback type used.		
F13-	, ,	Drive current	Change BODE.MODE if	Controlled stop
8	tune.	(IL.CMD) or velocity	appropriate. If	
		feedback (VL.FB)	BODE.MODE 5 is appro-	
		exceeds allowable	priate and the fault	
		limit (BODE.IFLIMIT	occurs at the end of an	
		or BODE.VFLIMIT).	Autotuning, then the	
		This fault only occurs	motor is not robustly	
		in BODE.MODE 5.	stable. You can manually	
		This fault often occurs	adjust Autotuner set-	
		when complex mech-	tings. Manual tuning may	
		anics, belts, and com-	be required to make the	
		pliant loads are	motor stable.	
		present.		
F13-	Target position was	The drive cannot	Change Motion task pro-	Disable power stage
9	overshot due to invalid	decelerate from its cur-	file and clear fault with	
	motion task activation.	rent speed to reach	DRV.CLRFAULTS. Or	
		the end point of the	change the value of	
		second motion task	FAULT139.ACTION = 1	
		without moving past	to ignore this condition.	
		it. Increase the decel-		
		eration rate in the		
		move or trigger the		
		move earlier.		
n14-	VBUS.HALFVOLT has	The user has changed	Save the parameters in	None
0	changed. Save the para-	-	the non-volatile memory	
	meters and reboot the	VBUS.HALFVOLT.	via a DRV.NVSAVE	
	drive.	This change only	command and turn off/on	
	-	takes effect after a	the 24[V] power supply in	
		DRV.NVSAVE com-	order to reboot the drive	
		mand and after reboot-	or restore the original stet-	
		ing the AKD PDMM.	ting of	
			VBUS.HALFVOLT.	

t n15-		Cause	Remedy	Drive Response to
n15-				Fault
	Not enough distance to	For trapezoidal and	Activation of any new	None
1	move; motion excep-	customer table motion	motion or using of	
	tion.	tasks: The target velo-	DRV.CLRFAULTS will	
		city specified in the	clear the warning. Check	
		motion task cannot be	motion task settings and	
		reached via using the	parameters to make sure	
		selected acceleration	that the values entered	
		and deceleration since	will produce a valid	
		the distance to travel	motion task.	
		is not sufficient.		
		For a 1:1 profile: The		
		selected acceleration		
		and deceleration will		
		be extended since		
		there is too much dis-		
		tance to travel and the		
		motion task would		
		exceed its maximum		
		allowed velocity.		
n15-	Not enough distance to	A new motion task	Activation of any new	None
2	move; following motion	activated, when one	motion or using of	
	exception.	motion task is already	DRV.CLRFAULTS will	
		active and the target	clear the warning. Check	
		position specified in	motion task settings and	
		the motion task para-	parameters to make sure	
		meters cannot be	that the values entered	
		reached with specified	will produce a valid	
		target velocity, accel-	motion task.	
		eration and decel-		
		eration parameters.		
		The motion task will		
		directly decelerate to		
		into the target position		
		or ramps down to velo-		
		city 0 and start		
		another move to reach		
		target position of the		
(I		next motion task.		

Faul- t	Message/Warning	Cause	Remedy	Drive Response to Fault
n15-	Velocity limit violation,	A new target velocity	Activation of any new	None
3	exceeding max limit.	calculated internally	motion or using of	
		due to an exception,	DRV.CLRFAULTS will	
		and is being limited	clear the warning. Check	
		due to user velocity	motion task target velo-	
		limit.	city settings and para-	
			meters to make sure that	
			the values entered will	
			not exceed the	
			VL.LIMITP and	
			VL.LIMITN setting.	
n15-	Following motion failed;	Activation of the fol-	Activation of any new	None
4	check motion para-	lowing motion task	motion or using of	
	meters.	failed due to incom-	DRV.CLRFAULTS will	
		patible parameters, or	clear the warning. Check	
		motion task does not	following motion task set-	
		exist.	tings and parameters to	
			make sure that the val-	
			ues entered will produce	
			a valid motion task.	
n15-	Target position crossed	The motion task	Activation of any new	None
6	due to stop command.	crosses the target pos-	motion or using of	
		ition after triggering a	DRV.CLRFAULTS will	
		DRV.STOP com-	clear the warning.	
		mand. This situation		
		can happen when pro-		
		cessing a change-on-		
		the-fly motion task		
		and triggering a		
		DRV.STOP com-		
		mand close to the tar-		
		get position of the		
		currently running		
		motion task.		

Faul- t	Message/Warning	Cause	Remedy	Drive Response to Fault
-	Homing index pulse not found.	A homing mode with index detection is activated, and index pulse is not detected while moving across the range determined by the hardware limit switches.	Activation of any new motion or using of DRV.CLRFAULTS will clear the warning.	None
n15- 8	Homing reference switch not found.	A homing mode with reference switch detection is activated and the reference switch is not detected while moving across the range determined by the hardware limit switches.	Activation of any new motion or using of DRV.CLRFAULTS will clear the warning.	None
n15- 9	Failed to set motion task parameters	Invalid motion task parameters assign- ment. This warning can appear upon an MT.SET command.	Activation of any new motion or using of DRV.CLRFAULTS will clear the warning. Check motion task settings and parameters.	None
n16- 0	Motion task activation failed.	Activation of the motion task failed due to incompatible para- meters, or motion task does not exist. This warning can appear upon an MT.MOVE command.	Activation of any new motion or using of DRV.CLRFAULTS will clear the warning. Check motion task settings and parameters to make sure that the values entered will produce a valid motion task.	None
n16- 1	Homing procedure failed.	Homing error observed during the operation of homing procedure.	Activation of any new motion or using of DRV.CLRFAULTS will clear the warning.	None

108

Faul- t	Message/Warning	Cause	Remedy	Drive Response to Fault
n16- 3	MT.NUM exceeds limit.	This warning appears with n160. This warn- ing is triggered when you try to trigger a motion task > 128 (such as MT.MOVE 130).	Trigger only motion tasks between 0 and 128. Activ- ation of any new motion or using of DRV.CLRFAULTS will clear the warning.	None
n16- 4	Motion task is not ini- tialized.	This warning appears with n160. This warn- ing is triggered when you try to trigger a non-initialized motion task.	Initialize the motion task first before starting the task. Activation of any new motion or using of DRV.CLRFAULTS will clear the warning.	None
n16- 5	Motion task target pos- ition is out.	This warning appears with n160. This warn- ing is triggered when you try to trigger a motion task with an absolute target pos- ition outside of the selected modulo range (see also MT.CNTL).	Move the absolute target position of the motion task within the modulo range.Activation of any new motion or using of DRV.CLRFAULTS will clear the warning.	None
n16- 8	Invalid bit combination in the motion task con- trol word.	This warning appears with n160. This warn- ing is triggered when you try to trigger a motion task with an invalid bit combination in the motion task con- trol word (see also MT.CNTL).	Correct the MT.CNTL setting for the specific motion task. Activation of any new motion or using of DRV.CLRFAULTS will clear the warning.	None
n16- 9	1:1 profile cannot be triggered on the fly.	This warning appears with n160. This warn- ing is triggered when you try to trigger a 1:1 profile table motion task while another motion task is cur- rently running.	1:1 profile table motion tasks should be started from velocity 0. Activ- ation of any new motion or using of DRV.CLRFAULTS will clear the warning.	None

Faul- t	Message/Warning	Cause	Remedy	Drive Response to Fault
n17-	Customer profile table	This warning appears	Change the MT.TNUM	None
0	is not initialized.	with n160. This warn-	parameter for this spe-	
		ing is triggered when	cific motion task in order	
		you try to trigger a	to use an initialized pro-	
		motion task that uses	file table. Activation of	
		a customer profile	any new motion or using	
		table for generating	of DRV.CLRFAULTS	
		the velocity profile and	will clear the warning.	
		when the selected pro-		
		file table is empty (see		
		MT.CNTL and		
		MT.TNUM.		
F20-	Internal RAM failed.	Hardware failure	Restart drive. If issue	Disable power stage
1		detected.	persists, contact tech-	
			nical support.	
F20-	External RAM failed.	Hardware failure	Restart drive. If issue	Disable power stage
2		detected.	persists, contact tech-	
			nical support.	
F20-	Code Integrity failed.	Software failure detec-	Restart drive. If issue	Disable power stage
3		ted. FPGA register	persists, contact tech-	
		access failure	nical support.	
		occurred.		
F24-	External Fault.	This fault is user gen-	Users can configure a	Disable power stage
5		erated and is caused	digital input to trigger this	
		by user settings.	fault (DINx.MODE = 10).	
			The fault occurs accord-	
			ing to this input setting.	
			Clear the input to clear	
			the fault.	
F24-	Vbus read is out of	Hardware problem in	Troubleshoot and repair	Disable power stage
7	thresholds.	bus measurement.	hardware problem.	
F24-	Option board EEPROM	EEPROM failure	Restart drive. If issue per-	Disable power stage
8	corrupted.	detected.	sists, exchange drive.	
F24-	Option board down-	Communications with	DRV.CLRFAULTS. If	Disable power stage
9	stream checksum.	the I/O on the option	issue persists If issue	
		board failed.	persists, contact tech-	
			nical support.	

F25- 0 Option board upstream checksum. Communications with the I/O on the option board failed. DRV.CLRFAULTS. If issue persists If issue persists, contact tech- nical support. Disable power stage F25- 1 Option board watch- dog. Communications with the I/O on the option board failed. DRV.CLRFAULTS. If issue persists if issue persists, contact tech- nical support. Disable power stage F25- 2 Firmware and option board FPGA types are not compatible. The option board FPGA is not com- patible with this hard- ware. Download the correct firmware file for this drive. Disable power stage F25- 3 Firmware and option board FPGA versions are not compatible. The version of the option board FPGA is not compatible with this firmware. Download the correct firmware file for this drive. Disable power stage F30- 1 Motor overheated. Motor overheated. Motor overheated. Disable power stage F30- 1 Run away. Motor did not follow command values. Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness. Controlled stop F30- 1 Motor Foldback. Maximum motor power has been limited to protect the motor Motion is requiring too move profile to reduce load amming or sticking. Check that current limits Controlled stop	Faul-	Message/Warning	Cause	Remedy	Drive Response to
0checksum.the I/O on the option board failed.issue persists I f issue persists, contact tech- nical support.F25-Option board watch- dog.Communications with the I/O on the option board failed.DRV.CLRFAULTS. If issue persists I f issue persists, contact tech- nical support.Disable power stageF25-Firmware and option board FPGA types are not compatible.The option board FPGA is not com- patible with this hard- ware.Download the correct firmware file for this drive.Disable power stageF25-Firmware and option board FPGA versions are not compatible.The version of the option board FPGA is not com- patible with this firmware.Download the correct firmware file for this drive.Disable power stageF30-Motor overheated.Motor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stageF30-Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30-Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too moutp or sticking. Check that current limitsControlled stop	t E25	Option board upstroom	Communications with		Fault
F25- 1Option board watch- dog.Communications with the I/O on the option board failed.DRV.CLRFAULTS. If issue persists if issue persists, contact tech- nical support.Disable power stageF25- 2Firmware and option to compatible.The option board PGA is not com- patible with this hard- ware.Download the correct firmware file for this drive.Disable power stageF25- 3Firmware and option are not compatible.The version of the option board PPGA is not com- patible with this firmware.Download the correct firmware file for this drive.Disable power stageF30- 1Motor overheated.Motor overheated.Motor overheated.Disable power stageF30- 3Quer speed.Motor exceeded VL.THRESH value.Check ambient tem- perature. Check motor 	1 1				Disable power stage
F25- 1Option board watch- dog.Communications with the I/O on the option board failed.DRV.CLRFAULTS. If issue persists if issue persists, contact tech- nical support.Disable power stageF25- 2Firmware and option board FPGA types are not compatible.The option board FPGA is not com- patible with this hard- ware.Download the correct firmware file for this drive.Disable power stageF25- 3Firmware and option board FPGA versions are not compatible.The version of the option board FPGA is not compatible with this firmware.Download the correct firmware file for this drive.Disable power stageF30- 1Motor overheated.Motor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stageF30- 2New systemMotor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 3Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotor is requiring too much power. Check for load on motor. Check for load jamming or sticking. Check that current limitsControlled stop		checksum.			
F25- 1 dog.Option board watch- dog.Communications with the I/O on the option board failed.DRV.CLRFAULTS. If issue persists If issue persists, contact tech- nical support.Disable power stageF25- 2 2 2 2 2 2 2 3Firmware and option board FPGA types are not compatible.The option board FPGA is not com- patible with this hard- ware.Download the correct firmware file for this drive.Disable power stageF25- 3 3Firmware and option board FPGA versions are not compatible.The version of the option board FPGA is not compatible with this firmware.Download the correct firmware file for this drive.Disable power stageF30- 1Motor overheated.Motor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stageF30- 3Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too much power. Change move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop					
1dog.the I/O on the option board failed.issue persists If issue persists, contact tech- nical support.F25- 2Firmware and option board FPGA types are not compatible.The option board FPGA is not com- patible with this hard- ware.Download the correct firmware file for this drive.Disable power stageF25- 3Firmware and option board FPGA versions are not compatible.The version of the option board FPGA is not compatible with this firmware.Download the correct firmware file for this drive.Disable power stageF30- 1Motor overheated.Motor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stageF30- 2Over speed.Motor exceeded VL.THRESH value.Increase VL.THRESH or lower velocity command.Dynamic brakingF30- 3Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotor is requiring too move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop					
F25Firmware and option board FPGA types are not compatible.The option board FPGA is not com- patible with this hard- ware.Download the correct firmware file for this drive.Disable power stageF25- 3Firmware and option board FPGA versions are not compatible.The version of the option board FPGA is not compatible.Download the correct firmware file for this drive.Disable power stageF30- 1Motor overheated.Motor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stageF30- 1Motor overheated.Motor exceeded VL.THRESH value.Increase VL.THRESH or lower values.Dynamic brakingF30- 3Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Motor Foldback.Motion is requiring too much power. Change move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop	F25-				Disable power stage
F25- 2Firmware and option board FPGA types are not compatible.The option board FPGA is not com- patible with this hard- ware.Download the correct firmware file for this drive.Disable power stageF25- 3Firmware and option board FPGA versions are not compatible.The version of the option board FPGA is not compatible with this firmware.Download the correct firmware file for this drive.Disable power stageF30- 1Motor overheated.Motor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stageF30- 1Motor overheated.Motor exceeded VL.THRESH value.Increase VL.THRESH or lower velocity command.Dynamic brakingF30- 3Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop	1	dog.	· ·		
F25- 2Firmware and option board FPGA types are not compatible.The option board FPGA is not com- patible with this hard- ware.Download the correct firmware file for this drive.Disable power stageF25- 3Firmware and option board FPGA versions are not compatible.The version of the option board FPGA is not compatible with this firmware.Download the correct firmware file for this drive.Disable power stageF30- 1Motor overheated.Motor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stageF30- 2Over speed.Motor exceeded VL. THRESH value.Increase VL. THRESH or lower velocity command.Dynamic brakingF30- 3Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotor is requiring to move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop			board failed.	1 ,	
2board FPGA types are not compatible.FPGA is not com- patible with this hard- ware.firmware file for this drive.firmware file for this drive.F25-Firmware and option board FPGA versions are not compatible.The version of the option board FPGA is not compatible with this firmware.Download the correct firmware file for this drive.Disable power stageF30- 1Motor overheated.Motor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stageF30- 2Over speed.Motor exceeded VL. THRESH value.Increase VL.THRESH or lower velocity command.Dynamic brakingF30- 3Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotor is requiring too move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop				nical support.	
not compatible.patible with this hardware.drive.F25-Firmware and option board FPGA versions are not compatible.The version of the option board FPGA is not compatible with this firmware.Download the correct firmware file for this drive.Disable power stageF30- 1Motor overheated.Motor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stageF30- 1Motor overheated.Motor exceeded VL.THRESH value.Increase VL.THRESH or lower velocity command.Dynamic brakingF30- 2Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too much power. Change move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop	F25-	Firmware and option	The option board	Download the correct	Disable power stage
F30- 1Ware.Download the correct firmware file for this drive.Disable power stage730- 1Motor overheated.Motor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stage730- 1Motor overheated.Motor exceeded VL.THRESH value.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stage730- 2Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 3Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop	2	board FPGA types are	FPGA is not com-	firmware file for this	
F25- 3Firmware and option board FPGA versions are not compatible.The version of the option board FPGA is not compatible with this firmware.Download the correct firmware file for this drive.Disable power stageF30- 1Motor overheated.Motor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stageF30- 1Over speed.Motor exceeded VL.THRESH value.Increase VL.THRESH or lower velocity command.Dynamic brakingF30- 2Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too move profile to reduce load jamming or sticking. Check that current limitsControlled stop		not compatible.	patible with this hard-	drive.	
3board FPGA versions are not compatible.option board FPGA is not compatible with this firmware.firmware file for this drive.F30- 1Motor overheated.Motor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stageF30- 1Over speed.Motor exceeded VL.THRESH value.Increase VL.THRESH or lower velocity command.Dynamic brakingF30- 2Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too much power. Change move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop			ware.		
are not compatible.not compatible with this firmware.drive.F30- 1Motor overheated.Motor overheated.Check ambient temperature. Check motor mounting heat sink cap- abilityDisable power stage1Notor speed.Motor exceeded VL. THRESH value.Increase VL.THRESH or lower velocity command.Dynamic brakingF30- 2Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop	F25-	Firmware and option	The version of the	Download the correct	Disable power stage
F30- 1Motor overheated.Motor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stage71Notor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stage730- 2Over speed.Motor exceeded VL.THRESH value.Increase VL.THRESH or lower velocity command.Dynamic braking730- 3Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stop730- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too much power. Change move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop	3	board FPGA versions	option board FPGA is	firmware file for this	
F30- 1Motor overheated.Motor overheated.Check ambient tem- perature. Check motor mounting heat sink cap- abilityDisable power stageF30- 2Over speed.Motor exceeded VL.THRESH value.Increase VL.THRESH or lower velocity command.Dynamic brakingF30- 3Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 3Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotor is requiring too move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop		are not compatible.	not compatible with	drive.	
1 n30- 1Perature. Check motor mounting heat sink cap- abilityF30- 2Over speed.Motor exceeded VL.THRESH value.Increase VL.THRESH or lower velocity command.Dynamic brakingF30- 3Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop			this firmware.		
n30- 1mounting heat sink cap- abilityF30- 2Over speed.Motor exceeded VL.THRESH value.Increase VL.THRESH or lower velocity command.Dynamic brakingF30- 3Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop	F30-	Motor overheated.	Motor overheated.	Check ambient tem-	Disable power stage
1abilityF30- 2Over speed.Motor exceeded VL.THRESH value.Increase VL.THRESH or lower velocity command.Dynamic brakingF30- 3Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop	1			perature. Check motor	
F30- 2Over speed.Motor exceeded VL.THRESH value.Increase VL.THRESH or lower velocity command.Dynamic brakingF30- 3Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too much power. Change move profile to reduce load jamming or sticking. Check that current limitsControlled stop	n30-			mounting heat sink cap-	
2VL.THRESH value.Iower velocity command.F30- 3Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too much power. Change move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop	1			ability	
F30- 3Run away.Motor did not follow command values.Current command to the motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.Controlled stopF30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop	F30-	Over speed.	Motor exceeded	Increase VL.THRESH or	Dynamic braking
3Command values.motor is too high for too long. Reduce servo gains, or reduce com- mand trajectory aggress- iveness.F30- 4 n30-Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too much power. Change move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop	2		VL.THRESH value.	lower velocity command.	
F30- 4 1000Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too much power. Change move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop	F30-	Run away.	Motor did not follow	Current command to the	Controlled stop
F30- 4 n30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too much power. Change move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop	3		command values.	motor is too high for too	
F30- 4 n30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too much power. Change move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop				long. Reduce servo	
F30- 4 n30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too much power. Change move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop				gains, or reduce com-	
F30- 4 n30- 4Motor Foldback.Maximum motor power has been exceeded; the power has been limited to protect the motorMotion is requiring too much power. Change move profile to reduce load on motor. Check for load jamming or sticking. Check that current limitsControlled stop				mand trajectory aggress-	
4 n30- 4power has been exceeded; the power has been limited to protect the motormuch power. Change move profile to reduce load on motor. Check for load jamming or sticking. Check that current limits				iveness.	
n30-exceeded; the power has been limited to protect the motormove profile to reduce load on motor. Check for load jamming or sticking. Check that current limits	F30-	Motor Foldback.	Maximum motor	Motion is requiring too	Controlled stop
4 has been limited to protect the motor load on motor. Check for load jamming or sticking. Check that current limits	4		power has been	much power. Change	
protect the motor load jamming or sticking. Check that current limits	n30-		exceeded; the power	move profile to reduce	
Check that current limits	4		has been limited to	load on motor. Check for	
			protect the motor	load jamming or sticking.	
are set correctly				Check that current limits	
				are set correctly.	

Faul-	Message/Warning	Cause	Remedy	Drive Response to Fault
F30- 5	Brake open circuit.	Motor brake open cir- cuit. Fault threshold is 200 mA.	Check cabling and gen- eral functionality. For special low current brake applications, the F305 fault can be bypassed using the setting motor.brake = 100.	Dynamic braking
F30- 6	Brake short circuit.	Motor brake short cir- cuit.	Check cabling and gen- eral functionality.	Dynamic braking
F30- 7	Brake applied during Enable-State.	Motor brake closed unexpectedly.	Check cabling and gen- eral functionality.	Dynamic braking
F30- 8	Voltage exceeds motors rating.	Drive bus voltage exceeds the motor's defined voltage rating.	Make sure that the motor fits the driving rating.	Disable power stage
n30- 9	Motor I2t load. reduce load	Motor I2t load (IL.MI2T) has exceeded the warning threshold IL.MI2TWTHRESH This warning can only be generated in the case that the motor protection mode IL.MIMODE has been set to 1.	Reduce the load of the drive by adjusting lower acceleration / decel- eration ramps.	None
F31- 2	Brake released when it should be applied.	Brake disengaged unexpectedly.	Check cabling and gen- eral functionality.	Controlled stop
F40- 1	Failed to set feedback type.	Feedback is not con- nected or wrong feed- back type selected	Check primary feedback (X10 connection).	Dynamic braking
F40- 2	Analog signal amp- litude fault.	Analog signal amp- litude is too low. Ana- log fault (resolver signal amplitude or sin/cos amplitude)	Check primary feedback (X10 connection), resolver and sine/cos encoder only.	Dynamic braking
F40- 3	EnDat communication fault.	General com- munication problem with feedback.	Check primary feedback (X10 connection), EnDat only	Dynamic braking

Faul- t	Message/Warning	Cause	Remedy	Drive Response to Fault
F40- 4	Illegal Hall state (111, 000).	Hall sensor returns invalid Hall state (111, 000); either all Hall sensors are on or off. Legal Hall states are 001, 011, 010, 110, 100, and 101. This fault can be caused by a broken connection in any one of the Hall signals.	Check the feedback wir- ing; check all feedback connectors to ensure all pins are positioned cor- rectly.	Dynamic braking
F40- 5 F40- 6	BiSS watchdog fault. BiSS multi cycle fault.	Bad communication with the feedback device.	Check primary feedback (X10 connection), Biss only.	Dynamic braking
F40- 7	BiSS sensor fault.			
F41- 7	Broken wire in primary feedback.	In primary feedback, a broken wire was detected (incremental encoder signal amp- litude).	Check feedback cable continuity.	Dynamic braking
F41- 8	Primary feedback power supply.	Power supply fault for primary feedback.	Check primary feedback (X10 connection).	Dynamic braking
F41- 9	Encoder init procedure failed.	Phase find procedure did not complete suc- cessfully.	Check encoder wiring, reduce/balance motor load prior to phase find- ing.	Disable power stage
F42- 0	FB3 Endat com- munication fault.	A communication error was detected with the EnDat 2.2 device connected to the X9 connector.	Check pinout and FB3 configuration and recon- nect feedback. If prob- lems persist, contact customer support.	Disable power stage
F42- 1	SFD resolver sensor fault.	Sensor or sensor wir- ing failure inside motor.	Try resetting the fault. If it reappears return motor for repair.	Dynamic braking
F42- 3	NV Failure Multitum Overflow.	The position saved in memory is corrupted.	Home axis or disable mul- titurn overflow. If the fault persists, send the drive for repair.	Disable power stage

Faul- t	Message/Warning	Cause	Remedy	Drive Response to Fault
F43-	Deviation from pre-	Motor did not follow	Check for increased	Controlled stop
8	dicted trajectory fault.	command values.	load, jamming or stick-	
n43-		Motor exceeded max-	ing. Is position error set	
9		imum allowed pos-	too low?	
		ition following error		
		(numeric).		
F43-	Following error mag-	Motor did not follow	Check feedback com-	Controlled stop
9	nitude fault.	command values.	mutation setup and tun-	
n43-		Motor exceeded max-	ing parameters.	
9		imum allowed pos-		
		ition following error		
		(user).		
F45-	Following error present-	Motor did not follow	Check feedback com-	Controlled stop
0	ation.	command values.	mutation setup and tun-	
		Motor exceeded max-	ing parameters.	
		imum allowed pos-		
		ition following error		
		(presentation).		
F45-	Feedback battery fault.	The external battery	Check or replace the	Dynamic braking
1		voltage is too low. The	external battery.	
n45-		F451 fault is gen-		
1		erated if the AKD		
		PDMM is not		
		powered. The n451		
		warning is generated if		
		the AKD PDMM is		
		powered. This fault		
		can be inhibited with		
		FAULT451.ACTION.		
F45-	Multiturn overflow not	Non-multiturn feed-	Connect multiturn feed-	Disable power stage
2	supported with this feed-		back to the drive or dis-	
	back.	while	able multiturn overflow.	
		FB1.PMTSAVEEN is		
		active.		

Faul- t	Message/Warning	Cause	Remedy	Drive Response to Fault
F45- 3	Tamagawa com- munication fault (timeout).	Bad communication with the feedback device. Cabling or	Check the cabling to the drive and if the problem persists then return the	Dynamic braking
F45- 4	Tamagawa com- munication fault (trans- fer incomplete).	shielding fault, or internal feedback fail- ure.	feedback to the man- ufacturer for repair.	
F45- 6	Tamagawa com- munication fault (CRC).			
F45- 7	Tamagawa com- munication fault (start timeout).			
F45- 8	Tamagawa com- munication fault (UART Overrun).			
F45- 9	Tamagawa com- munication fault (UART Framing).			
F46- 0	Tamagawa encoder fault (over speed).	This fault is generated when the shaft is rotated above a max- imum speed that can be maintained while the external battery is powered and the drive is powered off.	Reset the fault on the drive with DRV.CLRFAULTS.	Dynamic braking
F46- 1	Tamagawa encoder fault (counting Error).	When the feedback is powered on the pos- ition (within one revolu- tion) was incorrect because of a problem with the feedback device.	Reset the fault on the drive with DRV.CLRFAULTS, if the problem persists then clean the feedback code plate.	Dynamic braking
F46- 2	Tamagawa encoder fault (counting over- flow).	Multi-turn counter has overflowed.	Reset the fault on the drive with DRV.CLRFAULTS.	Dynamic braking
F46- 3	Feedback overheat fault.	The temperature of the encoder substrate exceeds overheating detection temperature during main power-on.	Reset the fault on the drive with DRV.CLRFAULTS after temperature of encoder is lowered.	Dynamic braking

Faul- t	Message/Warning	Cause	Remedy	Drive Response to Fault
F46- 4	Tamagawa encoder fault (multi-turn error).	Any bit-jump occurs in the multi-turn signal during main power-on.	Return to the origin. Reset the fault on the drive with DRV.CLRFAULTS.	Dynamic braking
F46- 5	Excessive shock detec- ted by feedback device.	 Excessive shock from an impact or vibration has caused an error in the fed- dback device. or Internal error in the feedback device mechanism, resulted in bad position data. 	 Reduce external impacts to the motor housing and shaft. Tune the control loops filters. Reduce gains, par- ticularly feed forward gains. Reduce maximum commanded accel- eration. Replace the feedback device. 	Dynamic braking
F46- 7	Feedback fault (See FB1.FAULTS for details).	The Hiperface DSL device mal- functioned.	Check FB1.FAULTS for detailed fault information.	Dynamic braking
F46- 9	FB1.ENCRES is not power of two, Remote Commutation not pos- sible.	Feedback Type 43 requires that the feed- back resolution be a power of two. Feed- back Type 43 is not supported for all feed- back resolutions.	If the remote feedback device's resolution is a power of two, enter that value in FB1.ENCRES. Otherwise, choose a feedback device with a supported resolution (power of two) and enter that value in FB1.ENCRES.	Dynami- c brak- ing
F48- 0	Field bus command velocity too high.	Fieldbus command velocity exceeds VL.LIMITP.	Lower fieldbus command trajectory, or increase the value of VL.LIMITP.	Disable power stage
F48- 1	Field bus command velocity too low.	Fieldbus command velocity exceeds VL.LIMITN.	Increase fieldbus com- mand trajectory, or decrease the value of VL.LIMITN.	Disable power stage

Faul- t	Message/Warning	Cause	Remedy	Drive Response to Fault
F48- 6	Velocity exceeds max- imum speed of emu- lated encoder.	Motor velocity exceeds the max- imum speed the emu- lated encoder output can generate.	Reduce value of DRV.EMUEPULSEWID- TH.	Controlled stop
F49- 3	Invalid commutation detected - motor accel- erating in the wrong dir- ection. Motor phase may be incorrect.	The velocity of the motor exceeded WS.CHECKV and the sign of the current was not equal to the sign of motor accel- eration or the sign of motor velocity for a period of time larger than WS.CHECKT.	 Check motor phase wiring Re-configure wake and shake (if Mode 0 or 1 is used) Re-run wake and shake to determine cor- rect commutation angle 	Dynamic braking
F50- 1 n50- 1	Bus over voltage.	Bus voltage too high. Usually, this problem is load related.	Reduce load or change motion profile. Check system regen capacity; add capacity if needed. Check mains voltage.	Disable power stage
F50- 2	Bus under voltage. Warning issued prior to fault.	Bus voltage below threshold value.	Check mains voltage.	Controlled stop
F50- 3 n50- 3	Bus capacitor over- loaded.	Single phase AC input on a drive only rated for three-phase input or excessive single-phase power load.	Check mains voltage.	Controlled stop
F51- 9	Regen short circuit.	Regen resistor short circuit.	Regen IGBT short cir- cuit. Contact technical support.	Disable power stage
F52- 1 n52- 1	Regen over power.	Too much power stored in regen res- istor.	Either get larger regen resistor or use DC bus sharing to dissipate power.	Disable power stage
F52- 3	Bus over voltage FPGA.	Bus over voltage hard fault.	Check mains voltage and check system brake capacity.	Disable power stage

Faul- t	Message/Warning	Cause	Remedy	Drive Response to Fault
F52-	Drive Foldback.	Maximum drive power	Motion requires too	Controlled stop
4		has been exceeded.	much power. Change pro-	
n52-		The power has been	file to reduce load .	
4		limited to protect the		
		drive.		
F52-	Output over current.	Current exceeds drive	Check for short or feed-	Disable power stage
5		peak.	back faults.	
F52-	Current sensor short cir-	Current sensor short	Restart drive. If issue	Disable power stage
6	cuit.	circuit.	persists, contact tech-	
			nical support.	
F52-	Iu current AD converter	Hardware failure	Restart drive. If issue	Disable power stage
7	stuck.	detected.	persists, contact tech-	
			nical support.	
F52-	Iv current AD converter	Hardware failure	Restart drive. If issue	Disable power stage
8	stuck.	detected.	persists, contact tech-	
			nical support.	
F52-	lu current offset limit	Hardware failure	Restart drive. If issue	Disable power stage
9	exceeded.	detected.	persists, contact tech-	
			nical support.	
F53-	Iv current offset limit	Hardware failure	Restart drive. If issue	Disable power stage
0	exceeded.	detected.	persists, contact tech-	
			nical support.	
F53-	Power stage fault.	Hardware failure	Restart drive. If issue	Disable power stage
1		detected.	persists, replace drive.	

Faul- t	Message/Warning	Cause	Remedy	Drive Response to Fault
F53-	Drive motor para-	Before a motor can be	Issue the command	Disable power stage
2	meters setup incom-	enabled, you must	DRV.SETUPREQLIST	
	plete.	configure a minimum	to display the list of the	
		set of parameters.	parameters that you	
		These parameters	must configure. Con-	
		have not been con-	figure these parameters	
		figured.	either manually or auto-	
			matically. You can manu-	
			ally configure these	
			parameters in three	
			ways: (1) set each para-	
			meter individually; (2)	
			use the setup wizard to	
			select the motor; or (3)	
			select the motor type	
			from the motor data base	
			in the Motor window	
			(MOTOR.AUTOSET	
			must be set to 0 (off)). If	
			you use the Motor win-	
			dow, you must first	
			select the feedback	
			type. If the motor has	
			Biss Analog, Endat, or	
			SFD feedback (feedback	
			with memory), then	
			these parameters are set	
			automatically when	
			MOTOR.AUTOSET is	
			set to 1 (on).	

F53-Failed to read motorMotor either does notTry to read param4parameters from feed- back device.have motor feedback memory, or the motoragain by clicking to able and Clear Fail button, or by issuinot programmed prop- erly so the para- meters cannot be read.Try to read param again by clicking to able and Clear Fail button, or by issuinot programmed prop- not successful, the read.	the Dis- aults ing the ΓS com- mpt is nen set
back device. memory, or the motor feedback memory is not programmed prop- erly so the para- meters cannot be not successful, the memory or the motor button, or by issuit DRV.CLRFAULT mand. If this atter	aults ing the FS com- mpt is nen set
feedback memory is not programmed prop- erly so the para- meters cannot bebutton, or by issui DRV.CLRFAULT mand. If this atter not successful, th	ing the ΓS com- mpt is nen set
not programmed prop- DRV.CLRFAULT erly so the para- mand. If this atter meters cannot be not successful, the	rS com- mpt is nen set
erly so the para- mand. If this atter meters cannot be not successful, th	mpt is nen set
meters cannot be not successful, th	nen set
read. MOTOR.AUTOS	
	ET to 0
(off) and program	the
parameters using	the
setup wizard or m	nanually
set up the parame	eters. If
the motor has mo	tor
memory (Biss And	alog,
Endat, and SFD n	motors
have motor memo	ory),
return the motor to	o have
the memory pro-	
grammed.	
F53- Power-board over-tem- The power-board tem- Reduce the load o	of the Disable power stage
5 perature fault. perature sensor indic- drive or ensure be	tter
ates more than 85 °C. cooling.	
F56- Regen near capacity, An F501 Bus Over Increase the size	of Disable power stage
0 could not prevent over Voltage has occured regen resistor to b	be able
voltage. while the Regen Res- to dissipate more	power.
istor was at or above	
75% of its dissipation	
capacity.	
n60- Modbus data rate is too Modbus controller Reduce data rate.	Disable power stage
1 high. data rate is too high.	
F60- Safe torque off. Safe torque off func- Reapply supply ve	oltage Disable power stage
2 tion has been to STO if safe to c	do so.
triggered.	

120

Faul- t	Message/Warning	Cause	Remedy	Drive Response to Fault
n60-	OPMODE incompatible	This warning is gen-	Select a different	Disable power stage
3	with CMDSOURCE	erated when the drive	DRV.OPMODE	
		is enabled and the	andDRV.CMDSOURCE	
		gearing command	combination.	
		source is selected at		
		the same time as		
		torque or velocity op-		
		mode.		
n60-	EMUEMODE incompat-	Emulated encode	Select a compatible emu-	Disable power stage
4	ible with	mode is incompatible	lated encode mode or	
	DRV.HANDWHEELS-	with the selected hand-	change handwheel	
	RC.	wheel source.	source.	
F62-	Control Board CRC	Communications with	DRV.CLRFAULTS. If	Disable
1	fault.	the Power Board	issue persists If issue	power
F62-	Power Board CRC	Failed	persists, contact tech-	stage
3	fault.		nical support.	
F62-	Power Board Watchdog			
4	fault.			
F62-	Power Board Com-			
5	munication fault.			
F62-	Power Board FPGA not			
6	configured.			
F62-	Control Board Watch-			
7	dog fault.			
F70-	-	Runtime com-	Check fieldbus con-	Controlled stop
1	r leiabas rantime.	munication fault.	nections (X11), settings,	Controlled Stop
'			and control unit.	
F 70	Fieldhue Com			Controlled stop
F70-	Fieldbus Com-	All fieldbus com-	Check fieldbus con-	Controlled stop
2 n70-	munication lost.	munication was lost.	nections (X11), settings,	
2			and control unit.	
		Motor did not stars in	Change time and makes	Dia abla nover stars
F70-	Emergency timeout	Motor did not stop in	Change timeout value,	Disable power stage
3	occurred.	the timeout defined.	change stop parameters,	
			improve tuning.	

14.2 Additional error and alarm messages AKD PDMM-M

Faults/Errors and Warnings/Alerts are displayed in the 7 segment displays of the drive:

AKD PDMM two digits	AKD PDMM-M two + one digits				
KOLLMORGEN					
	КО Вромм				
The two digits LED display indicates	The one digit LED indicates the				
the AKD PDMM messages.	PDMM messages of the AKD				
AKD PDMM fault messages are	PDMM.				
coded with "F", warnings are coded	Error messages are coded with "E",				
with "n" and are described in "Fault	alarms are coded with "A" and are				
and Warning Messages" (=> p. 1)	described in the chapter below.				

To simplify handling, the error and alarm handling process is consistent, so you can always apply the same recovery steps. When an error or alarm occurs, it is displayed to the one digit display, you can identify the error in the table below and follow the recommendations to fix the problem, clear the display, and resume machine operation.

Active errors and alarms can be cleared with the controller command *ClearCtrlErrors*, (Note: non-clearable errors will remain).

14.2.1 Errors

When an Error or Alarm occurs, always check the controller log messages. The log messages will provide more details about the failure and the history of events leading up to the failure. From the log messages, you can determine the specifics about the cause of the failure to correct the underlying problem.

NOTE More information about fault messages, remedy and clearing faults can be found in the EWV¹ online help.

Error	Description	Cause	Remedy
E01	Critical tem-	CPU temperature exceeded	Power-off. Check airflow and operating envir-
	perature	safe operating temperature	onment are within hardware specifications.
	exceeded.	limit.	Allow unit to cool before power-on.
	PDMM operation		
	is stopped, CPU		
	will be put to		
	sleep.		
E02	Out of memory.	Memory leak, memory cor-	Power-off/on. If problem is recurrent, check
	KAS runtime is	rupted, or hardware memory	release notes for firmware updates or return
	stopping.	failure.	hardware for repair.

¹Embedded Workbench Views

Error	Description	Cause	Remedy
E03	Fan failure.	CPU cooling fan was not able to operate properly.	Check temperature and monitor for High temp alarm (see A01). Return hardware for fan replacement.
E10	Firmware is cor- rupted.	Flash memory corrupted dur- ing firmware download or flash hardware failure.	Re-download firmware or boot into recovery mode, download. If the problem is recurrent, power-off/on. Check release notes for firm- ware updates. firmware, and power-off/on. If problem persists, return hardware for repair.
E11	Flash is cor- rupted, no filesys- tem is available.	At startup the filesystem could not be mounted on the flash.	Reset to factory defaults. If problem persists, return hardware for repair.
E12	Not enough flash memory avail- able.	Flash memory is full, unable to write to flash.	Clean-up the flash memory by removing log files, application programs, recipes, or other data files.
E13	Out of NVRAM space for retained vari- ables.	NVRAM is full.	Change application to reduce the amount of retained variables.
E14	Reset to Factory Defaults failed.	Flash memory could not be formatted during a Reset to Factory Defaults procedure.	Try reset to factory defaults again from power- on. If problem persists, return hardware for repair.
E15	Cannot read/write files from/to a SD card.	SD card is not plugged-in or the filesystem is corrupt and cannot be mounted.	Insert a valid SD card or re-format the SD card using Settings->SD card->Format button.
E16	Not enough space available on the SD card.	SD card is full, unable to write to the SD card.	Clean-up SD card space by deleting files or re- format the card using Settings->SD card- >Format button.
E20	Runtime plug-in, process, thread or application failed to start.	KAS runtime or application code failed to auto-start at boot.	Power-off/on. Reset to factory defaults. If problem is recurrent, check release notes for firmware updates or download firmware.
E21	Runtime plug-in, process, or thread failed to respond during operation.	KAS runtime code failed dur- ing normal operation.	Power-off/on. If problem is recurrent, check release notes for firmware updates.

Error	Description	Cause	Remedy
E22	Description Fatal error in PLC program, application stopped.	Virtual machine failed to execute an instruction.	Re-compile application, download, and re- start.
E23	CPU is over- loaded.	Either the motion engine cycle did not complete or the PLC program did not com- plete within the timeout period due to excessive CPU loading.	Stop the application or power-off/on. Reduce the sample rate, simplify the application, or reduce the application cycles and re-start the application.
E24	PLC application cannot be star- ted	 Maintenance oper- ation is in progress. Controller is in online config mode. AKD PDMM Restore failed. The IDE version of the compiled PLC code and controller runtime version do not match. 	 Check controller web-server home page for any maintenance operation in-progress. Wait for the operation to finish. Connect to the controller with the IDE and disable online config mode. Check EtherCAT network topology by using the Scan network button in the web-server's Restore tab. Cor- rect the physical topology and re- execute an AKD PDMMrestore. IDE version (only major.minor micro) should match with runtime version. To correct, install the cor- rect version of IDE or Runtime.
E30 E31	EtherCAT com- munication fail- ure during operational mode. EtherCAT com- munication fail- ure during preop	EtherCAT network operation failed due to a network com- munication error. EtherCAT network operation failed due to a network com- munication error.	Check the EtherCAT network wiring and devices state. Re-start the application. Check the EtherCAT network wiring and devices state. Re-start the application.
E32	mode. EtherCAT com- munication fail- ure during bootstrap mode.	EtherCAT network operation failed due to a network com- munication error.	Check the EtherCAT network wiring and devices state. Re-start the application.

Error	Description	Cause	Remedy
E33	EtherCAT failed	EtherCAT network ini-	Check the EtherCAT network wiring and
	to initialize into	tialization failed due to a net-	devices state. Re-start the application.
	operational	work initialization or	
	mode. communication error.		
E34	EtherCAT failed	EtherCAT network ini-	Check the EtherCAT network wiring and
	to initialize into	tialization failed due to a net-	devices state. Re-start the application.
	preop mode.	work communication error.	
E35	EtherCAT failed	EtherCAT network ini-	Check the EtherCAT network wiring and
	to initialize into	tialization failed due to a net-	devices state. Re-start the application.
	bootstrap mode.	work communication error.	
E36	EtherCAT failed	EtherCAT network discovery	Check the EtherCAT devices and wiring
	to discover the	failed due to a mismatch	order. Correct the device order wiring or re-
	expected	between the discovered and	scan the network, re-compile, and download
	devices.	expected devices.	the updated application. Re-start the applic-
			ation.
E37	EtherCAT failed	EtherCAT network ini-	Check the EtherCAT network wiring and
	to return to init	tialization failed due to a net-	devices state. Re-start the application.
	state.	work communication error.	
E50	Backup to SD	An unrecoverable error	Repeat the backup to SD card operation. If it
	card failed.	occurred during the backup	fails again, replace the SD card.
		operation.	
E51	Restore from SD	An unrecoverable error	Do NOT reboot the PDMM! Repeat the restore
	card failed	occurred during the restore	operation. If it fails again, reset the PDMM to
		operation.	factory defaults. If problem persists, return
			hardware for repair.
E52	SD Backup files	The restore operation failed	Perform a backup operation before the restore
	are missing or	due to missing, incomplete,	or use an SD card with valid backup files.
	corrupt.	or corrupt files on the SD	
		card.	
E53	AKD PDMM	The restore operation failed	Check EtherCAT network topology by using
	restore operation	due to improper or incomplete	the Scan network button in the web-server's
	failed.	AKD PDMM configuration.	Restore tab. Correct the physical topology and
			re-execute an AKD PDMM restore.

14.2.2 Alarms

Alarm	Description	Cause	Remedy
A01	High temperature	CPU temperature near the	Check airflow and operating environment
	exceeded	safe operating temperature limit.	are within hardware specifications.

Alarm	Description	Cause	Remedy
A02	Low on memory.	Memory leak or corruption.	Power-off/on. If problem is recurrent, check release notes for firmware updates or return hardware for repair.
A04	Low input voltage	+24 volt input power is +19 volts or less.	Check power supply voltage and con- nection to the PDMM.
A12	Flash memory is low on free space.	Flash memory is almost full.	Clean-up the flash memory by removing log files, application programs, recipes, or other data files. Reset to factory defaults.
A21	Recoverable pro- cess or thread failed to respond during operation.	KAS non-runtime code failed during normal operation and was automatically restarted.	If problem is recurrent, power-off/on. Check release notes for firmware updates.
A23	CPU is overloaded		Reduce the sample rate, simplify the application, or reduce the application cycles.
A30	EtherCAT missed a send frame during operation mode.	EtherCAT master was unable to send a frame for one or more cycles.	Reduce the controller CPU load.
A38	EtherCAT missed a receive frame during operation mode.	EtherCAT master did not receive a frame for one or more cycles.	Check the EtherCAT network wiring and devices.
A40	Local digital IO missed a cyclic update	Local digital IO was not updated during a cycle or the updates are no longer syn- chronous.	Reduce the sample rate, simplify the application, or reduce the application cycles.

14.3 Clearing Faults

You can clear drive faults in three ways: 1. using the <u>EWV</u>¹ toolbar; 2. using the EWV Faults screen, 3. using an external digital signal. Clearing the fault automatically disables the drive (by issuing the DRV.DIS command). After the fault is cleared, you must then enable the drive again (by issuing the DRV.EN command). Using external digital signal, clearing the fault does not automatically disable the drive. Once the fault is cleared, the drive will immediately become enabled again when no fault conditions exist.

The external digital signal method is useful when the application does not require a field bus, therefore the controller cannot issue fieldbus commands (for example, DRV.EN). The fault clearing function is simpler in this case. The controller can clear a fault condition with a single output and no fieldbus command is required. The hardware enable input is still utilized for safety. Many machines are set to disable when a fault occurs, therefore, the enable circuit is connected only after the fault clear circuit is toggled.

1. Using the EWV toolbar. Click the **Clear Fault** button to clear the fault, then click the **Enable** button to enable the drive again.

			Tools			
30	\odot	6 Ena	ble Sto	p 0 - Service 👻	0 - Torque Mode 👻	Disable & Clear Faults

- 2. Using an ASCII command. In EWV terminal screen, enter DRV.CLRFAULTS, then enter DRV.EN to enable the drive.
- 3. Using an external digital signal. First, provide a disable command to the drive, since this command is not automatically issued when the fault is cleared using an external digital signal. You must provide this disable command after the drive has disabled itself and before the clear fault command is issued in order for the clear fault command to be accepted.

Digital input mode 1 clears a fault condition. In the EWV terminal screen, enter DINx.MODE 1, with x set to the corresponding digital input number. See the Installation Manual (1 Digital Inputs (X7/X8) for digital input numbers and corresponding pin connections.

Example:

DIN2.MODE 1 sets digital input 2 (pin 9 on connector X7) to perform the clear fault function. Any free digital input shown in Table x can be set to mode 1 (Reset faults).

14.4 Parameter and Command Error Messages

Error Message	Meaning	Remedy	Occurrence
Error: Parameter or	Parameter or com-	Check the entered string for accuracy.	General.
command was not	mand string was	Consult the reference guide or enter	
found.	not recognized as	DRV.LIST in the EWV ² terminal screen to	
	a known com-	find valid parameters and commands.	
	mand.		

¹Embedded Workbench Views

²Embedded Workbench Views

F		Demode	0
Error Message	Meaning Parameter cannot	Remedy	Occurrence
Error: Not a trigger		Use a different parameter as a trigger	Recorder para-
parameter.	be used for trig-	value.	meters.
	gering the scope.		
Error: Parameter	Parameter cannot	Do not scope this parameter.	Recorder para-
not recordable.	be scoped.		meters.
Error: Wrong argu-	Argument was not	Check the entered argument for accur-	General.
ment for parameter	accepted.	acy. Consult the reference guide or enter	
or command.		DRV.LIST in the EWV terminal screen to	
		find valid parameter and command argu-	
		ments.	
Error: No argu-	Parameter or com-	Enter parameter or command again with	Commands and
ments allowed for	mand supports no	no arguments.	read-only para-
parameter or com-	arguments.		meters
mand.			
Error: Too many	Too many argu-	Enter again with fewer arguments.	All parameters
arguments for para-	ments provided for		and commands
meter or command.	this parameter or		with no or one
	command.		argument.
Error: No float	Float number was	Enter integer value instead.	All parameters
allowed.	entered, but only		and commands
	integer numbers		with integer argu-
	are allowed.		ments.
Error: Parameter or	Argument was not	Enter again with no arguments.	Commands and
command is read-	accepted because		all read-only
only.	the parameter or		parameters.
Only.	command is read-		parameters.
	only.		
Error: Parameter is		Chook reference quide or KAS IDE hele	Somo poro
	Argument was not	Check reference guide or KAS IDE help	Some para- meters that
temporarily write	accepted because	to determine if the parameter is read-only,	
protected.	the parameter is	read-write, or nonvolatile.	come from the
	currently read-		Smart Feedback
	only.		Device (SFD).
Error: Argument	Entered argument	Enter a value that is within the allowable	Commands and
greater than max-	was beyond max-	range. See reference guide or KAS IDE	read-write para-
imum value.	imum value.	help for ranges.	meters.
Error: Too many	Parameter or com-	Shorten string and enter again.	General.
characters in para-	mand string was		
meter or command.	too long.		

Error Message	Meaning	Remedy	Occurrence
Error: Argument	Entered argument	Enter value that is within the limits.	Commands and
less than minimum	was too small.		read-write para-
value.			meters.
Error: Argument is	Entered argument	Enter value that is within the limits.	Commands and
out of data range.	was not withing		read-write para-
Ū	the data range lim-		meters.
	its.		
Error: Parameter or	Use of this para-	Contact technical support to obtain pass-	Password pro-
command is pass-	meter or command	word. Enter valid password.	tected para-
word protected.	requires a pass-		meters and
	word.		commands.
Error: Wrong oper-	Requested para-	Change to valid operation mode.	
ation mode for para-	meter or command		
meter or command.	cannot be per-		
	formed in this oper-		
	ation mode.		
Error: Drive	Action can only be	Disable drive and repeat action.	
enabled. Disable	performed if drive		
drive and continue.	is disabled.		
Error: Drive dis-	Action can only be	Enable drive and repeat action.	
abled. Enable drive	performed if drive	·	
and continue.	is enabled.		
Error: Data value is	Entered data was	Provide valid data.	
invalid.	not valid.		
Error: Argument	Argument is not an	Enter a value divisible by two without	
must be an even	even number.	remainder.	
number.			
Error: Argument	Argument must be	Enter a value not divisible by two with	
must be an odd	an odd number.	remainder.	
number.			
Error: Axis is not	Axis is not homed.	Home axis and repeat action.	
homed.	Axis is not normed.	nome axis and repeat action.	
	No data ia ana	One offer the plate to be uppended and start	December corre
Error: All recorder	No data is spe-	Specify the data to be recorded and start	Recorder com-
channels empty.	cified to record.	again.	mands.
Error: Process	Required action is	Wait until action is finished and start	
already active.	already running.	again if needed.	
Error: Motor is cur-	Action can only be	Stop motion and repeat action.	Motion tasks,
rently in motion.	performed if motor		service motion,
	is not moving.		and others.

	Mooning	Domody	0000
Error Message Error: EEPROM is	Meaning EEPROM is dam-	Remedy Restart drive. If fault persists, replace the	Occurrence
bad or does not	aged.	drive and consult technical support.	
exist.	ageu.		
Error: Unknown			
board.			
Error: Fault exist-	A fault is present in	Clear the fault, disable the drive, and then	
s.Correct fault con-	the system.	enable the drive again.	
dition and then			
clear faults.			
Error: Cannot clear		Clear hardware or software enable and	
faults. Issue soft-		repeat action.	
ware or hardware			
disable first.			
Error: EEPROM is			
busy.			
Error: Invalid			
motor/feedback			
poles ratio.			
Error: Unknown	Situation should	Clear fault. If fault recurs, consult tech-	Unknown.
Fault.	not happen.	nical support.	
Error: Invalid			
motor/feedback			
poles ratio.			
Error: Invalid			
motion task para- meter.			
Error: Invalid			
motion task num-			
ber.			
Error: Invalid			
motion task velo-			
city.			
Error: Invalid			
motion task accel-			
eration or decel-			
eration.			
Error: Invalid			
motion task cus-			
tomer profile table			
number.			

Error Message	Meaning	Remedy	Occurrence
Error: Invalid	wearing	Keniedy	Occurrence
motion task fol-			
lowing number.			
Error: Function not			
available for the act-			
ive command			
source.			
Error: Invalid Bode			
plot mode for this			
function.			
Error: Invalid sine-			
sweep Bode plot			
mode.			
Error: Bode plot			
start frequency			
greater than or			
equal to end fre-			
quency.			
Error: Function not			
available while a			
controlled stop is in			
process.			
Error: Not enough			
memory available.			
Error: Function not			
available while a			
Bode-plot meas-			
urement is active.			
Error: lu/lv offset			
calculation not fin-			
ished.			
Error: Buffer over-			
flow.			
Error: Cannot save			
to EEPROM while			
inrush relay is			
closed.			
Error: Test mode is			
off.			

Error Message	Meaning	Remedy	Occurrence
Error: Cannot			
change digital input			
mode. Issue soft-			
ware or hardware			
disable first.			
Error: Internal drive			
procedure active:			
controlled stop,			
burn-in, phase find,			
or zero.			
Error: General			
motion fault.			

14.5 Unknown Fault

This fault message occurs when an undefined fault condition is encountered.

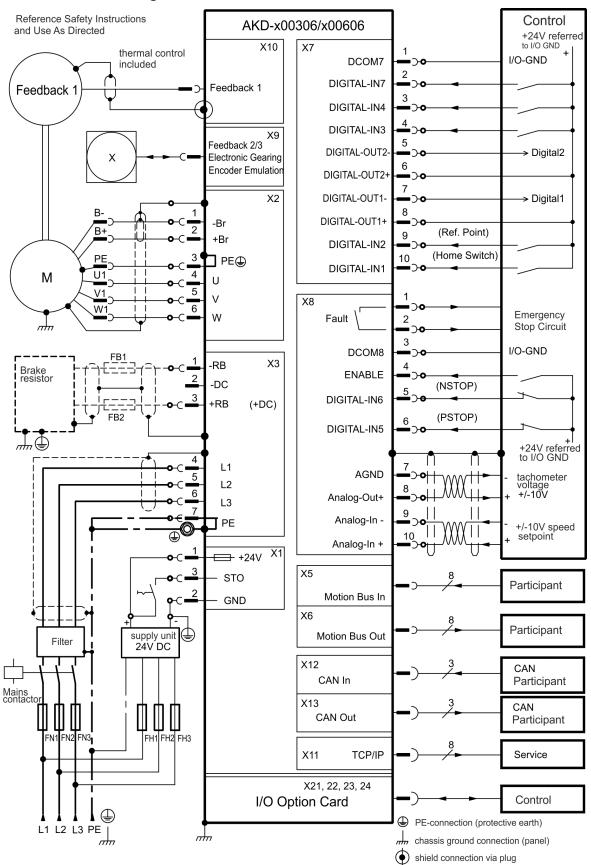
14.5.1 Remedies

1. Click Clear Fault.

15 Troubleshooting the AKD PDMM

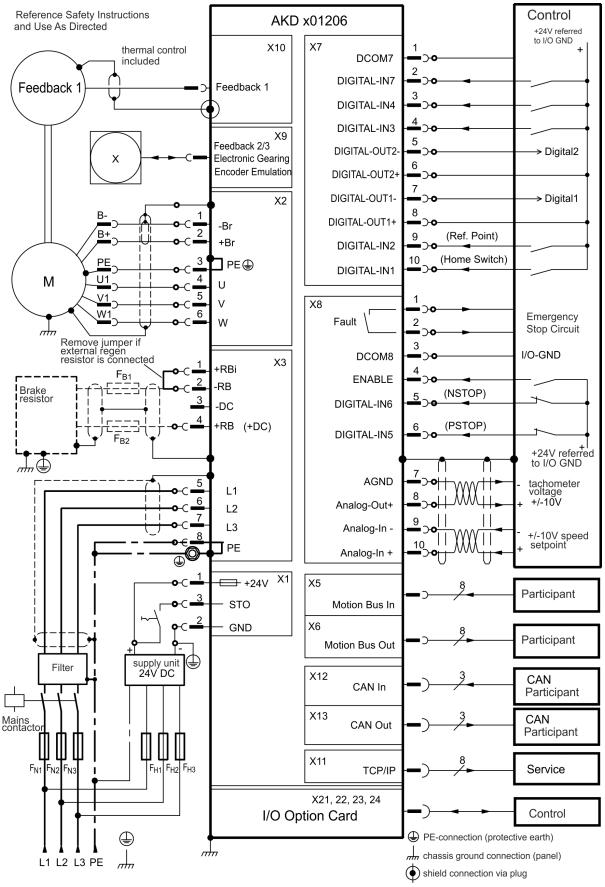
Drive problems occur for a variety of reasons, depending on the conditions in your installation. The causes of faults in multi-axis systems can be especially complex. If you cannot resolve a fault or other issue using the troubleshooting guidance presented below, customer support can give you further assistance.

Problem	Possible Causes	Remedy
HMI message:	wrong cable used, cable	plug cable into the correct
Communication fault	plugged into wrong position	sockets on the drive and PC
	on drive or PC	select correct interface
	wrong PC interface selected	
Drive does not	HW Enable not wired	connect HW Enable (X8 pin
enable	HW or SW Enable not set	4)
		Apply 24V to HW Enable
		and select SW Enable in
		<u>EWV</u> ¹ / Fieldbus
Motor does not	drive not enabled	apply ENABLE signal
rotate	 software enable not set 	set software enable
	 break in setpoint cable 	check setpoint cable
	 motor phases swapped 	correct motor phase
	 brake not released 	sequence
	drive is mechanically	check brake control
	blocked	check mechanism
	motor pole no. set incorrectly	 set motor pole no.
	feedback set up incorrectly	set up feedback correctly
Motor oscillates	gain is too high (speed con-	reduce VL.KP (speed con-
	troller)	troller)
	feedback cable shielding	replace feedback cable
	broken	 join AGND to CNC-GND
	AGND not wired up	
Drive reports	Irms or Ipeak set too low	verify motor/drive sizing
following error	current or velocity limits	verify that
	apply	IL.LIMITN/P,VL.LIMITN/P
	 accel/decel ramp is too long 	are not limiting the drive
		reduce
		DRV.ACC/DRV.DEC

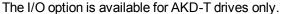

¹Embedded Workbench Views

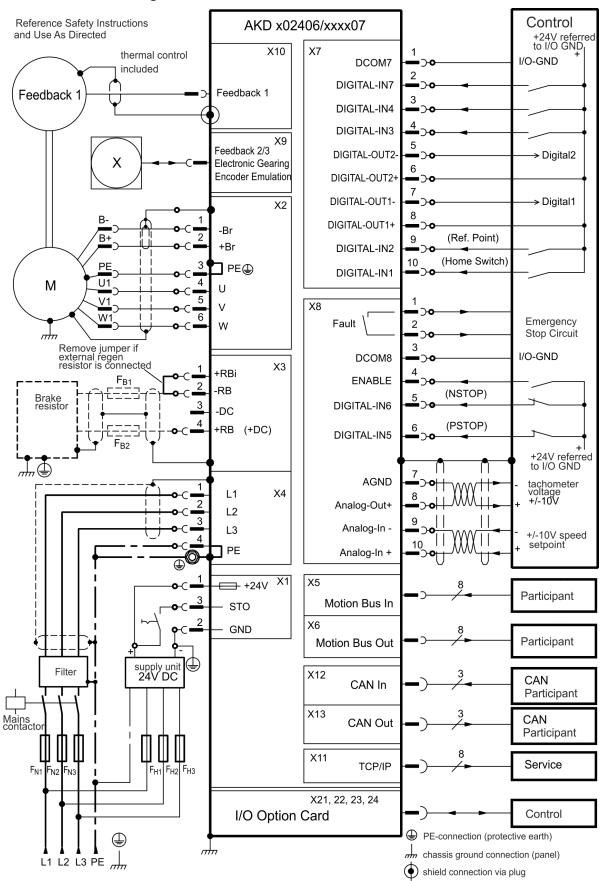
Problem	Possible Causes	Remedy
Motor overheating	 motor operating above its rat- ing motor current settings incor- rect 	 verify motor/drive sizing verify motor continuous and peak current values are set correctly
Drive too soft	 Kp (speed controller) too low Ki (speed controller) too low filters set too high 	 increase VL.KP (speed controller) increase VL.KI (speed controller) refer to documentation regarding reducing filtering (VL.AR*)
Drive runs roughly	 Kp (speed controller) too high Ki (speed controller) too high filters set too low 	 reduce VL.KP (speed controller) reduce VL.KI (speed controller) refer to documentation regarding increasing filtering (VL.AR*)
During installation, the message "Please wait while the installer finishes determining your disk space require- ments" appears and never disappears.	 MSI installer issue. Harddisk space not suf- ficient 	 Cancel the installation. Relaunch the installer (you may need to try several times, the problem is ran- dom). Make sure that you have enough disk space on your hard disk (~500MB to allow Windows .NET update if necessary), if not make some space.

16 Connection Diagrams

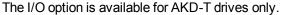

16.1	Connection diagram AKD PDMM-x00306, AKD PDMM-x00606	. 137
16.2	Connection diagram AKD PDMM-x01206	. 139
16.3	Connection diagram AKD PDMM-x02406 and AKD PDMM-xzzz07	.140
16.4	24 V auxiliary supply (X1)	.142
16.5	Motor Connection	. 143
16.6	External regen resistor (X3)	.144
16.7	DC Bus link (X3)	.146
16.8	Mains supply connection (X3, X4)	. 147
16.9	I/O Connection	.152
16.10	Analog Output (X8, X23)	. 158
16.11	Analog Input (X8, X24)	. 159
16.12	Command encoder signal connection	. 161
16.13	Pulse / Direction signal connection	. 163
16.14	Up / Down signal connection	.164
16.15	Feedback connector (X10)	. 165

AKD PDMM User Guide | 16 Connection Diagrams

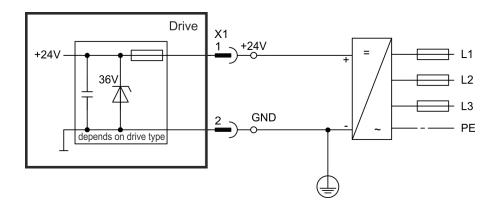



16.1 Connection diagram AKD PDMM-x00306, AKD PDMM-x00606

The I/O option is available for AKD-T drives only.



16.2 Connection diagram AKD PDMM-x01206



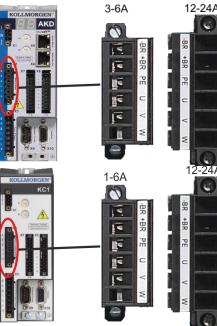
AKD PDMM User Guide | 16.3 Connection diagram AKD PDMM-x02406 and AKD PDMM-xzzz07

16.4 24 V auxiliary supply (X1)

The following diagram describes external 24 VDC power supply, electrically isolated, for example, via an isolating transformer. The required current rating depends on the use of motor brake and option card .

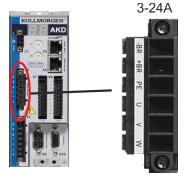
Pin	Signal	Description
	+24	+24 VDC Auxiliary voltage
) Z	GND	24V Supply GND
3	STO	STO enable (Safe Torque Off)

16.5 Motor Connection


Together with the motor supply cable and motor winding, the power output of the drive forms an oscillating circuit. Characteristics such as cable capacity, cable length, motor inductance, and frequency determine the maximum voltage in the system.

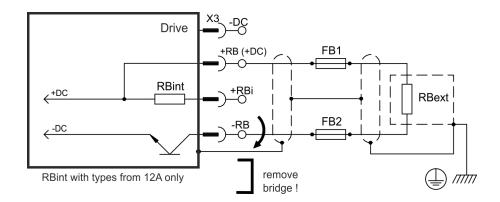
NOTICE

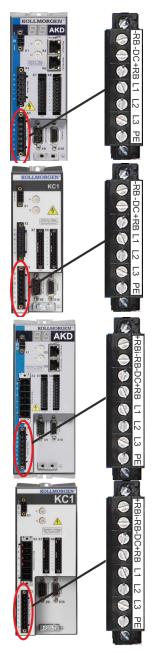
The dynamic voltage rise can lead to a reduction in the motor operating life and, on unsuitable motors, to flashovers in the motor winding.


- Only install motors with insulation class F (acc. to IEC60085) or above.
- Only install cables that meet the requirements .

Connector X2 AKD PDMM-xzzz06

A	Pin	Signal	Description
1	1	-BR	Motor holding brake, negative
	2	+BR	Motor holding brake, positive
	3	PE	Protective earth (motor hous-
-			ing)
-	4	U	Motor phase U
	5	V	Motor phase V
A	6	W	Motor phase W


Connector X2 AKD PDMM-xzzz07

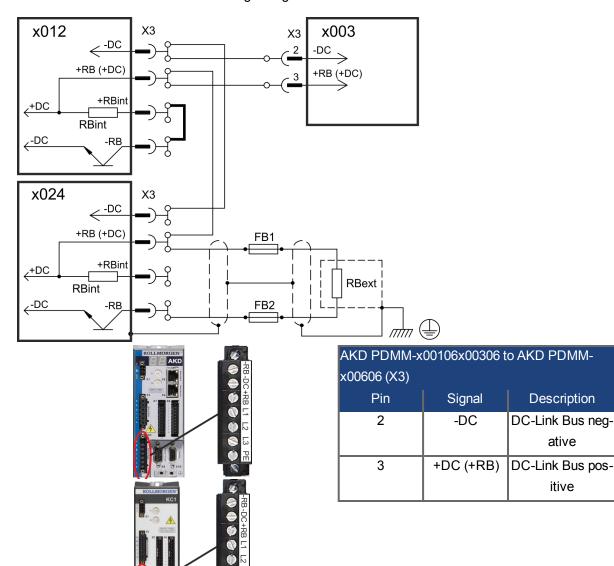


Pin	Signal	Description
1	-BR	Motor holding brake, negative
2	+BR	Motor holding brake, positive
3	PE	Protective earth (motor housing)
4	U	Motor phase U
5	V	Motor phase V
6	W	Motor phase W

16.6 External regen resistor (X3)

For technical data on the brake circuit . Fusing (such as fusible cut-outs) to be provided by the user .

AKD PDMM-x00106x00306 to AKD PDMM-x00606 (X3)			
Pin	Signal	Description	
1	-RB	External Regen Resistor negative	
3	+RB	External Regen Resistor positive	


A	AKD PDMM-x01206 (X3)			
	Pin	Signal	Description	
	1	+Rbint	Internal RegenResistor positive	
Γ	2	-RB	External RegenResistor negative	
Γ	4	+RB	External RegenResistor positive	

KOLLMORGEN	AKD PDMM-x02406 & AKD PDMM-xzzz07 (X3)				
	Pin	Signal	Description		
ž E	2	-RB	External RegenResistor		
			negative		
-DC +RB	4	+RB	External RegenResistor		
			positive		
The second secon					
KOLLMORGEN					
KC1					

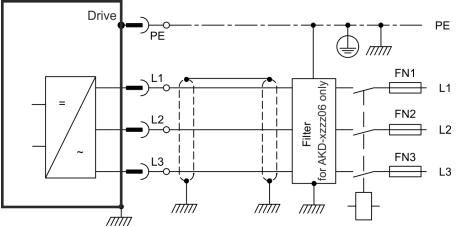
16.7 DC Bus link (X3)

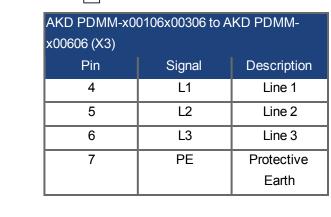
The DC bus link can be connected in parallel so that the regen power is divided between all the drives that are connected to the same DC bus link circuit. Every drive must have it's own power connection to mains voltage, even if the DC bus link is used.

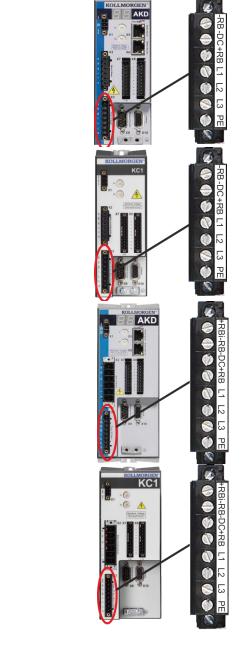
NOTICE The drive can be destroyed if DC bus link voltages are different. Only drives with mains supply from the same mains (identical mains phases and voltage) may be connected by the DC bus link. Use unshielded single cores with a maximum length of 200 mm. Use shielded cables for longer lengths.

ative

itive

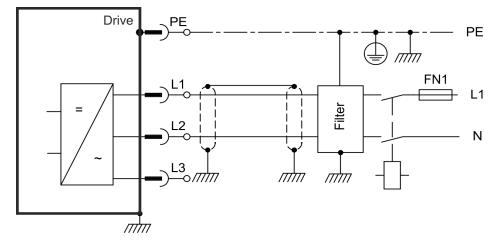

AKD PDMM-x01206 (X3)				
Pin	Pin Signal Description			
3	-DC DC-Link Bus negative			
4	4 +DC (+RB) DC-Link Bus positive			

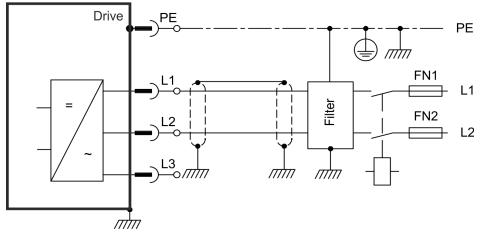

AKD PDMM-x02406 & AKD PDMM-xzzz07			
(X3)			
Pin	Signal	Description	
3	-DC	DC-Link Bus neg-	
		ative	
4	+DC (+RB)	DC-Link Bus pos-	
		itive	


16.8 Mains supply connection (X3, X4)

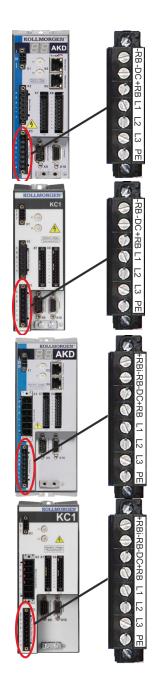
16.8.1 Three phase connection (all AKD PDMM types)

- Directly to 3-phase supply network, supply networks
- Filtering for AKD PDMM-xzzz06 to be provided by the user.
- Fusing (such as fusible cut-outs) to be provided by the user .


AKD PDMM-x01206 (X3)				
Pin	Signal Description			
5	L1	Line 1		
6	L2	2 Line 2		
7	L3	Line 3		
8	8 PE Protective Earth			

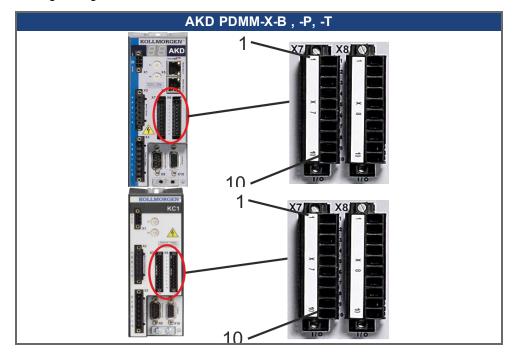


AKD PDMM-x02406 & AKD PDMM-xzzz07 (X4)				
Pin	Signal	Description		
1	L1	Line 1		
2	L2	Line 2		
3	L3	Line 3		
4	Protective			
		Earth		


16.8.2 Single phase connection (AKD PDMM-x00106x00306 to AKD PDMM-x01206 only)

- Directly to single-phase supply network (120 V_{-10%} to 240 V^{+10%}) with neutral line or Directly to two-phase supply network (120 V_{-10%} to 240 V^{+10%}) without neutral line
- Supply networks
- Leave L3 open circuit
- Filtering to be provided by the user.
- Fusing (such as fusible cut-outs) to be provided by the user

AKD PDMM User Guide | 16.8.2 Single phase connection (AKD PDMM-x00106x00306 to AKD PDMM-x01206 only)


AKD PDMM-x00106x00306 to AKD PDMM- x00606 (X3)				
Pin	Signal	Description		
4	L1	Line 1		
5	L2 (N)	Neutral or Line 2		
7	PE	Protective Earth		

AKD PDMM-x01206 (X3)				
Pin	Signal Description			
5	L1 Line 1			
6	L2 (N)	2 (N) Neutral or Line 2		
8 PE Protective Earth				

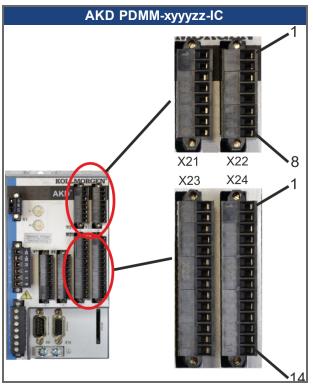
16.9 I/O Connection

16.9.1 I/O connectors X7 and X8 (all AKD PDMM variants)

Standard digital and analog I/O signals are connected to X7 and X8.

Conn.	Pin	Signal	Abbreviation	Function
X7	1	Digital Common X7	DCOM7	Common line for
				X7 pins 2, 3, 4, 9, 10
X7	2	Digital Input 7	DIGITAL-IN 7	Programmable
X7	3	Digital Input 4	DIGITAL-IN 4	Programmable
X7	4	Digital Input 3	DIGITAL-IN 3	Programmable
X7	5	Digital Output 2-	DIGITAL-OUT2-	Programmable
X7	6	Digital Output 2+	DIGITAL-OUT2+	Programmable
X7	7	Digital Output 1-	DIGITAL-OUT1-	Programmable
X7	8	Digital Output 1+	DIGITAL-OUT1+	Programmable
X7	9	Digital Input 2	DIGITAL-IN 2	Programmable,fast
X7	10	Digital Input 1	DIGITAL-IN 1	Programmable,fast
X8	1	Fault Relay Output	Fault Relay Output	Fault Relay Output
X8	2	Fault Relay Output	Fault Relay Output	Fault Relay Output
X8	3	Digital Common X8	DCOM8	Common line for
				X8 pins 4, 5, 6
X8	4	Digital Input 8	DIGITAL-IN 8	Output stage enable,
				not programmable

Conn.	Pin	Signal	Abbreviation	Function
X8	5	Digital Input 6	DIGITAL-IN 6	Programmable
X8	6	Digital Input 5	DIGITAL-IN 5	Programmable
X8	7	Analog Ground	AGND	Analog GND
X8	8	Analog Output +	Analog-Out	Actual velocity voltage
X8	9	Analog Input -	Analog-In-	Velocity set point
X8	10	Analog Input +	Analog-In+	


Digital common lines for X7 and X8 are not common to each other.

The DCOMx line should be connected to the 0V of the I/O supply when using sensors of type "Source" with digital inputs.

The DCOMx line should be connected to the 24V of the I/O supply when using sensors of type "Sink" with digital inputs.

16.9.2 I/O connectors X21, X22, X23 and X24 (AKD-T with I/O option card only)

The I/O option card offers four additional connectors X21, X22, X23, X24 for I/O signals.

Conn.	Pin	Signal	Abbreviation	Function
X21	1	Digital Input 21	DIGITAL-IN 21	Programmable
X21	2	Digital Input 22	DIGITAL-IN 22	Programmable
X21	3	Digital Input 23	DIGITAL-IN 23	Programmable
X21	4	Digital Common X21/1_3	DCOM21.1_3	Common line for X21 pins 1, 2, 3
X21	5	Digital Input 24	DIGITAL-IN 24	Programmable
X21	6	Digital Input 25	DIGITAL-IN 25	Programmable
X21	7	Digital Input 26	DIGITAL-IN 26	Programmable
X21	8	Digital Common X21/5_7	DCOM21.5_7	Common line for
				X21 pins 5, 6, 7
X22	1	Digital Input 27	DIGITAL-IN 27	Programmable
X22	2	Digital Input 28	DIGITAL-IN 28	Programmable
X22	3	Digital Input 29	DIGITAL-IN 29	Programmable
X22	4	Digital Common X22/1_3	DCOM22.1_3	Common line for
				X22 pins 1, 2, 3
X22	5	Digital Input 30	DIGITAL-IN 30	Programmable
X22	6	Digital Input 31	DIGITAL-IN 31	Programmable
X22	7	Digital Input 32	DIGITAL-IN 32	Programmable

Conn.	Pin	Signal	Abbreviation	Function
X22	8	Digital Common X22/5_7	DCOM22.5_7	Common line for X22 pins 5, 6, 7

Conn.	Pin	Signal	Abbreviation	Function
X23	1	Analog Output 2 +	Analog-Out2	Programmable
X23	2	reserved	n.c.	n.c.
X23	3	Analog Ground	AGND	Programmable
X23	4	reserved	n.c.	n.c.
X23	5	Digital Output 21+	DIGITAL-OUT 21+	Programmable
X23	6	Digital Output 21-	DIGITAL-OUT 21-	Programmable
X23	7	Digital Output 22+	DIGITAL-OUT 22+	Programmable
X23	8	Digital Output 22-	DIGITAL-OUT 22-	Programmable
X23	9	Digital Output 23+	DIGITAL-OUT 23+	Programmable
X23	10	Digital Output 23-	DIGITAL-OUT 23-	Programmable
X23	11	Digital Output 24+	DIGITAL-OUT 24+	Programmable
X23	12	Digital Output 24-	DIGITAL-OUT 24-	Programmable
X23	13	Relay Output 25	DIGITAL-OUT 25	Programmable,
				relay
X23	14	Relay Output 25	DIGITAL-OUT 25	Programmable,
				relay
	4			
X24	1	Analog Input 2+	Analog-In2+	Programmable
X24	2	Analog Input 2-	Analog-In2-	Programmable
X24	3	Analog Ground	AGND	Programmable
X24	4	reserved	n.c.	n.c.
X24	5	Digital Output 26+	DIGITAL-OUT 26+	Programmable
X24	6	Digital Output 26-	DIGITAL-OUT 26-	Programmable
X24	7	Digital Output 27+	DIGITAL-OUT 27+	Programmable
X24	8	Digital Output 27-	DIGITAL-OUT 27-	Programmable
X24	9	Digital Output 28+	DIGITAL-OUT 28+	Programmable
X24	10	Digital Output 28-	DIGITAL-OUT 28-	Programmable
X24	11	Digital Output 29+	DIGITAL-OUT 29+	Programmable
X24	12	Digital Output 29-	DIGITAL-OUT 29-	Programmable
X24	13	Relay Output 30	DIGITAL-OUT 30	Programmable,
				relay
X24	14	Relay Output 30	DIGITAL-OUT 30	Programmable,
				relay

16.9.3 I/O connectors X35 and X36 (AKD PDMM-M only)

AKD PDMM offers two additional connectors X35 and X36 for digital I/O signals.

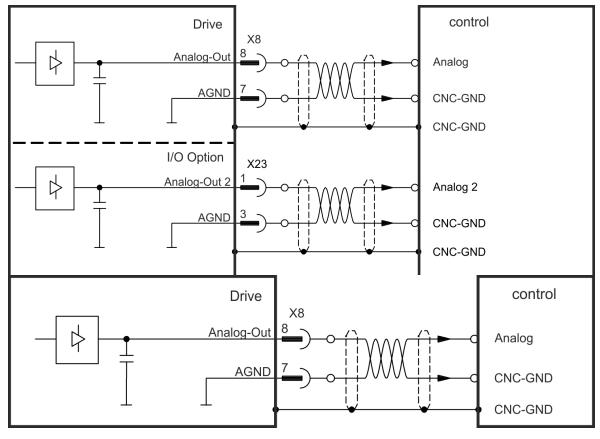
AKD PDMM-M		
KOLLMORGEN AKD PDMM	X35	X36

Conn.	Pin	Signal	Abbreviation	Function
X35	1	Digital Common X35	DCOM35	Common line for
				X35 pins 2, 3, 4
X35	2	Digital Input 21	DIGITAL-IN 21	Programmable
X35	3	Digital Input 22	DIGITAL-IN 22	Programmable
X35	4	Digital Input 23	DIGITAL-IN 23	Programmable
X35	5	n.c.	n.c.	-
X35	6	n.c.	n.c.	-
X35	7	Digital Output 21-	DIGITAL-OUT21-	Programmable
X35	8	Digital Output 21+	DIGITAL-OUT21+	Programmable
		<u> </u>		
X36	1	Digital Common X36	DCOM36	Common line for
				X36 pins 2, 3, 4
X36	2	Digital Input 24	DIGITAL-IN 24	Programmable
X36	3	Digital Input 25	DIGITAL-IN 25	Programmable
X36	4	Digital Input 26	DIGITAL-IN 26	Programmable
X36	5	n.c.	n.c.	-
X36	6	n.c.	n.c.	-
X36	7	Digital Output 22-	DIGITAL-OUT22-	Programmable
X36	8	Digital Output 22+	DIGITAL-OUT22+	Programmable

Digital common lines for X35 and X36 are not common to each other.

The DCOMx line should be connected to the 0V of the I/O supply when using sensors of type "Source" with digital inputs.

The DCOMx line should be connected to the 24V of the I/O supply when using sensors of type "Sink" with digital inputs.


16.10 Analog Output (X8, X23)

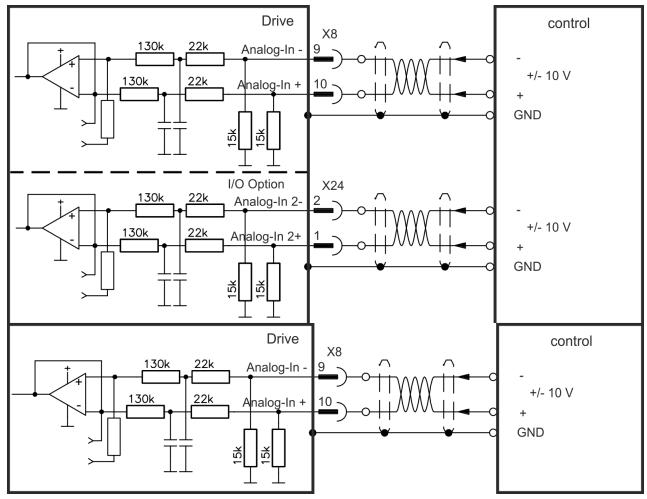
Analog Outputs can be used to output converted analog values of digital measurements recorded in the drive. The standard drive offers one analog output on X8, drives with built-in I/O option card offer a second output on X23. A list of the pre-programmed functions is included in the <u>EWV</u>¹ setup software.

Technical characteristics

- Output voltage range referring to AGND: ±10 V
- Resolution: 16 Bit and fully monotonic
- Unadjusted offset: < 50 mV
- Offset drift typ: 250 µV/°C
- Gain or slope tolerance: +/- 3%
- Nonlinearity: < 0.1% of full scale or 10 mV
- Output impedance: 110 ohms
- Specification complies with IEC 61131-2 Table 11
- -3 dB Bandwidth: >8 kHz
- Maximum output current: 20 mA
- Capacitive load: any value but response speed limited by max lout and by Rout
- Protected for short circuit to AGND

Analog Output Wiring Diagram

¹Embedded Workbench Views


16.11 Analog Input (X8, X24)

The drive is fitted with differential inputs for analog torque, velocity, or position control. The standard drive offers one analog input on X8, drives with built-in I/O option card offer a second input on X24.

Technical characteristics

- Differential input voltage range: ± 12.5 V
- Maximum input voltage referring to I/O Return: -12.5, +16.0 V
- Resolution: 16 Bit and fully monotonic
- Unadjusted offset: < 50 mV
- Offset drift typ: 250 µV / °C
- Gain or slope tolerance: +/- 3%
- Nonlinearity: < 0.1% of full scale or 12.5 mV
- Common Mode Rejection Ratio: > 30 dB at 60 Hz
- Input impedance: > 13k Ohms
- Signal to noise ratio referred to full scale:
 - AIN.CUTOFF = 3000 Hz: 14 bit
 - AIN.CUTOFF = 800 Hz: 16 bit

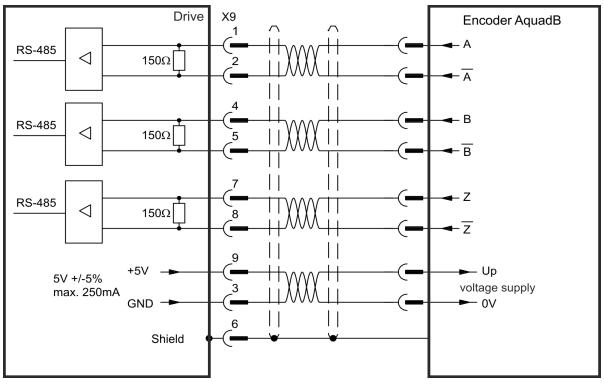
Analog Input Wiring Diagram

Application examples for set point input Analog-In:

- reduced-sensitivity input for setting-up/jog operation
- pre-control/override

Defining the direction of rotation

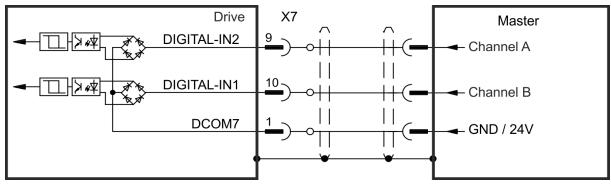
Standard setting: clockwise rotation of the motor shaft (looking at the shaft end) affected by positive voltage between terminal (+) and terminal (-)


To reverse the direction of rotation, swap the connections to terminals +/-, or change the DRV.DIR parameter in the "Feedback 1" screen page.

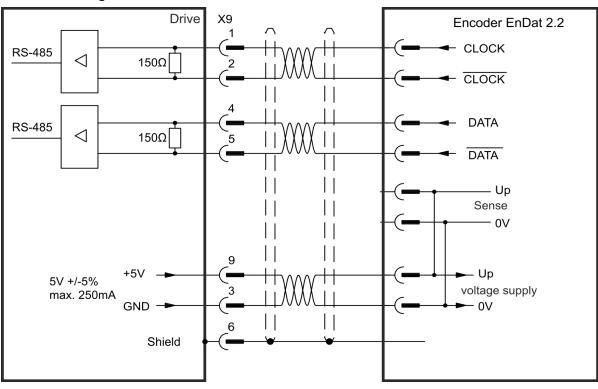
16.12 Command encoder signal connection

16.12.1 Incremental encoder input 5 V (X9)

A 5 V A quad B encoder, or the encoder emulation output of another drive can be connected to this input and used as a commander encoder, dual loop feedback, gearing or camming input. Don't use for primary motor feedback connection!

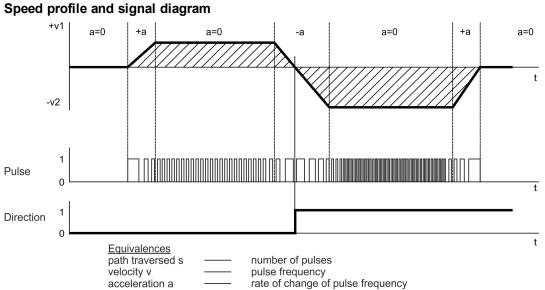

Connection Diagram

16.12.2 Incremental encoder input 24 V (X7)

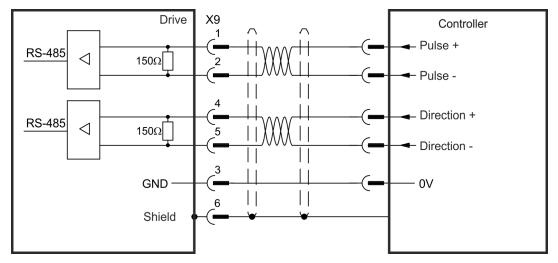

A 24 V A quad B encoder can be connected to the digital inputs 1 and 2 and used as a commander encoder, dual loop feedback, gearing or camming input. Don't use for primary motor feedback connection!

Connection Diagram

16.12.3 Encoder with EnDat 2.2 input 5 V (X9)

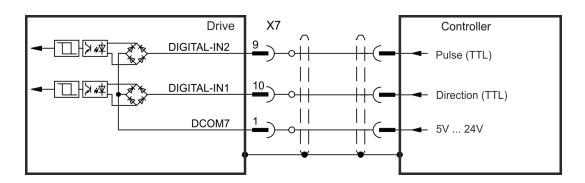

A single-turn or multi-turn encoder with EnDat 2.2 can be connected to this input and used as a commander encoder, dual loop feedback, gearing or camming input. Don't use for primary motor feedback connection!

Connection Diagram


16.13 Pulse / Direction signal connection

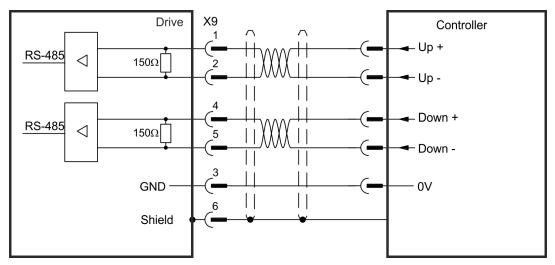
The drive can be connected to a stepper-motor controller. Set parameters for the drive with \underline{EWV}^1 . The number of pulses can be adjusted, so that the drive can be adapted to match any stepper controller.

16.13.1 Pulse / Direction input 5 V (X9)

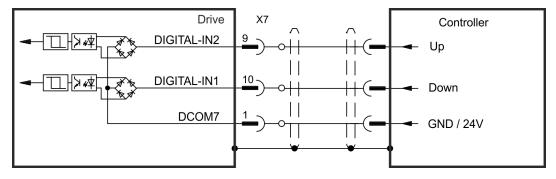

Connection to 5 V signal level stepper-motor controllers.

16.13.2 Pulse / Direction Input 5V (X7)

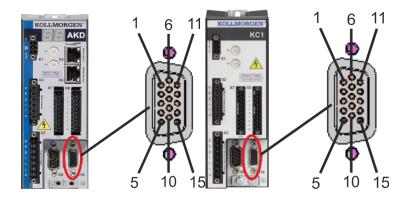
Connection industry standard 5V logic stepper-motor controllers with Pulse/Direction or Step/Direction outputs. Note that the X7 opto inputs can work with 5V up to 24V logic and so these inputs can be driven by 24V logic inputs as well.


¹Embedded Workbench Views

16.14 Up / Down signal connection


16.14.1 Up / Down input 5 V (X9)

The drive can be connected to a third-party controller which delivers 5 V up-down signals



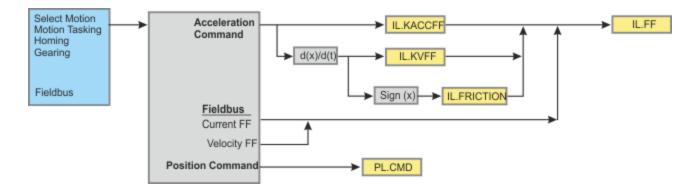
16.14.2 Up / Down input 24 V (X7)

The drive can be connected to a third-party controller which delivers 24 V up-down signals.

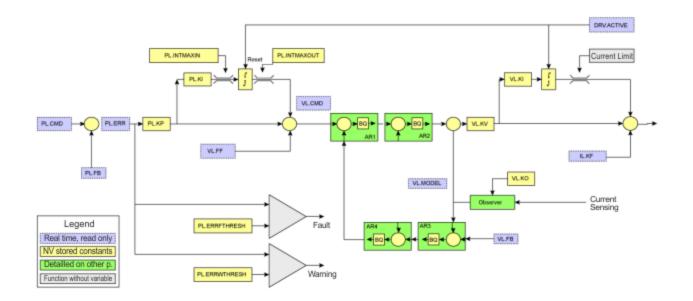
16.15 Feedback connector (X10)

PIN	SFD	DSL	Resolver	BiSS A (analog)		EnDAT 2.1	EnDAT 2.2	Hiper- face	Sine Enc. +Hall	Tama- gawa Smart Abs	Incr. Enc. +Hall
1	-	-	-	-	-	-	-	-	Hall U	-	Hall U
2	-	-	-	CLK+	CLK+	CLK+	CLK+	-	Hall V	-	Hall V
3	-	-	-	CLK-	CLK-	CLK-	CLK-	-	Hall W	-	Hall W
4	SEN+	-	-	SEN+	SEN+	SEN+	SEN+	SEN+	SEN+	SEN+	SEN+
5	SEN-	-	-	SEN-	SEN-	SEN-	SEN-	SEN-	SEN-	SEN-	SEN-
6	COM+	COM+	R1 Ref+	DAT+	DAT+	DAT+	DAT+	DAT+	Zero+	SD+	Zero+
7	COM-	COM-	R2 Ref-	DAT-	DAT-	DAT-	DAT-	DAT-	Zero-	SD-	Zero-
8	-	-		Thermal control (PTC)							
9	-	-		Thermal control (PTC, GND)							
10	+5 V	+5 V	-	+5 V	+5 V	+5 V	+5 V	+8 to +9 V	+5 V	+5 V	+5 V
11	0 V	0 V	-	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V
12	-	-	S1 SIN+	A+	-	A+	-	SIN+	A+	-	A+
13	-	-	S3 SIN-	A-	-	A-	-	SIN-	A-	-	A-
14	-	-	S2 COS+	B+	-	B+	-	COS+	B+	-	B+
15	-	-	S4 COS-	B-	-	B-	-	COS-	B-	-	B-

CLK = CLOCK, DAT = DATA, SEN = SENSE


Pin	SFD	Incremental Encoder
		+Hall
1	-	Hall U
2	-	Hall V
3	-	Hall W
4	SENSE+	SENSE+
5	SENSE-	SENSE-

Pin	SFD	Incremental Encoder +Hall
6	COM+	Zero+
7	COM-	Zero-
8	-	Thermal control (PTC)
9	-	Thermal control (PTC)
10	+5 V	+5 V
11	0 V	0 V
12	-	A+
13	-	A-
14	-	B+
15	-	B-


17 Block Diagrams

17.1	Block Diagram for Current Loop	168
17.2	Block Diagram for Position/Velocity Loop	.168

17.1 Block Diagram for Current Loop

17.2 Block Diagram for Position/Velocity Loop

18 AKD PDMM Firmware

18.1 Check AKD PDMM Drive Firmware

To check AKD PDMM Firmware with KAS IDE:

- 1. Create a new project
- 2. Set the controller type and IP address
- In the Project Explorer, double-click the EtherCAT node to open the EtherCAT Devices summary window
- 4. In the Devices tab, click the Scan Devices button
- 5. Choose the Create... option to map the physical device to a new device
- 6. If the version is not correct, continue following with the procedure below
- 7. Compile the project
- 8. Connect to the controller
- 9. Download the project to the controller
- 10. If the version is not correct, download the new firmware (<u>click here</u>) and follow with the next procedure.

18.2 Download AKD PDMM Drive Firmware

Component	Download
AKD PDMM Drive FW - Version: AKD-M-MCEC-V01-06-00-003.i00	4 MB

To upgrade AKD PDMM Firmware with KAS IDE, continue from the previous procedure as follows:

- 1. In the EtherCAT Devices summary window, deactivate the Online Configuration Mode
- Select the drives to be updated with the same firmware (Note that the FW download is limited to 16 drives at a time)
- 3. Click Upgrade Firmware button

WARNING Give careful attention to any warning dialog that appears at this point. These warnings usually include important information about preventing damage to the drives.

- 4. Browse to select the new AKD firmware file
- 5. Click Open to start the updating procedure

18.3 AKD PDMM Firmware Update

Based on the FoE protocol, the AKD PDMM Firmware can be downloaded as follows:

- 1. Scan the devices and make sure all devices are created
- 2. Compile the project

- 3. Connect to the controller
- 4. Download the project to the controller
- 5. Open the EtherCAT Devices summary form
- 6. Select the drives to be updated with the same firmware
- 7. Click the Upgrade Firmware button

WARNING Give careful attention to any warning dialog that appears at this point. These warnings usually include important information about preventing damage to the drives.

- 8. Browse to select the new AKD firmware file
- 9. Click **Open** to start the updating procedure

This procedure is not possible when applications are running and when the drive is in Online Configuration Mode.

During the firmware download, the AKD Firmware Update window displays a progress bar and the following messages are displayed:

- Uploading firmware to the drive
 During the download process, the drive LED displays [dL]. Additional codes may appear during the download; see 3.2 Display Codes for a description of codes related to the firmware download.
- Resetting the drive
- Firmware update is complete
- While the firmware is downloading to your drive, do not remove the 24V logic power. If you remove the 24V logic power during a firmware download, a severe drive crash can occur. If a crash occurs, the drive will restart in a special mode and prompt you to reload the firmware.

NOTE

19 About the Parameter and Command Reference Guide

This reference guide provides descriptive information about each parameter and command used in the drive firmware. Parameters and commands are used to configure the drive or to return status information from the drive using the \underline{EWV}^1 terminal screen. The use of these parameters and commands to perform various drive functions is detailed in related sections of the AKD PDMM User Guide.

Drive parameter and command categories include the following:

BODE Parameters (pg 203)	GUI Parameters (pg 340)	REGEN Parameters (pg 431)
CS Parameters (pg 218)	HWLS Parameters (pg 346)	S3 Parameters (pg 437)
DIN Parameters (pg 223)	IL Parameters (pg 348)	SM Parameters (pg 443)
DOUT Parameters (pg 235)	LOAD-Parameter (pg 377)	STO Parameters (pg 451)
DRV Parameters (pg 244)	MOTOR Parameters (pg 379)	STRING Parameters
EIP Parameters (pg 292)	NSD Parameters	SWLS Parameters (pg 453)
FB1 Parameters (pg 297)	PL Parameters (pg 404)	USER Parameters (pg 459)
FB3 Parameters (pg 325)	REC Parameters (pg 417)	TEMP Parameters (pg 457)
FBUS Parameters (pg 330)		VBUS Parameters (pg 461)

VL Parameters (pg 467)

A summary table of information for all parameters and commands is also available:

Summary of Parameters and Commands

For each parameter or command, this reference guide presents the following tables of information, followed by a description of the command, examples, and links to related information in the User Guide, as appropriate.

General Infor	eneral Information			
Туре	One of four types:			
	Command: Action or W/O command.			
	NV Parameter: R/W and stored in nonvolatile (NV) memory			
	R/W Parameter: Can be either read from or written to the drive.			
	R/O Parameter. Can only be read from the drive			
Description	Brief description of the parameter or command and notes if the parameter or command is not active in all opmodes.			
Units	Appropriate units			
Range	Permissible range; multiple ranges are sometimes present.			
Default Value	Determined at setup process time or motor ID; otherwise set to 0.010.			
Data Type	Integer, Boolean, Float, or String			

¹Embedded Workbench Views

General Information				
See Also	so Links to related information such as other parameters, block diagrams, schematics, or other sections of the product manual.			
Start Ver- sion				
Fieldbus		Index/Subindex	Object Start Ver- sion	
Fieldbus typ such as Ethe CAT COE ar CANopen .	er-	Index/subindex values for the parameter or command. The index value may be linked to the Object Dictionary for each fieldbus, if the object dictionary contains more detailed information about the object.	The minimum firm- ware version num- ber required to use the fieldbus.	

Additional data types may include the following:

Туре	Description
Error	Illegal type=0
b	Boolean
U8	8 x unsigned numbers
S8	8 x signed numbers
U16	16 x unsigned numbers
S16	16 x signed numbers
U32	32 x unsigned numbers
S32	32 x signed numbers
U64	64 x unsigned numbers
S64	64 x signed numbers

19.1 Parameter and Command Naming Conventions

Abbreviation	Term
ACC	Acceleration
APP	Apply
CLR	Clear
CS	Controlled Stop
I	Current
D	Current d-component
DEC	Deceleration
DIR	Direction
DIS	Disable
DIST	Distance
EMUE	Emulated encoder
EN	Enable
ERR	Error

Abbreviation	Term		
F	Fault		
FB	Feedback		
FF	Feedforward		
К	Gain		
INT	Integrator		
LIM	Limit		
L	Loop		
MAX	Maximum		
MIN	Minimum		
Ν	Negative		
NV	Nonvolatile		
Р	Position, Proportional, Pos-		
	itive		
RLS	Release		
R	Resistance		
STATE	Status, State, Stat		
THRESH	Threshold		
Т	Time		
TMAX	Timeout		
U	User		
V	Velocity, Volt		
W	Warning		

19.2 Summary of Parameters and Commands

This table contains an alphabetical list of parameters and commands, with a brief description for each. The parameter name and description are linked to the parameter tables. Generally speaking, all parameters and commands are active in all opmodes, with the following exceptions:

Parameter or Command	Active in Opmodes
GEAR (all parameters and commands)	2 (position) only
HOME (all parameters and com- mands)	2 (position) only
MT (all parameters and commands)	2 (position) only
SM.I1, SM.I2	0 (torque) only
SM.V1, SM.V2	1 (velocity) only
SM.VPM1, SM.VPM2	2 (position) only
VL (all parameters and commands)	1 (velocity) and 2 (position) only

Parameter or Command	Туре	Description
Analog Input (AIN)		
AIN.CUTOFF	NV	Sets the analog input low-pass filter cutoff frequency.
AIN.DEADBAND	NV	Sets the analog input signal deadband.
AIN.DEADBANDMODE	NV	Sets the analog input deadband mode.
AIN.ISCALE	NV	Sets the analog current scale factor.
AIN.MODE (Password Pro-	NV	Analog input mode.
tected)		
AIN.OFFSET	NV	Sets the analog input offset.
AIN.PSCALE	NV	Sets the analog position scale factor.
AIN.VALUE	R/O	Reads the value of the analog input signal.
AIN.VSCALE	NV	Sets analog velocity scale factor.
AIN.ZERO	Command	Zeroes the analog input signal.
Analog Input 2 (AIN2)		
AIN2.DEADBAND (pg 1)	NV	Sets the analog input 2 signal deadband.
AIN2.DEADBANDMODE	NV	Sets the analog input 2 deadband mode.
AIN2.MODE	NV	Analog input 2 mode.
AIN2.OFFSET	NV	Sets the analog input 2 offset.
AIN2.VALUE	R/O	Reads the value of the analog input 2 signal.
AIN2.ZERO	Command	Zeroes the analog input 2 signal.
Analog Output (AOUT)		
AOUT.CUTOFF (pg 192)	NV	Sets the analog output low-pass filter cutoff frequency.
AOUT.ISCALE (pg 192)	NV	Sets the analog current scale factor.
AOUT.MODE (pg 193)	NV	Sets the analog output mode.
AOUT.OFFSET (pg 194)	NV	Sets the analog output offset.
AOUT.PSCALE (pg 195)	NV	Sets the analog position scale factor.
AOUT.VALUE (pg 196)	NV	Reads the analog output value.
AOUT.VALUEU (pg 196)	R/W	Sets the analog output value.
AOUT.VSCALE (pg 197)	NV	Sets the velocity scale factor for analog output.
Analog Output 2 (AOUT2)		
AOUT2.CUTOFF (pg 200)	NV	Sets the analog output 2 low-pass filter cutoff frequency.
AOUT2.MODE (pg 200)	NV	Sets the analog output 2 mode.
AOUT2.OFFSET (pg 201)	NV	Sets the analog output 2 offset.
AOUT2.VALUE (pg 201)	NV	Reads the analog output 2 value.
AOUT.VALUEU (pg 202)	R/W	Sets the analog output 2 value.
Bode plot (BODE)		
BODE.EXCITEGAP (pg 204)	R/W	Controls how often the excitation is updated.
BODE.FREQ (pg 204)	R/W	Sets the frequency of the sine excitation source.

Parameter or Command	Туре	Description
BODE.IAMP (pg 205)	R/W	Sets current command value used during the Bode pro-
		cedure.
BODE.IFLIMIT (pg 206)	R/W	Sets the current fault duration limit in seconds for the
		BODE.MODE 5 stability test.
BODE.IFTHRESH (pg 207)	R/W	Sets the current fault threshold for the BODE.MODE 5 sta-
		bility test.
BODE.INJECTPOINT (pg	R/W	Sets whether the excitation uses current or velocity excit-
208)		ation type.
BODE.MODE (pg 208)	R/W	Sets the mode of the excitation.
BODE.MODETIMER (pg 211)	R/W	Sets the watchdog timer of the excitation.
BODE.PRBDEPTH (pg 213)	R/W	Sets the length of the PRB signal before it repeats.
BODE.VAMP (pg 214)	R/W	Sets the amplitude of the excitation when in velocity
		mode.
BODE.VFLIMIT (pg 215)	R/W	Sets the velocity fault duration limit (seconds) for the
		BODE.MODE 5 stability test
BODE.VFTHRESH (pg 216)	R/W	Sets the current fault threshold for the BODE.MODE 5 sta-
		bility test.
Capture (CAP)		
CAP0.EDGE, CAP1.EDGE	NV	Selects the capture edge.
CAP0.EN, CAP1.EN	NV	Enables or disables the related capture engine.
CAP0.EVENT, CAP1.EVENT	NV	Controls the precondition logic.
CAP0.SOURCE,	NV	Selects the source of the captured value.
CAP1.SOURCE on pg. 1		
CAP0.FBSOURCE,	R/W	Controls the precondition logic.
CAP1.FBSOURCE		
CAP0.MODE, CAP1.MODE	NV	Selects the captured value.
CAP0.PLFB, CAP1.PLFB	R/O	Reads captured position value.
CAP0.PREEDGE,	NV	Selects the capture precondition edge.
CAP1.PREEDGE		
CAP0.PREFILTER,	NV	Sets the filter for the precondition input source.
CAP1.PREFILTER		
CAP0.PRESELECT,	NV	Sets the precondition trigger.
CAP1.PRESELECT		
CAP0.STATE, CAP1.STATE	R/O	Indicates whether or not trigger source was captured.
CAP0.T, CAP1.T	R/O	Reads time capture (if time capture was configured).
CAP0.TRIGGER,	NV	Specifies the trigger source for the position capture.
CAP1.TRIGGER		
Controlled Stop (CS)		

	-	
Parameter or Command	Туре	Description
CS.DEC (pg 219)	NV	Sets the deceleration value for the controlled stop pro-
		Cess.
CS.STATE (pg 220)	NV	Returns the internal status of the controlled stop process.
CS.TO (pg 220)	NV	Sets the time value for the drive velocity to be within
		CS.VTHRESH (pg 221).
CS.VTHRESH (pg 221)	NV	Sets the velocity threshold for the controlled stop.
Digital Input (DIN)		
DIN.HCMD1 TO DIN.HCMD4	NV	A buffer of commands to be used in digital input "command
(pg 224)		buffer" mode.
DIN.LCMD1 to DIN.LCMD4	NV	A buffer of commands to be used in digital input "command
(pg 224)		buffer" mode.
DIN.ROTARY (PG 225)	R/O	Reads the rotary knob value.
DIN.STATES (PG 226)	R/O	Reads the digital input states.
DIN1.FILTER TO	R/W	Filter mode for digital inputs 1 to 7.
DIN7.FILTER (pg 227)		
DIN1.INV TO DIN7.INV	R/W	Inverting the output voltage of the IO, when in the output
		direction.
DIN1.MODE TO	NV	Sets the digital input modes.
DIN24.MODE (pg 229)		
DIN1.PARAM TO	R/W	Sets a value used as an extra parameter for digital inputs
DIN7.PARAM (pg 230)		nodes.
DIN1.STATE TO	R/O	Reads a specific digital input state.
DIN7.STATE (pg 232)		
DIN21.FILTER to	R/W	Filter mode for digital inputs 21 to 32.
DIN32.FILTER (pg 233)		
DIN21.STATE to	R/O	Reads a specific digital input state.
DIN32.STATE (pg 234)		
DIO		
DIO9.INV to DIO11.INV	NV	Inverting the output voltage of the IO, when in the output dir-
		ection.
DIO9.DIR to DIO11.DIR	NV	Changing direction of the IOs from the X9 connector.
Digital Output (DOUT)		
DOUT.CTRL (PG 236)	NV	Sets the source of digital outputs (firmware or fieldbus).
DOUT.RELAYMODE (pg 236)	R/W	Indicates faults relay mode.
DOUT.STATES (PG 237)	R/O	Reads the state of the two digital outputs.
DOUT1.MODE to		- ·
	NV	Sets the digital output mode.
DOUT21.MODE (pg 237)	N IN 7	
DOUT1.PARAM AND	NV	Sets extra parameters for the digital outputs.
DOUT2.PARAM (pg 239)		

	Turne	Description
Parameter or Command	Туре	Description
DOUT1.STATE AND	R/O	Reads the digital output state.
DOUT2.STATE (pg 240)		
DOUT1.STATEU AND	R/W	Sets the state of the digital output node.
DOUT2.STATEU (pg 240)		
DOUT21.STATE to	R/O	Reads the digital output state.
DOUT32.STATE (pg 242)		
DOUT21.STATEU to	R/W	Sets the state of the digital output node.
DOUT32.STATEU (pg 243)		
Drive (DRV)		
DRV.ACC (PG 246)	NV	Describes the acceleration ramp for the velocity loop.
DRV.ACTIVE (PG 247)	R/O	Reads the enable status of an axis.
DRV.BLINKDISPLAY (PG	Command	Causes the display to blink for 10 seconds.
248)	Communia	
DRV.BOOTTIME (pg 248)	R/O	Returns the time when the current session booted up.
DRV.CLRFAULTHIST (PG	Command	Clears the fault history log in the NV.
249)		
DRV.CLRFAULTS (PG 249)	Command	Tries to clear all active faults in the drive.
DRV.CMDDELAY (pg 250)	R/W	Issues a delay before next command is executed.
DRV.CMDSOURCE (PG	NV	Sets the command source (service, fieldbus, analog input,
250)		gearing, digital, or Bode).
DRV.CRASHDUMP (pg 251)	Command	Retrieves diagnostic information after the drive crashes.
DRV.DBILIMIT (pg 252)	NV	Sets the maximum amplitude of the current for dynamic
		braking.
DRV.DEC (PG 253)	NV	Sets the deceleration value for the velocity loop.
DRV.DIFVAR (pg 254)	R/O	Lists all parameters which differ from their default value.
DRV.DIR (pg 254)	R/W	Changes drive direction.
DRV.DIS (PG 256)	Command	Disables the axis (software).
DRV.DISMODE (pg 256)	NV	Selects among disable immediately or stop and then dis-
		able options.
DRV.DISSOURCES (PG	R/O	Returns the possible reason for a drive disable.
258)	100	
,	P/O	Potume a hitman of all hits in DDV/ DISSOUDCES that
DRV.DISSOURCESMASK	R/O	Returns a bitmap of all bits in DRV.DISSOURCES that
(pg 258)		can be set to one on a given drive.
DRV.DISTO (pg 259)	R/W	Sets the emergency timeout
DRV.DOWNLOADALLOWED	R/O	Returns whether the drive is in a safe state to begin a firm-
(pg 260)		ware download.
DRV.EMUEDIR (pg 261)	R/W	Sets the direction of the emulated encoder output (EEO)
		signal.

Devenue of an Command	Turno	Description
Parameter or Command	Type R/W	Description Sets the mode of the emulated encoder output (EEO) con-
DRV.EMUEMODE (pg 262)		nector.
DRV.EMUEMTURN (pg 263)	R/W	Defines the location of the index pulse on the EEO (emu-
		lated encoder output) when DRV.EMUEMODE=2.
DRV.EMUEPULSEWIDTH		
(pg 264)		Sets the encoder output pulse width for modes 6 to 7.
		Sets the resolution of the $\Gamma\GammaO$ (ampleted encoder output)
DRV.EMUERES (pg 265)	R/W	Sets the resolution of the EEO (emulated encoder output).
DRV.EMUEZOFFSET (pg	R/W	Sets the location of the EEO (emulated encoder output)
266)		index pulse (when DRV.EMUEMODE=1).
DRV.EN (PG 267)	Command	Enables the axis (software).
DRV.ENDEFAULT (pg 267)	R/W	Sets the default state of the software enable.
DRV.ERRORLIST (pg 268)	R/O	Prints a list of all possible error codes and error text.
DRV.FAULTHIST (PG 268)	R/O	Reads the last 50 faults from NV memory.
DRV.FAULTS (PG 270)	R/O	Reads the active faults.
DRV.FAULT1 to	R/O	Location of fault codes for any active fault conditions.
DRV.FAULT10 (pg 269)		
DRV.HANDWHEEL	R/O	Reads the EEO input value.
DRV.HANDWHEELSRC (pg	NV	Selects the feedback for handwheel operation.
270)		
DRV.HELP (PG 271)	R/O	Reads the minimum, maximum, and default values for a
		specific parameter or command.
DRV.HELPALL (pg 271)	R/O	Retrieves the minimum, maximum, default, and actual val-
		ues for all available parameters and commands.
DRV.HWENABLE (pg 272)	R/O	Status of the hardware enable.
DRV.HWENDELAY (pg 272)	NV	Delay time between inactive Hardware Enable input and
		drive disable.
DRV.HWENMODE (pg 273)	R/W	Selects the action that the hardware enable digital input
		will perform.
DRV.ICONT (PG 274)	R/O	Reads the continuous rated current value.
DRV.INFO (PG 274)	R/O	Reads general information about the drive.
DRV.IPEAK (PG 275)	R/O	Reads the peak rated current value.
DRV.IZERO (pg 276)	R/W	Sets the current that will be used during the DRV.ZERO
		procedure.
DRV.LIST (PG 276)	R/O	Reads the list of available parameters and commands.
DRV.LOGICVOLTS (pg 277)	R/O	Reads the logic voltages.
	NV	Sets and reads the name of the drive.
DRV.NVCHECK (pg 279)	R/O	NV Parameter Checksum
DRV.NVLIST (PG 280)	R/O	Lists the NV parameters and values from the RAM.

Anamadu of Command Type Description DRV.NVLOAD (pg 280) W/O Leads all data from the NV memory of the drive into the RAM parameters. DRV.NVSAVE (PG 281) Command Saves the drive parameters from the RAM to the NV memory. DRV.ONTIME (pg 281) R/O Returns how long the drive has been running since last power up. DRV.OPMODE (PG 282) NV Sets the drive operation mode (current, velocity, or postition). DRV.READFORMAT (PG 283) Command Sets the value returned to either decimal or hexadecimal. 283) DRV.RSTVAR (PG 283) Command Sets default values in the drive without re-booting the drive and without resetting the NV memory. DRV.RUNTIME (PG 284) R/O Returns how long the drive has been running since first activated. DRV.SETUPREQBITS (pg 28/) R/O Reads the bitwise set status of parameters that must be set before the drive can be enabled. DRV.SETUPREQLIST (pg 28/) R/O Reads the list of parameters that must be set before the drive can be enabled. DRV.TIME (pg 287) R/O Reads the temperature of drive components. 266) R/O Reads the drive version. DRV.VER (PG 288) R/O Reads the drive version. DRV.VER (PG 288) R/O Reads the drive version.	Parameter or Command	Туре	Description
RAM parameters. DRV.NVSAVE (PG 281) Command Saves the drive parameters from the RAM to the NV memory. DRV.ONTIME (pg 281) R/O Returns how long the drive has been running since last power up. DRV.OPMODE (PG 282) NV Sets the drive operation mode (current, velocity, or position). DRV.READFORMAT (PG R/W Sets the value returned to either decimal or hexadecimal. 283) DRV.READFORMAT (PG 284) R/W Sets the value returned to either decimal or hexadecimal. 283) DRV.RSTVAR (PG 283) Command Sets default values in the drive without re-booting the drive and without resetting the NV memory. DRV.SETUPREQBITS (pg R/O Returns how long the drive has been running since first activated. DRV.SETUPREQLIST (pg R/O Reads the bitwise set status of parameters that must be set before the drive can be enabled. DRV.SETUPREQLIST (pg R/O Reads the list of parameters that must be set before the drive can be enabled. DRV.TEMPERATURES (pg R/O Reads the temperature of drive components. 286) Command Selects the operational fieldbus on CC drive models. DRV.TEMPERATURES (pg 287) R/O Returns the version data from each image. DRV.VER (PG			
DRV.NVSAVE (PG 281) Command Saves the drive parameters from the RAM to the NV memory. DRV.ONTIME (pg 281) R/O Returns how long the drive has been running since last power up. DRV.OPMODE (PG 282) NV Sets the drive operation mode (current, velocity, or postition). DRV.READFORMAT (PG R/W Sets the value returned to either decimal or hexadecimal. 283) DRV.READFORMAT (PG R/W Sets the value returned to either decimal or hexadecimal. 283) DRV.RSTVAR (PG 283) Command Sets default values in the drive without re-booting the drive and without resetting the NV memory. DRV.SETUPREQBITS (pg R/O Returns how long the drive has been running since first activated. DRV.SETUPREQLIST (pg R/O Reads the bitwise set status of parameters that must be set before the drive can be enabled. DRV.TSTOP (PG 286) Command This command stops all drive motion. DRV.TEMPERATURES (pg R/O Reads the temperature of drive components. 266) DRV.TIME (pg 287) R/O Reads the drive version. DRV.VER (PG 288) R/O Reads the drive version. DRV.VER (PG 288) DRV.VER (PG 288) R/O Reads the drive version. <td< td=""><td>DITV.INVEOAD (pg 200)</td><td>VV/O</td><td>-</td></td<>	DITV.INVEOAD (pg 200)	VV/O	-
Image: Driver of the second		Commond	
DRV.ONTIME (pg 281) R/O Returns how long the drive has been running since last power up. DRV.OPMODE (PG 282) NV Sets the drive operation mode (current, velocity, or postition). DRV.READFORMAT (PG 283) R/W Sets the value returned to either decimal or hexadecimal. 283) DRV.RSTVAR (PG 283) Command Sets default values in the drive without re-booting the drive and without resetting the NV memory. DRV.RUNTIME (PG 284) R/O Returns how long the drive has been running since first activated. DRV.SETUPREQBITS (pg 284) R/O Reads the bitwise set status of parameters that must be set before the drive can be enabled. DRV.SETUPREQLIST (pg 285) R/O Reads the list of parameters that must be set before the drive can be enabled. DRV.STOP (PG 286) Command This command stops all drive motion. DRV.TEMPERATURES (pg 287) R/O Reads the temperature of drive components. 286) R/O Reads the drive version. DRV.VER (PG 288) DRV.VER (PG 288) R/O Reads the drive version. DRV.VER (PG 289) DRV.VER (PG 288) R/O Reads the drive version. DRV.VER (PG 289) DRV.VER (PG 288) R/O Reads the drive version. DRV.VER (PG 289) DRV.VER (PG 2	DRV.NVSAVE (PG 201)	Commanu	
power up. DRV.OPMODE (PG 282) NV Sets the drive operation mode (current, velocity, or position). DRV.READFORMAT (PG R/W Sets the value returned to either decimal or hexadecimal. 283) DRV.READFORMAT (PG R/W Sets the value returned to either decimal or hexadecimal. 283) DRV.RSTVAR (PG 283) Command Sets default values in the drive without re-booting the drive and without resetting the NV memory. DRV.RUNTIME (PG 284) R/O Returns how long the drive has been running since first activated. DRV.SETUPREQBITS (pg R/O Reads the bitwise set status of parameters that must be set before the drive can be enabled. DRV.SETUPREQLIST (pg R/O Reads the list of parameters that must be set before the drive can be enabled. DRV.SETUPREQLIST (pg R/O Reads the temperature of drive components. 286) Command This command stops all drive motion. DRV.TEMPERATURES (pg R/O Reads the drive version. DRV.VER (PG 288) R/O Reads the drive version. DRV.VER (PG 289) R/O Reads the active warnings. DRV.VER (PG 289) R/O Reads the active warnings. DRV.WARNINGS (pg 289) </td <td></td> <td></td> <td></td>			
DRV.OPMODE (PG 282) NV Sets the drive operation mode (current, velocity, or position). DRV.READFORMAT (PG 283) R/W Sets the value returned to either decimal or hexadecimal. 283) DRV.RSTVAR (PG 283) Command Sets default values in the drive without re-booting the drive and without resetting the NV memory. DRV.RDNTIME (PG 284) R/O Returns how long the drive has been running since first activated. DRV.SETUPREQBITS (pg 284) R/O Reads the bitwise set status of parameters that must be set before the drive can be enabled. DRV.SETUPREQLIST (pg 286) Command This command stops all drive motion. DRV.TEMPERATURES (pg 286) R/O Reads the temperature of drive components. 286) R/O Reads the drive version. DRV.TEMPERATURES (pg 287) DRV.TEMPERATURES (pg 287) R/O Reads the drive version. DRV.VER (PG 288) DRV.VER (PG 288) R/O Reads the drive version. DRV.VER (PG 288) DRV.VER (PG 288) R/O Reads the drive version. DRV.VER (PG 288) DRV.VER (PG 288) R/O Reads the drive version. DRV.VER (PG 289) R/O DRV.VER (PG 289) R/O Reads the active warnings. DRV.VER (PG 288) R/O Reads the	DRV.ONTIVIE (pg 201)		
Ition).DRV.READFORMAT (PG 283)R/WSets the value returned to either decimal or hexadecimal.283)DRV.RSTVAR (PG 283)CommandSets default values in the drive without re-booting the drive and without resetting the NV memory.DRV.RUNTIME (PG 284)R/OReturns how long the drive has been running since first activated.DRV.SETUPREQBITS (pg 284)R/OReads the bitwise set status of parameters that must be set before the drive can be enabled.DRV.SETUPREQLIST (pg 285)R/OReads the list of parameters that must be set before the drive can be enabled.DRV.STOP (PG 286)CommandThis command stops all drive motion.DRV.TEMPERATURES (pg 286)R/OReads the temperature of drive components.286)R/OReads the drive version.DRV.TIME (pg 287)R/ORelease the drive version.DRV.VER (PG 288)R/OReads the drive version.DRV.VER (PG 288)R/OReads the drive version.DRV.VER (PG 289)R/OReturns the version data from each image.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNINGS (pg 289)R/OReturns state of EtherNet/IP connection.DRV.ZERO (pg 291)R/OReturns state of EtherNet/IP connection.EIP.POSUNIT (pg 293)R/OReturns state of EtherNet/IP connection.EIP.PROFUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.Fault (FAULT)Fault (FAULT)FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451,			
DRV.READFORMAT (PG 283)R/WSets the value returned to either decimal or hexadecimal.283)DRV.RSTVAR (PG 283)CommandSets default values in the drive without re-booting the drive and without resetting the NV memory.DRV.RUNTIME (PG 284)R/OReturns how long the drive has been running since first activated.DRV.SETUPREQBITS (pg 284)R/OReads the bitwise set status of parameters that must be set before the drive can be enabled.DRV.SETUPREQLIST (pg 285)R/OReads the list of parameters that must be set before the drive can be enabled.DRV.SETUPREQLIST (pg 286)R/OReads the temperature of drive components.DRV.STOP (PG 286)CommandThis command stops all drive motion.DRV.TIME (pg 287)R/OReads the temperature of drive components.DRV.TIME (pg 287)R/OReads the drive version.DRV.VER (PG 288)R/OReads the drive version.DRV.VER (PG 288)R/OReturns the version data from each image.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNINGS (pg 290)R/OReturns state of EtherNet/IP connection.DRV.ZERO (pg 291)R/WSets the zero mode. The procedure is activated when the drive is enabled.DRV.ZERO (pg 293)R/OReturns state of EtherNet/IP connection.EIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)Fault (FAULT)FAULTx.ACTION (pg 29	DRV.OPWODE (PG 202)		
283) Command Sets default values in the drive without re-booting the drive and without resetting the NV memory. DRV.RUNTIME (PG 284) R/O Returns how long the drive has been running since first activated. DRV.SETUPREQBITS (pg R/O Reads the bitwise set status of parameters that must be set before the drive can be enabled. DRV.SETUPREQLIST (pg R/O Reads the list of parameters that must be set before the drive can be enabled. DRV.SETUPREQLIST (pg R/O Reads the list of parameters that must be set before the drive can be enabled. DRV.SETUPREQLIST (pg R/O Reads the list of parameters that must be set before the drive can be enabled. DRV.SETUPREQLIST (pg R/O Reads the temperature of drive components. 286) Command This command stops all drive motion. DRV.TEMPERATURES (pg R/O Reads the temperature of drive components. 286) R/O Reads the drive version. DRV.TYPE (pg 287) R/O Selects the operational fieldbus on CC drive models. DRV.VER (PG 288) R/O Reads the drive version. DRV.WARNINGS (pg 290) R/O Reads the active warnings. DRV.WARNINGS (pg 291) R/O Reads the zero mode. The procedure is activated when the drive is enabled.			,
DRV.RSTVAR (PG 283)CommandSets default values in the drive without re-booting the drive and without resetting the NV memory.DRV.RUNTIME (PG 284)R/OReturns how long the drive has been running since first activated.DRV.SETUPREQBITS (pg 284)R/OReads the bitwise set status of parameters that must be set before the drive can be enabled.DRV.SETUPREQLIST (pg 285)R/OReads the list of parameters that must be set before the drive can be enabled.DRV.SETUPREQLIST (pg 285)R/OReads the list of parameters that must be set before the drive can be enabled.DRV.STOP (PG 286)CommandThis command stops all drive motion.DRV.TEMPERATURES (pg 286)R/OReads the temperature of drive components.286)DRV.TIME (pg 287)R/OSelects the operational fieldbus on CC drive models.DRV.VER (PG 288)R/OReads the drive version.DRV.VER (PG 288)R/OReads the active warnings.DRV.VER (MARNINGS (pg 290)R/OReads the active warnings.DRV.WARNING3 (pg 289)R/OSets the zero mode. The procedure is activated when the drive is enabled.EtherNet/IP (EIP)EEIP.CONNECTED (pg 293)R/OReturns state of EtherNet/IP connection.EIP.POSUNIT (pg 293)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)FFault (FAULT)FFAULTx.ACTION (pg 296)R/WCommand for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)FFAULTx.ACTION (pg 296)<	, ,		Sets the value returned to either decimal of hexadecimal.
and without resetting the NV memory.DRV.RUNTIME (PG 284)R/OReturns how long the drive has been running since first activated.DRV.SETUPREQBITS (pg 284)R/OReads the bitwise set status of parameters that must be set before the drive can be enabled.DRV.SETUPREQLIST (pg 285)R/OReads the list of parameters that must be set before the drive can be enabled.DRV.STOP (PG 286)CommandThis command stops all drive motion.DRV.TEMPERATURES (pg 286)R/OReads the temperature of drive components.286)R/OReads the temperature of drive components.DRV.TIME (pg 287)R/WA continuous time counter in the drive.DRV.TYPE (pg 287)R/OReads the drive version.DRV.VER (PG 288)R/OReads the drive version.DRV.VER (PG 288)R/OReads the drive version.DRV.VER (PG 289)R/OReads the active warnings.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNING1 to DRV.ZERO (pg 291)R/WSets the zero mode. The procedure is activated when the drive is enabled.EIP.CONNECTED (pg 293)R/OReturns state of EtherNet/IP connection.EIP.POSUNIT (pg 293)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)Fault (FAULT)FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	,	Command	Cata default values in the drive without re besting the drive
DRV.RUNTIME (PG 284)R/OReturns how long the drive has been running since first activated.DRV.SETUPREQBITS (pg 284)R/OReads the bitwise set status of parameters that must be set before the drive can be enabled.DRV.SETUPREQLIST (pg 285)R/OReads the list of parameters that must be set before the drive can be enabled.DRV.SETUPREQLIST (pg 286)R/OReads the list of parameters that must be set before the drive can be enabled.DRV.STOP (PG 286)CommandThis command stops all drive motion.DRV.TEMPERATURES (pg 286)R/OReads the temperature of drive components.286)RV.TIME (pg 287)R/WA continuous time counter in the drive.DRV.TYPE (pg 287)R/OSelects the operational fieldbus on CC drive models.DRV.VER (PG 288)R/OReads the active version.DRV.VER (PG 288)R/OReturns the version data from each image.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNINGS (pg 290)R/OLocation of fault codes for any active warning conditions.DRV.WARNING3 (pg 289)R/OSets the zero mode. The procedure is activated when the drive is enabled.EtherNet/IP (EIP)EIP.POSUNIT (pg 293)R/WEIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.POSUNIT (pg 294)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	DRV.RSTVAR (PG 283)	Command	
activated.DRV.SETUPREQBITS (pg 284)R/OReads the bitwise set status of parameters that must be set before the drive can be enabled.DRV.SETUPREQLIST (pg 285)R/OReads the list of parameters that must be set before the drive can be enabled.DRV.STOP (PG 286)CommandThis command stops all drive motion.DRV.STOP (PG 286)CommandThis command stops all drive motion.DRV.TEMPERATURES (pg 286)R/OReads the temperature of drive components.286)RV.TIME (pg 287)R/OReads the operational fieldbus on CC drive models.DRV.TYPE (pg 287)R/OReads the drive version.DRV.VER (PG 288)R/OReads the active version.DRV.VER (PG 288)R/OReads the active varnings.DRV.VERIMAGE (PG 289)R/OReads the active warnings.DRV.WARNINGS (pg 290)R/OReads the zero mode. The procedure is activated when the drive is enabled.EtherNet/IP (EIP)EEIP.CONNECTED (pg 293)R/OReturns state of EtherNet/IP connection.EIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)Fault (FAULT)FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.		D/O	,
DRV.SETUPREQBITS (pg 284)R/OReads the bitwise set status of parameters that must be set before the drive can be enabled.DRV.SETUPREQLIST (pg 285)R/OReads the list of parameters that must be set before the drive can be enabled.DRV.STOP (PG 286)CommandThis command stops all drive motion.DRV.TEMPERATURES (pg 286)R/OReads the temperature of drive components.286)R/OReads the temperature of drive components.286)R/OReads the drive version.DRV.TIME (pg 287)R/OSelects the operational fieldbus on CC drive models.DRV.TYPE (pg 287)R/OReads the active version.DRV.VER (PG 288)R/OReads the active warnings.DRV.VER (PG 288)R/OReads the active warnings.DRV.VER (PG 289)R/OReads the active warnings.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNING3 (pg 289)R/OReturns state of EtherNet/IP connection.EIP.CONNECTED (pg 293)R/OReturns state of EtherNet/IP connection.EIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)Full (FAULT)FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	DRV.RUNTIME (PG 284)	R/U	
284)set before the drive can be enabled.DRV.SETUPREQLIST (pg 285)R/OReads the list of parameters that must be set before the drive can be enabled.DRV.STOP (PG 286)CommandThis command stops all drive motion.DRV.STOP (PG 286)CommandThis command stops all drive motion.DRV.TEMPERATURES (pg 286)R/OReads the temperature of drive components.286)R/OReads the temperature of drive components.DRV.TIME (pg 287)R/OSelects the operational fieldbus on CC drive models.DRV.TYPE (pg 287)R/OSelects the operational fieldbus on CC drive models.DRV.VER (PG 288)R/OReads the drive version.DRV.VER (PG 289)R/OReads the active warnings.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNING3 (pg 289)R/OLocation of fault codes for any active warning conditions.DRV.ZERO (pg 291)R/WSets the zero mode. The procedure is activated when the drive is enabled.EIP.CONNECTED (pg 293)R/OReturns state of EtherNet/IP connection.EIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.		D/O	
DRV.SETUPREQLIST (pg 285)R/OReads the list of parameters that must be set before the drive can be enabled.DRV.STOP (PG 286)CommandThis command stops all drive motion.DRV.TEMPERATURES (pg 286)R/OReads the temperature of drive components.286)R/WA continuous time counter in the drive.DRV.TIME (pg 287)R/OSelects the operational fieldbus on CC drive models.DRV.TYPE (pg 287)R/OReads the drive version.DRV.VER (PG 288)R/OReads the drive version.DRV.VER (PG 288)R/OReads the active warnings.DRV.VER (PG 289)R/OReads the active warnings.DRV.WARNINGS (pg 290)R/OLocation of fault codes for any active warning conditions.DRV.WARNING1 to DRV.ZERO (pg 291)R/WSets the zero mode. The procedure is activated when the drive is enabled.EIP.CONNECTED (pg 293)R/OReturns state of EtherNet/IP connection.EIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)Fult (FAULT)FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.		R/U	
285)drive can be enabled.DRV.STOP (PG 286)CommandThis command stops all drive motion.DRV.TEMPERATURES (pg 286)R/OReads the temperature of drive components.286)DRV.TIME (pg 287)R/WA continuous time counter in the drive.DRV.TYPE (pg 287)R/OSelects the operational fieldbus on CC drive models.DRV.VER (PG 288)R/OReads the drive version.DRV.VER (PG 289)R/OReturns the version data from each image.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNING3 (pg 289)R/OLocation of fault codes for any active warning conditions.DRV.ZERO (pg 291)R/WSets the zero mode. The procedure is activated when the drive is enabled.EIP.CONNECTED (pg 293)R/OReturns state of EtherNet/IP connection.EIP.PROFUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)Full (FAULT)FAULTX.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	,	D (0	
DRV.STOP (PG 286)CommandThis command stops all drive motion.DRV.TEMPERATURES (pg 286)R/OReads the temperature of drive components.286)DRV.TIME (pg 287)R/WA continuous time counter in the drive.DRV.TYPE (pg 287)R/OSelects the operational fieldbus on CC drive models.DRV.VER (PG 288)R/OReads the drive version.DRV.VER (PG 289)R/OReturns the version data from each image.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNING1 to DRV.ZERO (pg 291)R/OLocation of fault codes for any active warning conditions.DRV.ZERO (pg 291)R/WSets the zero mode. The procedure is activated when the drive is enabled.EIP.CONNECTED (pg 293)R/OReturns state of EtherNet/IP connection.EIP.PROFUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.		R/O	-
DRV.TEMPERATURES (pg 286)R/OReads the temperature of drive components.286)DRV.TIME (pg 287)R/WA continuous time counter in the drive.DRV.TYPE (pg 287)R/OSelects the operational fieldbus on CC drive models.DRV.VER (PG 288)R/OReads the drive version.DRV.VER (PG 289)R/OReturns the version data from each image.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNING1 toR/OLocation of fault codes for any active warning conditions.DRV.ZERO (pg 291)R/WSets the zero mode. The procedure is activated when the drive is enabled.EtherNet/IP (EIP)EIP.CONNECTED (pg 293)R/OEIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)Fault (FAULT)FAULTX.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	,		
286)R/WA continuous time counter in the drive.DRV.TIME (pg 287)R/WA continuous time counter in the drive.DRV.TYPE (pg 287)R/OSelects the operational fieldbus on CC drive models.DRV.VER (PG 288)R/OReads the drive version.DRV.VER (PG 289)R/OReturns the version data from each image.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNING1 toR/OLocation of fault codes for any active warning conditions.DRV.WARNING3 (pg 289)R/OLocation of fault codes for any active warning conditions.DRV.ZERO (pg 291)R/WSets the zero mode. The procedure is activated when the drive is enabled.EtherNet/IP (EIP)EIP.CONNECTED (pg 293)R/OEIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)FAULTX.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.			· · ·
DRV.TIME (pg 287)R/WA continuous time counter in the drive.DRV.TYPE (pg 287)R/OSelects the operational fieldbus on CC drive models.DRV.VER (PG 288)R/OReads the drive version.DRV.VER (PG 289)R/OReturns the version data from each image.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNING1 to DRV.WARNING3 (pg 289)R/OLocation of fault codes for any active warning conditions.DRV.ZERO (pg 291)R/WSets the zero mode. The procedure is activated when the drive is enabled.EtherNet/IP (EIP)EIP.CONNECTED (pg 293)R/OEIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)FAULTX.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.		R/O	Reads the temperature of drive components.
DRV.TYPE (pg 287)R/OSelects the operational fieldbus on CC drive models.DRV.VER (PG 288)R/OReads the drive version.DRV.VER (PG 288)R/OReads the drive version.DRV.VERIMAGE (PG 289)R/OReturns the version data from each image.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNING1 toR/OLocation of fault codes for any active warning conditions.DRV.WARNING3 (pg 289)R/WSets the zero mode. The procedure is activated when the drive is enabled.EtherNet/IP (EIP)EIP.CONNECTED (pg 293)R/OEIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)FAULTX.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	,		
DRV.VER (PG 288)R/OReads the drive version.DRV.VERIMAGE (PG 289)R/OReturns the version data from each image.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNING1 toR/OLocation of fault codes for any active warning conditions.DRV.WARNING3 (pg 289)R/WLocation of fault codes for any active warning conditions.DRV.ZERO (pg 291)R/WSets the zero mode. The procedure is activated when the drive is enabled.EtherNet/IP (EIP)EIP.CONNECTED (pg 293)R/OEIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)FAULTX.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.			
DRV.VERIMAGE (PG 289)R/OReturns the version data from each image.DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNING1 toR/OLocation of fault codes for any active warning conditions.DRV.WARNING3 (pg 289)R/WLocation of fault codes for any active warning conditions.DRV.ZERO (pg 291)R/WSets the zero mode. The procedure is activated when the drive is enabled.EtherNet/IP (EIP)EIP.CONNECTED (pg 293)R/OEIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	DRV.TYPE (pg 287)	R/O	Selects the operational fieldbus on CC drive models.
DRV.WARNINGS (pg 290)R/OReads the active warnings.DRV.WARNING1 to DRV.WARNING3 (pg 289)R/OLocation of fault codes for any active warning conditions.DRV.ZERO (pg 291)R/WSets the zero mode. The procedure is activated when the drive is enabled.EtherNet/IP (EIP)EIP.CONNECTED (pg 293)R/OEIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.POSUNIT (pg 293)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	DRV.VER (PG 288)	R/O	Reads the drive version.
DRV.WARNING1 to DRV.WARNING3 (pg 289)R/OLocation of fault codes for any active warning conditions.DRV.WARNING3 (pg 289)R/WSets the zero mode. The procedure is activated when the drive is enabled.EtherNet/IP (EIP)EIP.CONNECTED (pg 293)R/OReturns state of EtherNet/IP connection.EIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	DRV.VERIMAGE (PG 289)	R/O	Returns the version data from each image.
DRV.WARNING3 (pg 289)R/WSets the zero mode. The procedure is activated when the drive is enabled.EtherNet/IP (EIP)EIP.CONNECTED (pg 293)R/OReturns state of EtherNet/IP connection.EIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.POSUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	DRV.WARNINGS (pg 290)	R/O	Reads the active warnings.
DRV.ZERO (pg 291)R/WSets the zero mode. The procedure is activated when the drive is enabled.EtherNet/IP (EIP)EIP.CONNECTED (pg 293)R/OReturns state of EtherNet/IP connection.EIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)Fault (FAULT)FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	DRV.WARNING1 to	R/O	Location of fault codes for any active warning conditions.
EtherNet/IP (EIP)drive is enabled.EIP.CONNECTED (pg 293)R/OReturns state of EtherNet/IP connection.EIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)Fault (FAULT)FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	DRV.WARNING3 (pg 289)		
EtherNet/IP (EIP)Returns state of EtherNet/IP connection.EIP.CONNECTED (pg 293)R/OReturns state of EtherNet/IP connection.EIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	DRV.ZERO (pg 291)	R/W	Sets the zero mode. The procedure is activated when the
EIP.CONNECTED (pg 293)R/OReturns state of EtherNet/IP connection.EIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.			drive is enabled.
EIP.POSUNIT (pg 293)R/WUnit scaling for Position values over EtherNet/IP.EIP.PROFUNIT (pg 294)R/WUnit scaling for Velocity and Acceleration values over EtherNet/IP.Fault (FAULT)FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	EtherNet/IP (EIP)		
EIP.PROFUNIT (pg 294) R/W Unit scaling for Velocity and Acceleration values over EtherNet/IP. Fault (FAULT) FAULTx.ACTION (pg 296) R/W Gets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	EIP.CONNECTED (pg 293)	R/O	Returns state of EtherNet/IP connection.
Fault (FAULT) EtherNet/IP. FAULTx.ACTION (pg 296) R/W Gets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	EIP.POSUNIT (pg 293)	R/W	Unit scaling for Position values over EtherNet/IP.
Fault (FAULT)Gets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	EIP.PROFUNIT (pg 294)	R/W	Unit scaling for Velocity and Acceleration values over
FAULTx.ACTION (pg 296)R/WGets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.			EtherNet/IP.
139, 451, and 702.	Fault (FAULT)		
	FAULTX.ACTION (pg 296)	R/W	Gets/Sets the Fault Action for Fault 130, 131, 132, 134,
Feedback 1 (FB1)			139, 451, and 702.
	Feedback 1 (FB1)		

Parameter or Command	Туре	Description
FB1.BISSBITS (pg 298)	NV	Specifies the number of Biss Sensor (Position) Bits for the
		BISS Mode C encoder in use.
FB1.DIAG (pg 298)	R/O	Returns feedback diagnostic information.
FB1.ENCRES (PG 299)	NV	Sets the resolution of the motor encoder.
FB1.FAULTS (pg 300)	R/O	Returns a string describing the root cause of Fault 467.
FB1.HALLSTATE (PG 301)	R/O	Reads the Hall switch values (encoder feedback only).
FB1.HALLSTATEU (pg 303)	R/O	Reads the state of Hall switch U.
FB1.HALLSTATEV (pg 303)	R/O	Reads the state of Hall switch V.
FB1.HALLSTATEW (pg 304)	R/O	Reads the state of Hall switch W.
FB1.IDENTIFIED (PG 304)	R/O	Reads the type of feedback device used by the drive/-
		motor.
FB1.INITPSAVED (pg 305)	R/O	Reads position saved at last power down.
FB1.INITPSTATUS (pg 306)	R/O	Reads result of initial position comparison.
FB1.INITPWINDOW (pg 306)	R/W	Reads and writes size of the initial position comparison
		window.
FB1.INITSIGNED (pg 307)	NV	Sets initial feedback value as signed or unsigned.
FB1.MECHPOS (PG 308)	R/O	Reads the mechanical position.
FB1.MEMVER (PG 308)	R/O	Returns the memory feedback version.
FB1.OFFSET (pg 309)	NV	Sets position feedback offset.
FB1.ORIGIN (pg 309)	NV	Adds to the initial feedback position.
FB1.P (pg 311)	R/O	Reads position from the primary feedback.
FB1.PDIR (pg 312)	NV	Sets the counting direction for feedback channel 1.
FB1.PFIND (pg 312)	R/W	A procedure that allows the user to find the commutation
		angle for encoder feedback, which has no halls.
FB1.PFINDCMDU (pg 313)	R/W	Current value used during the phase finding procedure
		(PFB.PFIND=1)
FB1.PIN (pg 313)	NV	Sets gear IN for FB1.P (pg 311).
FB1.POFFSET (pg 313)	NV	Sets the offset for primary feedback.
FB1.POLES (PG 314)	R/O	Reads the number of feedback poles.
FB1.POUT (pg 315)	NV	Sets gear IN for FB1.P (pg 311).
FB1.PSCALE (pg 315)	R/W	Sets position scaling value for fieldbus transferred position objects.
FB1.PUNIT (pg 316)	NV	Sets the unit for FB1.P.
FB1.RESKTR (pg 316)	NV	Sets the resolver nominal transformation ratio.
FB1.RESREFPHASE (pg 317)	NV	Sets the electrical degrees of phase lag in the resolver.
FB1.SELECT (PG 317)	NV	Sets user entered type or identified type (-1).
4 · · · · · · · · · · · · · · · · · · ·		

Devementary or Command	Turno	Description
Parameter or Command FB1.USERBYTE0 to	Type R/W	Description Reads and writes data stored in two 32 bit words in the
FB1.USERBYTE7 (pg 321)		Endat feedback device.
FB1.USERDWORD0 to	R/W	Reads and writes data stored in two 32 bit words in the
FB1.USERDWORD1 (pg 322)		Endat feedback device.
FB1.USERWORD0 to	R/W	Reads and writes data stored in two 32 bit words in the
FB1.USERWORD3 (pg 323)	FX/ V V	Endat feedback device.
Feedback 2 (FB2)		
FB2.PDIR	R/W	Sets the counting direction for feedback channel 2.
FB2.ENCRES	NV	Sets the secondary feedback (FB2) resolution (also
I DZ.ENGILES	INV	defines resolution of virtual encoder in).
FB2.MODE	R/W	Sets the mode for the second feedback inputs, EEO con-
	r./ v v	nector (X9) and high speed opto inputs (pins 9 and 10 on
		X7).
FB2.P	R/O	Reads position from the secondary feedback.
FB2.PIN (pg 1)	NV	Sets gear IN for FB2.P (pg 1).
FB2.POFFSET	NV	Sets the offset for secondary feedback.
FB2.POUT (pg 1)	NV	Sets gear IN for FB2.P (pg 1).
FB2.PUNIT	NV	Sets the unit for FB2.P.
FB2.SOURCE	R/W	Sets the source for the second feedback input. Choices
		are the EEO connectors (X9) which are RS485 inputs, or
		the X7 connector's high speed opto inputs (pins 9 and 10).
Feedback 3 (FB3)		
FB3.MODE (pg 326)	NV	Selects the type of feedback connected to X9.
FB3.P (pg 326)	RO	Reads position from the tertiary feedback.
FB3.PDIR (pg 327)	NV	Sets the counting direction for feedback channel 3.
FB3.PIN (pg 327)	NV	Sets gear IN for FB3.P (pg 326).
FB3.POFFSET (pg 328)	NV	Sets the offset for tertiary feedback.
FB3.POUT (pg 328)	NV	Sets gear IN for FB3.P (pg 326).
FB3.PUNIT (pg 329)	NV	Sets the unit for FB3.P.
Fieldbus (FBUS)		
FBUS.PARAM1 TO	NV	Set fieldbus specific meanings.
FBUS.PARAM10 (pg 331)		
FBUS.PLLSTATE (pg 333)	R/O	Returns the status of the PLL
FBUS.PLLTHRESH (pg 334)	NV	Sets number of successful synchronized cycles needed to
		lock the PLL.
FBUS.PROTECTION (pg 334)	R/W	Controls which parameters are blocked from being
		accessed through telnet while a fieldbus is operational.
FBUS.SAMPLEPERIOD (pg	NV	Sets fieldbus sample period.
336)		
,		

	.	Description	
Parameter or Command	Type R/O	Description Reads the state of the fieldbus.	
FBUS.STATE (pg 337)			
FBUS.SYNCACT (pg 338)	R/O	Reads actual distance from the desired sync distance.	
FBUS.SYNCDIST (pg 338)	NV	Sets time target for synchronization.	
FBUS.SYNCWND (pg 339)	NV	Sets symmetrically arranged window around the desired	
		sync distance.	
FBUS.TYPE (pg 339)	R/O	Shows the active fieldbus type.	
Hardware Limit Switch (HWLS)			
HWLS.NEGSTATE (pg 347)	R/O	Reads the status of the negative hardware limit switch.	
HWLS.POSSTATE (pg 347)	R/O	Reads the status of the positive hardware limit switch.	
Current Loop (IL)			
IL.BUSFF (pg 349)	R/O	Displays the current feedforward value injected by the field- bus.	
IL.CMD (PG 349)	R/O	Reads the value of the q-component current command.	
IL.CMDACC (pg 350)	R/O	Returns the commanded acceleration from the trajectory	
		generator.	
IL.CMDU (PG 350)	R/W	Sets the user current command.	
IL.DIFOLD (PG 351)	R/O	Reads the drive foldback current limit.	
IL.FB (PG 351)	R/O	Reads the actual value of the d-component current.	
IL.FBSOURCE (pg 352)	R/W	Sets the feedback source for the current loop. Only applies	
		when MOTOR.TYPE = 4.	
IL.FF (pg 353)	R/O	Displays the current loop overall feedforward value.	
IL.FOLDFTHRESH (PG 353)	NV	Reads the foldback fault level.	
IL.FOLDFTHRESHU (pg 354)	NV	Sets the user value for the foldback fault level.	
IL.FOLDWTHRESH (PG 355)	NV	Sets the foldback warning level.	
IL.IFOLD (pg 356)	R/O	Reads the overall foldback current limit.	
IL.IUFB (PG 357)	R/O	Reads the sigma-delta measured current in the u-winding	
		of the motor.	
IL.KACCFF (pg 358)	R/W	Sets current loop acceleration feedforward gain value	
IL.KBUSFF (pg 358)	R/W	Current loops fieldbus injected feed-forward gain	
IL.KP (PG 359)	NV	Sets the proportional gain of the q-component of the PI reg-	
		ulator.	
IL.KPDRATIO (PG 359)	NV	Sets the proportional gain of the d-component current PI-	
		regulator as a percentage of IL.KP	
IL.KPLOOKUPINDEX (pg	R/W	Sets the index into the Current Loop Gain Scheduling	
360)		Table.	
IL.KPLOOKUPVALUE (pg	R/W	Sets the value of the current loop gain scheduling index.	
360)			
		1	

Parameter or CommandIL.KPLOOKUPVALUES (pg361)IL.KVFF (pg 362)IL.LIMITN (PG 362)	Туре R/W	Description Gets the Current Loop Gain Scheduling Table.
361) IL.KVFF (pg 362)		
IL.LIMITN (PG 362)	R/W	Current loop velocity feed-forward gain.
	NV	Sets the negative user (application-specific) current limit.
IL.LIMITP (PG 363)	NV	Sets the positive user (application-specific) current limit.
IL.MFOLDD (PG 363)	NV	Sets the motor foldback maximum time at motor peak current.
IL.MFOLDR (PG 364)	R/O	Sets the motor foldback recovery time.
IL.MFOLDT (PG 364)	NV	Sets the motor foldback time constant of the exponential
		current drop (foldback).
IL.MI2T (pg 365)	R/O	Motor I2t load.
IL.MI2TWTHRESH (pg 365)	NV	Motor I2t load warning threshold.
IL.MIFOLD (PG 366)	R/O	Sets the motor foldback current limit.
IL.MIMODE (pg 367)	NV	Motor protection mode.
IL.OFFSET (pg 367)	RW	A constant current command added to compensate for
		gravity.
IL.VCMD (PG 368)	R/O	Sets the output of the q-component PI regulator.
IL.VUFB (PG 368)	R/O	Reads the measured voltage on the u-winding of the
		motor.
IL.VVFB (PG 369)	R/O	Reads the measured voltage on the v-winding of the
		motor.
IP (Internet Protocol)Para- meters		
IP.ADDRESS (pg 371)	NV	Gets/Sets the IP address of the drive.
IP.GATEWAY (pg 372)	NV	Gets/Sets the gateway IP of the drive.
IP.MODE (pg 373)	NV	Sets method of acquiring IP Address.
IP.RESET (pg 374)	Command	Implements new IP settings
IP.SUBNET (pg 375)	NV	Gets/Sets the IP Subnet mask of the drive.
LOAD Parameters		
LOAD.INERTIA (pg 378)	NV	Sets the load inertia.
Parameter or Command	Туре [Description
Motor Parameters		
MOTOR.AUTOSET (pg 380)		Determines which drive parameters are calculated auto- matically.
MOTOR.BRAKE (PG 381)	NV	Sets the presence or absence of a motor brake.
MOTOR.BRAKEIMM (pg	NV	Brake Immediately: in the case of a drive disable, apply the
382)		brake in all situations.
MOTOR.BRAKERLS (pg Co	ommand	Allows a user to release or apply the motor brake.
382)		

	T	Description
Parameter or Command	Type R/O	Description Reads the actual status of the motor brake.
MOTOR.BRAKESTATE (pg 383)	R/U	Reads the actual status of the motor brake.
MOTOR.CTF0 (pg 384)	NV	Sets the thermal constant of the motor coil.
MOTOR.ICONT (PG 384)	NV	Sets the motor continuous current.
MOTOR.IDDATAVALID (pg	R/O	Reports the status of the motor memory.
385)		
MOTOR.IMID (pg 386)	R/W	The direct-axis current set point used for induction machine
		closed-loop control.
MOTOR.IMTR (pg 386)	R/W	Rotor time constant.
MOTOR.INERTIA (PG 388)	NV	Sets the motor inertia.
MOTOR.IPEAK (PG 388)	NV	Sets the motor peak current.
MOTOR.KE (pg 389)		Sets the motor back EMF constant.
MOTOR.KT (PG 389)	NV	Sets the torque constant of the motor.
MOTOR.LQLL (PG 390)	NV	Sets the line-to-line motor Lq.
MOTOR.NAME (PG 391)	NV	Sets the motor name.
MOTOR.PHASE (PG 391)	NV	Sets the motor phase.
MOTOR.PITCH (PG 392)	NV	Sets the motor pitch.
MOTOR.POLES (PG 392)	NV	Sets the number of motor poles.
MOTOR.R (PG 393)	NV	Sets the stator winding resistance phase-phase in ohms.
MOTOR.RTYPE (pg 394)	NV	Defines the type of thermal resistor inside the motor.
MOTOR.TBRAKEAPP (PG 394)	NV	The delay time used for applying the motor brake.
MOTOR.TBRAKERLS (PG 395)	NV	The delay time used for releasing the motor brake.
MOTOR.TBRAKETO (pg 396)	NV	Brake apply timeout for vertical axis.
MOTOR.TEMP (pg 396)	R/O	Reads the motor temperature represented as the resistance of the motor PTC or NTC.
MOTOR.TEMPFAULT (pg 397)	NV	Sets the motor temperature fault level.
MOTOR.TEMPWARN (pg 398)	NV	Sets the motor temperature warning level.
MOTOR.TYPE (PG 398)	NV	Sets the motor type.
MOTOR.VMAX (PG 400)	NV	Sets the maximum motor speed.
MOTOR.VOLTMAX (PG 400)	NV	Sets the motor maximum voltage.
MOTOR.VOLTMIN (pg 401)	NV	Sets the minimum voltage for V/f control.

Perometer or Command	Tuno	Description
Parameter or Command MOTOR.VOLTRATED (pg	Type NV	Description Sets the motor rated voltage.
402)		Sets the motor fated voltage.
MOTOR.VRATED (pg 402)	NV	Sets the motor rated velocity (not maximum velocity).
Position Loop (PL)		
PL.CMD (PG 405)	NV	Reads the position command directly from the entry to the
		position loop.
PL.ERR (PG 405)	NV	Reads the position error present when the drive is con-
		trolling the position loop.
PL.ERRFTHRESH (pg 406)	NV	Sets the maximum position error.
PL.ERRMODE (pg 408)	R/W	Sets the type of following error warning and fault usage.
PL.ERRWTHRESH (pg 409)	NV	Sets the position error warning level.
PL.FB (PG 410)	R/O	Reads the position feedback value.
PL.FBSOURCE (pg 411)	NV	Sets the feedback source for the position loop.
PL.FILTERTIME (pg 411)	R/W	Sets the position command filter period.
PL.INTINMAX (PG 412)	NV	Limits the input of the position loop integrator by setting the
		input saturation.
PL.INTOUTMAX (PG 414)	NV	Limits the output of the position loop integrator by setting the
		output saturation.
PL.KI (PG 415)	NV	Sets the integral gain of the position loop.
PL.KP (PG 415)	NV	Sets the proportional gain of the position regulator PID loop.
PL.MODP1	R/W	Sets modulo range parameter.
PL.MODP2	R/W	Sets the beginning or end modulo range parameter.
PL.MODPDIR	R/W	Sets the direction for absolute motion tasks.
PL.MODPEN	R/W	Enables the modulo position.
Recorder (REC)		
REC.ACTIVE (PG 418)	R/O	Indicates if data recording is in progress (active).
REC.CH1 to REC.CH6 (pg	R/W	Sets recording channels 1 to 6.
418)		
REC.DONE (PG 419)	R/O	Checks whether or not the recorder has finished recording.
REC.GAP (PG 419)	R/W	Specifies the gap between consecutive samples.
REC.NUMPOINTS (PG	R/W	Sets the number of points to record.
420)		
REC.OFF (PG 420)	R/W	Turns the recorder OFF.
REC.RECPRMLIST (pg	R/O	Reads the list of recordable parameters.
421)		
REC.RETRIEVE (PG 421)	R/O	Transfers all the recorded data to the communication chan-
		nel.

REC.RETRIEVEDATA (pg) RW Retrieves the recorded data without the header. 422) REC.RETRIEVEFRMT (pg) R/W Sets the format for recorded data output. 423) REC.RETRIEVEHDR (pg) R/W Sets the format for recorded header without the data. 424) REC.RETRIEVESIZE (pg) R/W Sets the number of samples that REC.RETRIEVEDATA returns. REC.RETRIEVESIZE (pg) R/W Sets the recorder stop type. REC.TRIG (PG 426) REC.TRIG (PG 426) Command Triggers the recorder. REC.TRIGPOS (pg 427) R/W Sets the parameter that triggers the recorder. REC.TRIGPOS (pg 427) R/W Sets the trigger position in the recording buffer. REC.TRIGPOS (pg 427) R/W Sets the trigger slope. REC.TRIGSLOPE (PG 429) R/W Sets the trigger slope. REC.TRIGTYPE (PG 429) R/W Sets the trigger value. Regen Resistor (REGEN) Regen Resistor (REGEN) REGEN.POWER (PG 432) R/O Reads regen resistor's calculated power. REGEN.POWER (PG 433) N/V Sets the external user-defined regen resistor resistance. REGEN.REXT (pg 433) N/V Sets the regen resistor spower fault level for an external regen resistor 'spower faul	Parameter or Command	Tuno	Description
422) REC.RETRIEVEFRMT (pg R/W Sets the format for recorded data output. 423) REC.RETRIEVEHDR (pg R/O Retrieves the recorded header without the data. 424) REC.RETRIEVESIZE (pg R/W Sets the number of samples that REC.RETRIEVEDATA returns. REC.RETRIEVESIZE (pg R/W Sets the recorder stop type. REC.TRIG (PG 426) Command REC.TRIG (PG 426) Command Triggers the recorder. REC.TRIGPOS (pg 427) R/W Sets the parameter that triggers the recorder. REC.TRIGPNLIST (pg R/O Reads the list of possible trigger parameters. 428) REC.TRIGSLOPE (PG 429) R/W Sets the trigger slope. REC.TRIGYPE (PG 429) REC.TRIGYPE (PG 429) R/W Sets the trigger ype. REC.TRIGYPE (PG 422) REC.TRIGYPE (PG 422) R/W Sets the trigger ype. REC.TRIGYPE (PG 432) REGEN.POWER (PG 432) R/O Reads regen resistor's calculated power. Regen Resistor (REGEN) REGEN.POWERFILTERED R/O Reads regen resistor's calculated power. REGEN.POWER (PG 432) N/V Sets the external regen resistor thermal protection time constant. REGEN.TYPE (PG 433) N/V Sets the regen resistor thermal protection time co		Type R/W	Description Retrieves the recorded data without the header
423) Rec. RETRIEVEHDR (pg REC.RETRIEVESIZE (pg R/O Retrieves the recorded header without the data. 424) returns. REC.RETRIEVESIZE (pg R/W Sets the number of samples that REC.RETRIEVEDATA returns. REC.STOPTYPE (pg 425) R/W Sets the recorder stop type. REC.TRIGPARAM (pg 426) R/W Sets the parameter that triggers the recorder. REC.TRIGPOS (pg 427) R/W REC.TRIGPOS (pg 427) R/W Sets the trigger position in the recording buffer. REC.TRIGPOS (pg 427) R/W Sets the trigger slope. REC.TRIGPOS (pg 429) R/W Sets the trigger slope. REC.TRIGVPE (PG 429) R/W Sets the trigger value. Regen Resistor (RECEN) REGEN.POWER (PG 432) R/O Reads regen resistor's calculated power. REGEN.POWER (PG 433) R/V REGEN.REXT (PG 433) N/V Sets the external user-defined regen resistor resistance. REGEN.TEXT (pg 433) R/W Sets the regen resistor 's power fault level for an external regen resistor 's power fault level for an external	422)	1.7. VV	Refleves the recorded data without the header.
423) Rec. RETRIEVEHDR (pg REC.RETRIEVESIZE (pg R/O Retrieves the recorded header without the data. 424) returns. REC.RETRIEVESIZE (pg R/W Sets the number of samples that REC.RETRIEVEDATA returns. REC.STOPTYPE (pg 425) R/W Sets the recorder stop type. REC.TRIGPARAM (pg 426) R/W Sets the parameter that triggers the recorder. REC.TRIGPOS (pg 427) R/W REC.TRIGPOS (pg 427) R/W Sets the trigger position in the recording buffer. REC.TRIGPOS (pg 427) R/W Sets the trigger slope. REC.TRIGPOS (pg 429) R/W Sets the trigger slope. REC.TRIGVPE (PG 429) R/W Sets the trigger value. Regen Resistor (RECEN) REGEN.POWER (PG 432) R/O Reads regen resistor's calculated power. REGEN.POWER (PG 433) R/V REGEN.REXT (PG 433) N/V Sets the external user-defined regen resistor resistance. REGEN.TEXT (pg 433) R/W Sets the regen resistor 's power fault level for an external regen resistor 's power fault level for an external	REC RETRIEVEERMT (pg	R/W	Sets the format for recorded data output
424) No. REC.RETRIEVESIZE (pg R/W Sets the number of samples that REC.RETRIEVEDATA returns. REC.STOPTYPE (pg 425) R/W Sets the recorder stop type. REC.TRIG (PG 426) Command Triggers the recorder. REC.TRIGPARAM (pg 426) R/W Sets the parameter that triggers the recorder. REC.TRIGPOS (pg 427) R/W Sets the trigger position in the recording buffer. REC.TRIGPOS (pg 427) R/W Sets the trigger position in the recording buffer. REC.TRIGNOPS (pg 427) R/W Sets the trigger slope. REC.TRIGSLOPE (PG 429) R/W Sets the trigger value. Regen Resistor (REGEN) REC.TRIGYPE (PG 430) R/W RECENPOWER (PG 432) R/O Reads regen resistor's calculated power. REGEN.POWERFILTERED (pg 432) R/O Reads regen resistor's calculated power. REGEN.REXT (PG 433) N/V Sets the external, user-defined regen resistance. REGEN.REXT (PG 433) R/W Sets the regen resistor thermal protection time constant. REGEN.WATTEXT (PG 433) N/V Sets the regen resistor 's power fault level for an external regen resistor. Sercos [©] III (S3) Sets the regen resistor's power fault level for an external regen	423)		
REC.RETRIEVESIZE (pg 425)R/WSets the number of samples that REC.RETRIEVEDATA returns.REC.STOPTYPE (pg 425)R/WSets the recorder stop type.REC.TRIG (PG 426)CommandTriggers the recorder.REC.TRIGPARAM (pg 426)R/WSets the parameter that triggers the recorder.REC.TRIGPARAM (pg 426)R/WSets the trigger position in the recording buffer.REC.TRIGPARAM (pg 427)R/WSets the trigger position in the recorder.REC.TRIGPOS (pg 427)R/WSets the trigger slope.REC.TRIGSLOPE (PG 429)R/WSets the trigger slope.REC.TRIGTYPE (PG 429)R/WSets the trigger value.Regen.Resistor (REGEN)R/WSets the trigger value.REGEN.POWER (PG 432)R/OReads regen resistor's calculated power.REGEN.POWER (PG 432)R/OReads regen resistor's calculated power.REGEN.POWER (PG 433)N/VSets the external, user-defined regen resistor resistance.REGEN.REXT (PG 433)N/VSets the regen resistor thermal protection time con- start.REGEN.TPYE (PG 434)NVSets the regen resistor type.REGEN.WATTEXT (PG 435)R/WSets and reads the sercos® slave address.SDSDSDSD.LOAD (pg 440)Command CommandSaves the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs 	REC.RETRIEVEHDR (pg	R/O	Retrieves the recorded header without the data.
425)returns.REC.STOPTYPE (pg 425)R/WSets the recorder stop type.REC.TRIG (PG 426)CommandTriggers the recorder.REC.TRIGPARAM (pg 426)R/WSets the parameter that triggers the recorder.REC.TRIGPARAM (pg 426)R/WSets the trigger position in the recording buffer.REC.TRIGPOS (pg 427)R/WSets the trigger position in the recording buffer.REC.TRIGPRMLIST (pg 428)R/OReads the list of possible trigger parameters.428)R/WSets the trigger slope.REC.TRIGSLOPE (PG 429)R/WSets the trigger value.Regen Resistor (REGEN)R/WSets the trigger value.Regen Resistor (REGEN)R/OReads regen resistor's calculated power.REGEN.POWER (PG 432)R/OReads regen resistor's calculated power.REGEN.POWERFILTERED (pg 432)R/OReturns a filtered version of REGEN.POWER .(pg 432)R/OSets the external, user-defined regen resistor resistance.REGEN.TEXT (PG 433)N/VSets the regen resistor thermal protection time constant.REGEN.TEXT (PG 434)NVSets the regen resistor type.REGEN.WATTEXT (PG 435)R/WSets and reads the sercos® slave address.SD card (SD)Sol card (sD)SD.LOAD (pg 440)Command CommandSaves the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)Command Saves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card	424)		
REC.STOPTYPE (pg 425)R/WSets the recorder stop type.REC.TRIG (PG 426)CommandTriggers the recorder.REC.TRIGPARAM (pg 426)R/WSets the parameter that triggers the recorder.REC.TRIGPARAM (pg 427)R/WSets the trigger position in the recording buffer.REC.TRIGPOS (pg 427)R/WSets the trigger position in the recording buffer.REC.TRIGPRMLIST (pg 428)R/OReads the list of possible trigger parameters.428)REC.TRIGSLOPE (PG 429)R/WSets the trigger slope.REC.TRIGYPE (PG 429)R/WSets the trigger value.Regen Resistor (REGEN)R/WSets the trigger value.REGEN.POWER (PG 430)R/WSets the external, user-defined regen resistor resistance.REGEN.POWERFILTERED (pg 432)R/OReads regen resistor 's calculated power.REGEN.REXT (PG 433)N/VSets the external, user-defined regen resistor resistance.REGEN.TEXT (pg 433)R/WSets the regen resistor thermal protection time constant.REGEN.WATTEXT (PG 435)R/WSets the regen resistor 's power fault level for an external regen resistor.Sercos [®] III (S3)N/VSets and reads the sercos® slave address.SD card (SD)CommandLoads the drive state (BASIC program and NV parameters) from the SD card (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).	REC.RETRIEVESIZE (pg	R/W	Sets the number of samples that REC.RETRIEVEDATA
REC. TRIG (PG 426)CommandTriggers the recorder.REC. TRIGPARAM (pg 426)R/WSets the parameter that triggers the recorder.REC. TRIGPOS (pg 427)R/WSets the trigger position in the recording buffer.REC. TRIGPRMLIST (pgR/OReads the list of possible trigger parameters.428)REC. TRIGSLOPE (PG 429)R/WSets the trigger slope.REC. TRIGYPE (PG 429)R/WSets the trigger value.Regen Resistor (REGEN)Reads regen resistor's calculated power.REGEN.POWER (PG 432)R/OReads regen resistor's calculated power.REGEN.POWER (PG 432)R/OReturns a filtered version of REGEN.POWER .(pg 432)R/WSets the external, user-defined regen resistor resistance.REGEN.REXT (PG 433)N/VSets the regen resistor thermal protection time constant.REGEN.TYPE (PG 434)NVSets the regen resistor's power fault level for an external regen resistor for power fault level for an external regen resistor.REGEN.WATTEXT (PG 438)NVSets and reads the sercos® slave address.SondondersesGommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.	425)		returns.
Rec. TRIGPARAM (pg 426)R/WSets the parameter that triggers the recorder.REC. TRIGPOS (pg 427)R/WSets the trigger position in the recording buffer.REC. TRIGPRMLIST (pg 428)R/OReads the list of possible trigger parameters.REC. TRIGSLOPE (PG 429)R/WSets the trigger slope.REC. TRIGYPE (PG 429)R/WSets the trigger yalue.Regen Resistor (REGEN)R/OReads regen resistor's calculated power.REGEN.POWER (PG 432)R/OReads regen resistor's calculated power.REGEN.POWERFILTEREDR/OReturns a filtered version of REGEN.POWER .(pg 432)R/WSets the external, user-defined regen resistor resistance.REGEN.TEXT (PG 433)N/VSets the regen resistor thermal protection time constant.REGEN.TEXT (pg 433)R/WSets the regen resistor type.REGEN.WATTEXT (PG 434)NVSets the regen resistor's power fault level for an external regen resistor's power fault level for an external regen resistor's power fault level for an external regen resistor.sercos [©] III (S3)Solution (Command)Loads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.	REC.STOPTYPE (pg 425)	R/W	Sets the recorder stop type.
REC. TRIGPOS (pg 427)R/WSets the trigger position in the recording buffer.REC. TRIGPRMLIST (pg 428)R/OReads the list of possible trigger parameters.REC. TRIGSLOPE (PG 429)R/WSets the trigger slope.REC. TRIGYPE (PG 429)R/WSets the trigger type.REC. TRIGVAL (PG 430)R/WSets the trigger value.Regen Resistor (REGEN)R/OReads regen resistor's calculated power.REGEN.POWER (PG 432)R/OReads regen resistor's calculated power.REGEN.POWERFILTEREDR/OReturns a filtered version of REGEN.POWER .(pg 432)R/WSets the external, user-defined regen resistor resistance.REGEN.TEXT (pg 433)R/WSets the external regen resistor thermal protection time constant.REGEN.WATTEXT (PG 434)NVSets the regen resistor type.REGEN.WATTEXT (PG 434)NVSets the regen resistor's power fault level for an external regen resistor.sercos [®] III (S3)SSates and reads the sercos [®] slave address.SD card (SD)CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.	REC.TRIG (PG 426)	Command	Triggers the recorder.
REC.TRIGPRMLIST (pg 428)R/OReads the list of possible trigger parameters.REC.TRIGSLOPE (PG 429)R/WSets the trigger slope.REC.TRIGYPE (PG 429)R/WSets the trigger type.REC.TRIGVAL (PG 430)R/WSets the trigger value.Regen Resistor (REGEN)RREGEN.POWER (PG 432)R/OREGEN.POWERFILTEREDR/OREGEN.REXT (PG 433)N/VSets the external, user-defined regen resistor resistance.REGEN.TEXT (pg 433)R/WSets the regen resistor type.REGEN.TYPE (PG 434)NVSets the regen resistor type.REGEN.TYPE (PG 434)NVSets the regen resistor type.REGEN.WATTEXT (PG 433)R/WSets the regen resistor spower fault level for an external regen resistor.sercos [®] III (S3)SS3.ADDRESS (pg 438)NVSb.LOAD (pg 440)CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSD.STATUS (pg 441)R/OReads the status of the SD card.	REC.TRIGPARAM (pg 426)	R/W	Sets the parameter that triggers the recorder.
428)Rec. TRIGSLOPE (PG 429)R/WSets the trigger slope.REC. TRIGTYPE (PG 429)R/WSets the trigger type.REC. TRIGVAL (PG 430)R/WSets the trigger value.Regen Resistor (REGEN)RREGEN.POWER (PG 432)R/OREGEN.POWERFILTEREDR/OREGEN.REXT (PG 433)N/VSets the external, user-defined regen resistor resistance.REGEN.TEXT (pG 433)R/WSets the external regen resistor thermal protection time constant.REGEN.TYPE (PG 434)NVSets the regen resistor's power fault level for an external regen resistor.sercos [®] III (S3)S3.ADDRESS (pg 438)NVSD.LOAD (pg 440)CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSD.STATUS (pg 441)R/OReads the status of the SD card.	REC.TRIGPOS (pg 427)	R/W	Sets the trigger position in the recording buffer.
REC.TRIGSLOPE (PG 429)R/WSets the trigger slope.REC.TRIGTYPE (PG 429)R/WSets the trigger type.REC.TRIGVAL (PG 430)R/WSets the trigger value.Regen Resistor (REGEN)RREGEN.POWER (PG 432)R/OReads regen resistor's calculated power.REGEN.POWERFILTEREDR/OReturns a filtered version of REGEN.POWER .(pg 432)R/OSets the external, user-defined regen resistor resistance.REGEN.REXT (PG 433)N/VSets the external regen resistor thermal protection time constant.REGEN.TEXT (pg 433)R/WSets the regen resistor's power fault level for an external regen resistor.REGEN.WATTEXT (PG 434)NVSets the regen resistor's power fault level for an external regen resistor.Sercos [®] III (S3)NVSets and reads the sercos® slave address.SD card (SD)Sol CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.SATUS (pg 441)R/OReads the status of the SD card.	REC.TRIGPRMLIST (pg	R/O	Reads the list of possible trigger parameters.
REC.TRIGTYPE (PG 429)R/WSets the trigger type.REC.TRIGVAL (PG 430)R/WSets the trigger value.Regen Resistor (REGEN)RREGEN.POWER (PG 432)R/OReads regen resistor's calculated power.REGEN.POWERFILTEREDR/OReturns a filtered version of REGEN.POWER .(pg 432)R/OSets the external, user-defined regen resistor resistance.REGEN.REXT (PG 433)N/VSets the external regen resistor thermal protection time constant.REGEN.TEXT (pg 433)R/WSets the regen resistor's power fault level for an external regen resistor.REGEN.WATTEXT (PG 434)NVSets the regen resistor's power fault level for an external regen resistor.Sercos [®] III (S3)SSD.Card (SD)CommandSD.LOAD (pg 440)CommandSD.SAVE (pg 440)CommandSuss the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 441)R/OReads the status of the SD card.	428)		
REC.TRIGVAL (PG 430)R/WSets the trigger value.Regen Resistor (REGEN)R/OReads regen resistor's calculated power.REGEN.POWER (PG 432)R/OReads regen resistor's calculated power.REGEN.POWERFILTEREDR/OReturns a filtered version of REGEN.POWER .(pg 432)R/OReturns a filtered version of REGEN.POWER .REGEN.REXT (PG 433)N/VSets the external, user-defined regen resistor resistance.REGEN.TEXT (pg 433)R/WSets the external regen resistor thermal protection time constant.REGEN.TYPE (PG 434)NVSets the regen resistor's power fault level for an external regen resistor.Sercos [®] III (S3)Sats the regen resistor's power fault level for an external regen resistor.SD card (SD)CommandSD.LOAD (pg 440)CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 441)R/OReads the status of the SD card.	REC.TRIGSLOPE (PG 429)	R/W	Sets the trigger slope.
Regen Resistor (REGEN)R/OReads regen resistor's calculated power.REGEN.POWER (PG 432)R/OReturns a filtered version of REGEN.POWER .(pg 432)R/OReturns a filtered version of REGEN.POWER .(pg 432)REGEN.REXT (PG 433)N/VSets the external, user-defined regen resistor resistance.REGEN.TEXT (pg 433)R/WSets the external regen resistor thermal protection time constant.REGEN.TYPE (PG 434)NVSets the regen resistor type.REGEN.WATTEXT (PG 435)R/WSets the regen resistor's power fault level for an external regen resistor.sercos ⁽⁹⁾ III (S3)S3.ADDRESS (pg 438)NVSD.LOAD (pg 440)Command Loads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.	REC.TRIGTYPE (PG 429)	R/W	Sets the trigger type.
REGEN.POWER (PG 432)R/OReads regen resistor's calculated power.REGEN.POWERFILTEREDR/OReturns a filtered version of REGEN.POWER .(pg 432)REGEN.REXT (PG 433)N/VSets the external, user-defined regen resistor resistance.REGEN.TEXT (pg 433)R/WSets the external regen resistor thermal protection time constant.REGEN.TYPE (PG 434)NVSets the regen resistor type.REGEN.WATTEXT (PG 435)R/WSets the regen resistor's power fault level for an external regen resistor.sercos ⁽⁶⁾ III (S3)SS3.ADDRESS (pg 438)NVSD.LOAD (pg 440)CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMS equipped with IO option card only).SD.SAVE (pg 440)CommandSD.STATUS (pg 441)R/OReds the status of the SD card.	REC.TRIGVAL (PG 430)	R/W	Sets the trigger value.
REGEN.POWERFILTERED (pg 432)R/OReturns a filtered version of REGEN.POWER .REGEN.REXT (PG 433)N/VSets the external, user-defined regen resistor resistance.REGEN.TEXT (pg 433)R/WSets the external regen resistor thermal protection time con- stant.REGEN.TYPE (PG 434)NVSets the regen resistor type.REGEN.WATTEXT (PG 435)R/WSets the regen resistor's power fault level for an external regen resistor.sercos [®] III (S3)NVSets and reads the sercos® slave address.SD card (SD)DSD.LOAD (pg 440)CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.	Regen Resistor (REGEN)		
(pg 432)Image: constraint of the state (BASIC program and NV parameters) from the SD card (AKD PDMMs equipped with IO option card only).REGENTTUS (pg 441)R/WSets the status of the SD card.	REGEN.POWER (PG 432)	R/O	Reads regen resistor's calculated power.
REGEN.REXT (PG 433)N/VSets the external, user-defined regen resistor resistance.REGEN.TEXT (pg 433)R/WSets the external regen resistor thermal protection time constant.REGEN.TYPE (PG 434)NVSets the regen resistor type.REGEN.WATTEXT (PG 435)R/WSets the regen resistor's power fault level for an external regen resistor.sercos ^(©) III (S3)NVSets and reads the sercos ^(®) slave address.SD card (SD)Loads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.	REGEN.POWERFILTERED	R/O	Returns a filtered version of REGEN.POWER.
REGEN.TEXT (pg 433)R/WSets the external regen resistor thermal protection time constant.REGEN.TYPE (PG 434)NVSets the regen resistor type.REGEN.WATTEXT (PG 435)R/WSets the regen resistor's power fault level for an external regen resistor.sercos ^(®) III (S3)NVSets and reads the sercos [®] slave address.SD card (SD)SD.LOAD (pg 440)Command CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.	(pg 432)		
REGEN.TYPE (PG 434)NVSets the regen resistor type.REGEN.WATTEXT (PG 435)R/WSets the regen resistor's power fault level for an external regen resistor.sercos [®] III (S3)NVSets and reads the sercos® slave address.SD card (SD)Sets and reads the sercos® slave address.SD.LOAD (pg 440)CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card to the SD card only).SD.SAVE (pg 440)R/OReads the status of the SD card.	REGEN.REXT (PG 433)	N/V	Sets the external, user-defined regen resistor resistance.
REGEN.TYPE (PG 434)NVSets the regen resistor type.REGEN.WATTEXT (PG 435)R/WSets the regen resistor's power fault level for an external regen resistor.sercos ^(®) III (S3)NVSets and reads the sercos [®] slave address.S3.ADDRESS (pg 438)NVSets and reads the sercos [®] slave address.SD card (SD)CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.	REGEN.TEXT (pg 433)	R/W	Sets the external regen resistor thermal protection time con-
REGEN.WATTEXT (PG 435)R/WSets the regen resistor's power fault level for an external regen resistor.sercos (®) III (S3)NVSets and reads the sercos (®) slave address.SD card (SD)DSD.LOAD (pg 440)CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card to the SD card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.			stant.
435)regen resistor.sercos (© III (S3)NVS3.ADDRESS (pg 438)NVSD card (SD)Sets and reads the sercos (© slave address.)SD.LOAD (pg 440)CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSD.SAVE (pg 440)CommandSD.STATUS (pg 441)R/OReads the status of the SD card.	REGEN.TYPE (PG 434)	NV	Sets the regen resistor type.
sercos (®) III (S3)NVSets and reads the sercos (®) slave address.S3.ADDRESS (pg 438)NVSets and reads the sercos (®) slave address.SD card (SD)CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.	REGEN.WATTEXT (PG	R/W	Sets the regen resistor's power fault level for an external
S3.ADDRESS (pg 438)NVSets and reads the sercos® slave address.SD card (SD)Loads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card to the SD card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.	435)		regen resistor.
SD card (SD)CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.	sercos [®] III (S3)		
SD.LOAD (pg 440)CommandLoads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.	S3.ADDRESS (pg 438)	NV	Sets and reads the sercos® slave address.
from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.	SD card (SD)		
SD.SAVE (pg 440)CommandSaves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).SD.STATUS (pg 441)R/OReads the status of the SD card.	SD.LOAD (pg 440)	Command	· · · · · · · · ·
SD.SAVE (pg 440) Command Saves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only). SD.STATUS (pg 441) R/O Reads the status of the SD card.			· ·
to the SD card (AKD PDMMs equipped with IO option card only). SD.STATUS (pg 441) R/O Reads the status of the SD card.			equipped with IO option card only).
SD.STATUS (pg 441) R/O Reads the status of the SD card.	SD.SAVE (pg 440)	Command	
SD.STATUS (pg 441) R/O Reads the status of the SD card.			to the SD card (AKD PDMMs equipped with IO option card
			only).
Service Motion (SM)	SD.STATUS (pg 441)	R/O	Reads the status of the SD card.
	Service Motion (SM)		

Parameter or Command	Туре	Description
SM.I1 (pg 444)	R/W	Sets service motion current 1; active in opmode 0 (torque)
		only.
SM.I2 (pg 444)	R/W	Sets service motion current 2; active in opmode 0 (torque)
		only.
SM.MODE (pg 445)	R/W	Sets the service motion mode.
SM.MOVE (pg 447)	Command	Starts the service motion.
SM.T1 (pg 447)	R/W	Sets the service motion time 1.
SM.T2 (pg 448)	R/W	Sets the service motion time 2.
SM.V1 (pg 448)	R/W	Sets service motion velocity 1; active in opmode 1 (velocity) and 2 (position).
SM.V2 (pg 450)	R/W	Sets service motion velocity 2; active in opmode 1 (velocity) and 2 (position).
Safe Torque Off (STO)		
STO.STATE (pg 452)	R/O	Returns the status of the safe torque off.
Software Limit Switch (SWLS)		
SWLS.EN (pg 454)	NV	Enables and disables software travel limit switches.
SWLS.LIMIT0 (pg 454)	NV	Sets the position of the software travel limit switch 0.
SWLS.LIMIT1 (pg 455)	NV	Sets the position of the software travel limit switch 0.
SWLS.STATE (pg 456)	R/O	Reads the actual status of software limit switches.
Temperature (TEMP)		
TEMP.CONTROL (pg 458)	R/O	Reads the temperature of the control board temperature sensor.
TEMP.POWER1 to	R/O	Reads the temperature of the power board(s) temperature
TEMP.POWER3 (pg 458)		sensor(s).
User (USER)		
Bus Volatage (VBUS)		
VBUS.HALFVOLT (pg 462)	NV	Changing voltage thresholds for HV and MV Drives
VBUS.OVFTHRESH (pg 463)	R/O	Reads the over voltage fault level.
VBUS.OVWTHRESH (pg 463)	N/V	Sets voltage level for over voltage warning.
VBUS.RMSLIMIT (pg 464)	R/O	Reads the limit for the bus capacitors load.
VBUS.UVFTHRESH (pg 464)	R/O	Sets the under voltage fault level.
VBUS.UVMODE (pg 465)	NV	Indicates undervoltage (UV) mode.
VBUS.UVWTHRESH (pg	NV	Sets voltage level for undervoltage warning.
465)		
VBUS.VALUE (pg 466)	R/O	Reads DC bus voltage.

Parameter or Command	Туре	Description
Velocity Loop (VL)	1960	
VL.ARPF1 TO VL.ARPF4	R/W	Sets the natural frequency of the pole (denominator) of anti-
(pg 468)		resonance (AR) filters 1, 2, 3, and 4; active in opmodes 1
		(velocity) and 2 (position) only.
VL.ARPQ1 TO VL.ARPQ4	R/W	Sets the Q of the pole (denominator) of anti-resonance (AR)
(pg 469)		filter 1; active in opmodes 1 (velocity) and 2 (position) only.
VL.ARTYPE1 TO	NV	Indicates the method used to calculate BiQuad coefficients;
VL.ARTYPE4 (pg 470)		active in opmodes 1 (velocity) and 2 (position) only.
VL.ARZF1 TO VL.ARZF4	R/W	Sets the natural frequency of the zero (numerator) of anti-res-
(pg 471)		onance (AR)filter 1; active in opmodes 1 (velocity) and 2
		(position) only.
VL.ARZQ1 TO VL.ARZQ4	R/W	Sets the Q of the zero (numerator) of anti-resonance filter
(pg 472)		#1; active in opmodes 1 (velocity) and 2 (position) only.
VL.BUSFF (pg 473)	R/O	Displays the velocity loop feedforward value injected by the
		field-bus; active in opmodes 1 (velocity) and 2 (position)
		only.
VL.CMD (PG 473)	R/O	Reads the actual velocity command; active in opmodes 1
		(velocity) and 2 (position) only.
VL.CMDU (PG 474)	R/W	Sets the user velocity command; active in opmodes 1 (velo-
		city) and 2 (position) only.
VL.ERR (PG 475)	R/O	Sets the velocity error; active in opmodes 1 (velocity) and 2
		(position) only.
VL.FB (PG 476)	R/O	Reads the velocity feedback; active in opmodes 1 (velocity)
		and 2 (position) only.
VL.FBFILTER (pg 476)	R/O	Filters VL.FB (pg 475) value; active in opmodes 1 (velocity)
		and 2 (position) only.
VL.FBSOURCE (pg 477)	NV	Sets feedback source for the velocity loop; active in
		opmodes 1 (velocity) and 2 (position) only.
VL.FBUNFILTERED (pg	R/O	Reads the velocity feedback.
477)		
VL.FF (pg 478)	R/O	Displays the velocity loop overall feedforward value; active
		in opmodes 1 (velocity) and 2 (position) only.
VL.GENMODE (PG 479)	NV	Selects mode of velocity generation (Observer, d/dt); active
. ,		in opmodes 1 (velocity) and 2 (position) only.
VL.KBUSFF (pg 479)	R/W	Sets the velocity loop acceleration feedforward gain value;
·····		active in opmodes 1 (velocity) and 2 (position) only.
VL.KI (pg 480)	NV	Sets the velocity loop integral gain for the PI controller; act-
		ive in opmodes 1 (velocity) and 2 (position) only.
VL.KP (pg 481)	NV	Sets velocity loop proportional gain for the PI controller; act-
		ive in opmodes 1 (velocity) and 2 (position) only.
		ive in opmodes 1 (velocity) and 2 (position) only.

Parameter or Command	Туре	Description
VL.KVFF (pg 484)	R/W	Sets the velocity loop velocity feedforward gain value; act-
		ive in opmodes 1 (velocity) and 2 (position) only.
VL.LIMITN (PG 484)	NV	Sets the velocity lower limit; active in opmodes 1 (velocity)
		and 2 (position) only.
VL.LIMITP (PG 486)	NV	Sets the velocity high limit; active in opmodes 1 (velocity)
		and 2 (position) only.
VL.LMJR (pg 488)	R/W	Sets the ratio of the estimated load moment of inertia rel-
		ative to the motor moment of inertia; active in opmodes 1
		(velocity) and 2 (position) only.
VL.MODEL (pg 488)	R/O	Reads the observer velocity signal; active in opmodes 1
		(velocity) and 2 (position) only.
VL.OBSBW (pg 489)	NV	Sets the bandwidth of the observer in Hz.
VL.OBSMODE (pg 489)	NV	Sets the observer operating mode.
VL.THRESH (PG 490)	NV	Sets the over speed fault value; active in opmodes 1 (velo-
		city) and 2 (position) only.
Wake and Shake (WS)		
WS.ARM	Command	Sets wake and shake to start at the next drive enable.
WS.CHECKMODE (pg 1)	R/W	Select the type of commutation check to execute after
		Wake and Shake finds a new commutation angle.
WS.CHECKT (pg 1)	R/W	Sets the amount of time a communication error must be
		present before an error is thrown.
WS.CHECKV (pg 1)	R/W	This parameter sets the velocity threshold which has to be
		exceeded to activate commutation monitoring.
WS.DISARM	Command	·
		IDLE state.
WS.DISTMAX	R/W	Sets maximum movement allowed for wake and shake.
WS.DISTMIN	R/W	Sets the minimum movement required for wake and shake.
WS.FREQ (pg 1)	R/W	Sets the sine frequency of excitation for WS.MODE 2.
WS.IMAX	R/W	Sets maximum current used for wake and shake.
WS.MODE	R/W	Sets the method used for wake and shake.
WS.NUMLOOPS	R/W	Sets the number of repetitions for wake and shake.
WS.STATE	R/O	Reads wake and shake status
WS.T	R/W	Sets wake and shake current-vector appliance time
WS.TDELAY1	NV	Delay for wake and shake timing
WS.TDELAY2	NV	Sets the delay for wake and shake timing.
WS.TDELAY3	NV	Sets the delay for wake and shake between loops in mode
		0.
WS.TIRAMP (pg 1)	R/W	Sets the ramp time for the ramp up current in Wake & Shake
	1	

Parameter or Command	Туре	Description
WS.TSTANDSTILL (pg 1)	R/W	Sets the calming time of the motor for Wake & Shake mode 1.
WS.VTHRESH	NV	Defines the maximum allowed velocity for Wake & Shake

20 AOUT Parameters

This section describes the AOUT parameters.

20.1	AOUT.CUTOFF	192
20.2	AOUT.ISCALE	
20.3	AOUT.MODE	
20.4	AOUT.OFFSET	194
20.5	AOUT.PSCALE	
20.6	AOUT.VALUE	
20.7	AOUT.VALUEU	
20.8	AOUT.VSCALE	

20.1 AOUT.CUTOFF

General Inform	General Information				
Туре	NV Parameter				
Description	Sets the analog output low-pass filter cutoff fre- quency.				
Units	Hz				
Range	0 to 10,000 Hz				
Default Value	0 Hz				
Data Type	Float				
See Also	Analog Output				
Start Version	M_01-04-01				

Fieldbus Information

Description

AOUT.CUTOFF sets the cutoff frequency in Hz for a single-pole low-pass filter on the Analog Output.

A value of 0 Hz will turn off the filter and will allow all frequencies to pass through.

The filter can be used with all modes of Analog Output.

Related Topics

Analog Output (pg 1)

20.2 AOUT.ISCALE

General Information	
Туре	NV Parameter
Description	Sets the analog current scale factor.
Units	A/V
Range	0.001 to 22.4 A/V
Default Value	0.001 to 22.4 A/V
Data Type	Float
See Also	AOUT.VALUE (pg 196)
Start Version	M_01-01-01-000

Fieldbus Information

Description

AOUT.ISCALE sets the analog current scale factor that scales the analog output (AOUT.VALUE) for AOUT.MODE = 4 or 5. The value entered is the motor current per 10 V of analog input or output. This value may be either higher or lower than 100%, but the actual analog I/O will be limited by the application current limit (IL.LIMITN (pg 362) and IL.LIMITP (pg 363)).

Related Topics

Analog Output (pg 1)

20.3 AOUT.MODE

General Information		
Туре	NV Parameter	
Description	Sets the analog output mode.	
Units	N/A	
Range	0 to 11	
Default Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

SynqNet Information		
Range	12	

Fieldbus Information

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3470h/1	M 01-00-00-000
CANopen	347 011/ 1	W_01-00-00-000

Description

AOUT.MODE sets the analog output functionality.

AOUT.MODE	Description
0	User variable. The analog output signal is determined by
	the user (using AOUT.VALUEU).
1	Actual velocity. The analog signal describes the current
	velocity value (VL.FB).
2	Velocity error. The analog signal describes the velocity
	error value.
3	Velocity command. The analog signal describes the velo-
	city command value.

AOUT.MODE	Description
4	Actual current. The analog signal describes the actual cur-
	rent value.
5	Current command. The analog signal describes the current
	command value.
6	Actual position. The analog signal describes the current
	position value.
7	Position error. The analog signal describes the position
	error value.
8	Triangle wave. The analog signal is a triangle wave (saw-
	tooth pattern).
9	Debug mode. In this mode the user can define a drive vari-
	able to monitor via the analog output (AOUT.VALUEU).
10	Unfiltered Velocity (VL.FBUNFILTERED)
11	Filtered Velocity - 10Hz Lowpass (VL.FBFILTER)

Example

You can use AOUT.MODE and AOUT.VALUEU to configure an output signal as follows:

```
-->AOUT.MODE 0
-->AOUT.VALUEU 5
-->AOUT.VALUEU 4.33
```

Related Topics

Analog Output (pg 1)

20.4 AOUT.OFFSET

General Information		
Туре	NV Parameter	
Description	Sets the analog output off- set.	
Units	V	
Range	-10 to +10 V	
Default Value	0 V	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus Information

Description

This parameter sets the analog output offset.

Related Topics

Analog Output (pg 1)

20.5 AOUT.PSCALE

General Inform	mation	
Туре	NV Parameter	
Description	Sets the analog position scale factor.	
	Rotary: counts/V,rad/V, deg/V, 16-bit count- s/V	
Units	Linear: counts/V, mm/V, µm/V, 16-bit count-	
	s/V	
	Rotary:	
	1 to 9,223,372,036,854,775 counts/V	
	0 to 13,493,026.816 rad/V	
	0 to 773,094,113.280 deg/V	
Dongo	0 to 140,737,488,355.327 16-bit counts/V	
Range	Linear:	
	1 to 9,223,372,036,854,775 counts/V	
	0 to 2,147,483.648 mm/V	
	0 to 2,147,483,648.000 μm/V	
	0 to 140,737,488,355.327 16-bit counts/V	
	Rotary:	
	1 counts/V	
	0 rad/V	
	0 deg/V	
Default	0 16-bit counts/V	
Value	Linear:	
	1 counts/V	
	0 rad/V	
	0 deg/V	
	0 counts16 bit/V	
Data Type	Float	
See Also	AOUT.VALUE (pg 196)	
Start Version	M_01-01-01-000	

Fieldbus Information

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3471h/0	M_01-00-00-000
CANopen		

Description

AOUT.PSCALE is an analog position scale factor that scales the analog output (AOUT.VALUE (pg 196)) for AOUT.MODE (pg 193) = 6, or 7 (actual position or position error) per 10 V of analog input or output.

Related Topics

Analog Output (pg 1)

20.6 AOUT.VALUE

General Information	
Туре	R/O Parameter
Description	Reads the analog output value.
Units	V
Range	–10 to +10 V
Default Value	0
Data Type	Float
See Also	N/A
Start Version	M_01-00-000

Fieldbus Information

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3470h/2	M 01-00-00-000
CANopen	547011/2	W_01-00-00-000

Description

AOUT.VALUE reads the analog output value.

Related Topics

Analog Output (pg 1)

20.7 AOUT.VALUEU

General Information	
Туре	R/W Parameter
Description	Sets the analog output value.
Units	V

General Information		
Range	–10 to +10 V	
Default	0	
Value	0	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus Information

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3470h/3	M 01-00-00-000
CANopen	34701/3	M_01-00-00-000

Description

AOUT.VALUEU reads/writes the analog output value when AOUT.MODE (pg 193) = 0 (analog output signal is determined by the user).

Related Topics

Analog Output (pg 1)

20.8 AOUT.VSCALE

General Information		
Туре	NV Parameter	
Description	Sets the velocity scale factor for analog output.	
	Depends on UNIT.VROTARY or UNIT.ACCLINEAR	
Units	Rotary: rpm/V, rps/V, (deg/s)/V, [(custom units)/s]/V, (rad/s)/V	
	Linear: counts/s/V, (mm/s)/V, (µm/s)/V, [(custom units)/s]/V	
	Rotary:	
	0.060 to 60,000 rpm/V	
	0.001 to 1,000 rps/V	
Range	0.359 to 360,000 (deg/s)/V	
	0.005 to 5,000 [(custom units)/s]/V	
	0.006 to 6,283.186 (rad/s)/V	
	Linear:	
	0.001 to 1.000 counts/s/V	
	0.001*MOTOR.PITCH to 1,000.000*MOTOR.PITCH (mm/s)/V	
	0.998*MOTOR.PITCH to 1,000,000.000*MOTOR.PITCH(µm/s)/V	
	0.005 to 5,000 [(custom units)/s]/V	

General Information		
	Rotary:	
	0.060 rpm/V	
	0.001 rps/V	
Default Value	0.359 (deg/s)/V	
	0.005 [(custom units)/s]/V	
	0.006 (rad/s)/V	
	Linear:	
	0.001 counts/s/V	
	0.001*MOTOR.PITCH (mm/s)/V	
	0.998*MOTOR.PITCH (μm/s)/V	
	0.005 [(custom units)/s]/V	
Data Type	Float	
See Also	AOUT.VALUE	
Start Version	M_01-00-000	

Variants Supported

Fieldbus Information

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3470h/5	M 01-00-00-000
CANopen		

Description

AOUT.VSCALE is an analog velocity scale factor that scales the analog output (AOUT.VALUE) for AOUT.MODE = 1, 2, or 3. The value entered is the motor velocity per 10 V of analog output. This value may be either higher or lower than the application velocity limit (VL.LIMITP or VL.LIMITN), but the actual analog I/O will be limited by VL.LIMITP or VL.LIMITN.

Related Topics

Analog Output (pg 1)

21 AOUT2 Parameters

This section describes the AOUT2 parameters.

21.1	AOUT2.CUTOFF	.200
21.2	AOUT2.MODE	.200
21.3	AOUT2.OFFSET	. 201
21.4	AOUT2.VALUE	.201
21.5	AOUT.VALUEU	.202

21.1 AOUT2.CUTOFF

General Information		
Туре	NV Parameter	
Description	Sets the analog output 2 low-pass filter cutoff fre- quency.	
Units	Hz	
Range	0 to 10,000 Hz	
Default Value	0 Hz	
Data Type	Float	
See Also	Analog Output	
Start Version	M_01-06-03-000	

Description

AOUT2.CUTOFF sets the cutoff frequency in Hz for a single-pole low-pass filter on the Analog Output 2.

A value of 0 Hz will turn off the filter and will allow all frequencies to pass through.

The filter can be used with all modes of Analog Output 2.

Related Topics

1 Analog Output

21.2 AOUT2.MODE

General Information		
Туре	NV Parameter	
Description	Sets the analog output 2	
	mode.	
Units	N/A	
Range	0	
Default	0	
Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-06-03-000	

Description

AOUT2.MODE sets the analog output functionality.

Mode 0: User variable. The analog output 2 signal is determined by the user (using AOUT.VALUEU (pg 202)).

Example

You can use AOUT.MODE and AOUT.VALUEU to configure an output signal as follows:

-->AOUT.MODE 0 -->AOUT.VALUEU 5 -->AOUT.VALUEU 4.33

Related Topics

1 Analog Output

21.3 AOUT2.OFFSET

General Information		
Туре	NV Parameter	
Description	Sets the analog output 2 off- set.	
Units	V	
Range	-10 to +10 V	
Default Value	0 V	
Data Type	Float	
See Also	N/A	
Start Version	M_01-06-03-000	

Description

This parameter sets the analog output 2 offset.

Related Topics

1 Analog Output

21.4 AOUT2.VALUE

General Information		
Туре	R/O Parameter	
Description	Reads the analog output 2 value.	
Units	V	
Range	–10 to +10 V	
Default Value	0	
Data Type	Float	
See Also	N/A	
Start Version	M_01-06-03-000	

Description

AOUT2.VALUE reads the analog output 2 value.

Related Topics

1 Analog Output

21.5 AOUT.VALUEU

General Information		
Туре	R/W Parameter	
Description	Sets the analog output 2 value.	
Units	V	
Range	–10 to +10 V	
Default Value	0	
Data Type	Float	
See Also	N/A	
Start Version	M_01-06-03-000	

Description

AOUT2.VALUEU reads/writes the analog output 2 value when AOUT2.MODE (pg 200) = 0 (analog output signal is determined by the user).

Related Topics

1 Analog Output

22 BODE Parameters

This section describes the BODE parameters.

22.1	BODE.EXCITEGAP	. 204
22.2	BODE.FREQ	.204
22.3	BODE.IAMP	. 205
22.4	BODE.IFLIMIT	.206
22.5	BODE.IFTHRESH	. 207
22.6	BODE.INJECTPOINT	. 208
22.7	BODE.MODE	.208
22.8	BODE.MODETIMER	.211
22.9	BODE.PRBDEPTH	.213
22.10	BODE.VAMP	.214
22.11	BODE.VFLIMIT	. 215
22.12	BODE.VFTHRESH	.216

22.1 BODE.EXCITEGAP

General Information		
Туре	R/W Parameter	
Description	Controls how often the excitation is updated.	
Units	Drive samples	
Range	1 to 255 drive samples	
Default Value	2 drive samples	
Data Type	N/A	
See Also	BODE.MODE (pg 208)	
Start Version	M_01-00-00-000	

Description

BODE.EXCITEGAP controls how often the excitation is updated. The excitation is updated every n drive samples, where n is BODE.EXCITEGAP. For example, if BODE.EXCITEGAP = 2, then the excitation is updated every 2/(16,000 Hz) = 1/8,000 Hz = 0.000125 sec. When measuring a system, update the excitation only as often as the data is recorded.

Example

Set excitation update rate to 8,000 Hz:

-->BODE.EXCITEGAP 2

Set excitation update rate to 4,000 Hz:

-->BODE.EXCITEGAP 4

Get excitation update rate (already set to 8000 Hz):

-->BODE.EXCITEGAP 2

Related Topics

Using the Performance Servo Tuner | Using the Performance Servo Tuner: Advanced

Scope (pg 79)

Settings

F126 (pg 104)

Error: Invalid Bode plot mode for this function. (pg 131) and other errors)

22.2 BODE.FREQ

General Information		
Туре	R/W Parameter	
Description	Sets the frequency of the sine excitation source.	
Units	Hz	
Range	0 to 8,000 Hz	

General Info	General Information	
Default	0 Hz	
Value		
Data Type	Float	
See Also	BODE.MODE (pg 208)BODE.INJECTPOINT (pg 208), BODE.IAMP, BODE.VAMP (pg	
000 AI30	214)	
Start Ver-	M 01-00-000	
sion		

Description

BODE.FREQ sets the frequency of the sine excitation source in Hz. The sine excitation source is used to take frequency response measurements of a system.

Example

Setting up a sine excitation source of 0.2 A at 50 Hz:

-->BODE.INJECTPOINT 1 -->BODE.IAMP 0.2 -->BODE.FREQ 50.0 -->BODE.MODE 2

Related Topics

- 1 Using the PST
- 1 Using the Performance Servo Tuner: Advanced

Scope (pg 79)

1 Settings (set command source)

F126 (pg 104)

Error: Invalid Bode plot mode for this function. (pg 131) (and others)

22.3 BODE.IAMP

General Information		
Туре	R/W Parameter	
Description	Sets current command value used during the Bode pro- cedure.	
Units	A	
Range	+/- Combined drive and motor current limit	
Default Value	0.2 A	
Data Type	Float	
See Also	BODE.INJECTPOINT (pg 208), BODE.FREQ (pg 204)	
Start Version	M_01-00-000	

Description

BODE.IAMP sets the amplitude of the excitation when in current mode as set in BODE.INJECTPOINT. When using BODE.MODE (pg 208) = 1 and BODE.INJECTPOINT (pg 208) = 1, this parameter will determine the level of noise injected to commanded current value.

Example

Set the excitation current to 0.2 A:

-->BODE.IAMP 0.2 Get the excitation current (already set to 0.2 A):

-->BODE.IAMP 0.200 [A]

Related Topics

1 Using the PST

Using the Autotuner: Advanced

Scope (pg 79)

1 Settings (set command source)

F126 (pg 104)

Error: Invalid Bode plot mode for this function. (pg 131) (and others)

22.4 BODE.IFLIMIT

General Info	General Information		
Туре	R/W Parameter		
Description	Sets the current fault duration limit in seconds for the BODE.MODE 5 stability test.		
Units	S		
Range	0.001 to 60.000		
Default Value	0		
Data Type	Decimal		
See Also	BODE.MODE (pg 208),BODE.MODETIMER (pg 211), BODE.IFTHRESH (pg 207), BODE.VFLIMIT (pg 215), BODE.VFTHRESH (pg 216)		
Start Ver- sion	M_01-02-10-000		

Description

When BODE.MODE is set to 5, the firmware monitors the drive current (IL.CMD (pg 349)). When IL.CMD goes above BODE.IFTHRESH (pg 207), an internal counter records the length of time IL.CMD was above BODE.IFTHRESH. If the internal counter reaches BODE.IFLIMIT, Fault 133 – Instability during Autotune will be generated.

The smaller BODE.IFLIMIT, the quicker Fault 133 will be generated when IL.CMD exceeds BODE.IFLIMIT.

Example

Set BODE.IFTHRESH to 6 Amps:

-->BODE.IFTHRESH 6 Set BODE.IFLIMIT to 0.500 seconds:

-->BODE.IFLIMIT 0.5

Set BODE.MODE to 5 to enable stability detection:

BODE.MODE 5

Related Topics

1 Using the PST

Using the Autotuner: Advanced

F133 (pg 104)

22.5 BODE.IFTHRESH

General Info	General Information	
Туре	R/W Parameter	
Description	Sets the current fault threshold for the BODE.MODE 5 stability test.	
Units	Α	
Range	0.001 to DRV.IPEAK or MOTOR.IPEAK (whichever is lowest) A	
Default Value	0 A	
Data Type	Decimal	
See Also	BODE.MODE (pg 208),BODE.MODETIMER (pg 211), BODE.VFLIMIT (pg 215), BODE.VFTHRESH (pg 216), BODE.IFLIMIT (pg 206)	
Start Ver- sion	M_01-02-10-000	

Description

When BODE.MODE (pg 208) is set to 5, the firmware monitors the drive current (IL.CMD (pg 349)). When IL.CMD goes above BODE.IFTHRESH, an internal counter records the length of time IL.CMD was above BODE.IFTHRESH. If the internal counter reaches BODE.IFLIMIT (pg 206), Fault 133 (Instability during Autotune) is generated.

Example

Set BODE.IFTHRESH to 6 Amps:

```
-->BODE.IFTHRESH 6
```

Set BODE.IFLIMIT to 0.500 seconds:

```
-->BODE.IFLIMIT 0.5
```

Set BODE.MODE to 5 to enable stability detection:

BODE.MODE 5

Related Topics

1 Using the PST

Using the Autotuner: Advanced

F133 (pg 104)

22.6 BODE.INJECTPOINT

General Information		
Туре	R/W Parameter	
Description	Sets whether the excitation uses current or velocity excitation type.	
Units	N/A	
Range	0 to 2	
Default Value	0	
Data Type	Integer	
See Also	BODE.IAMP (pg 205), BODE.MODE (pg 208), BODE.VAMP (pg 214)	
Start Version	M_01-00-000	

Description

BODE.INJECTPOINT sets whether the excitation uses current or velocity excitation type.

BODE.INJECTPOINT	Description
0	None
1	Current
2	Velocity

Example

Set BODE.INJECTPOINT to current:

```
-->BODE.INJECTPOINT 1
```

Get BODE.INJECTPOINT (already set to current):

-->BODE.INJECTPOINT 1

Related Topics

1 Using the PST

Using the Autotuner: Advanced

Scope (pg 79)

1 Settings (set command source)

F126 (pg 104)

Error: Invalid Bode plot mode for this function. (pg 131) and others)

22.7 BODE.MODE

General Information	
Туре	R/W Parameter
Description	Sets the mode of the excitation.

General Information		
Units	N/A	
Range	0 to 4	
Default Value	0	
Data Type	Integer	
See Also	BODE.INJECTPOINT (pg 208)BODE.VAMP (pg 214)	
Start Version	M_01-00-000	

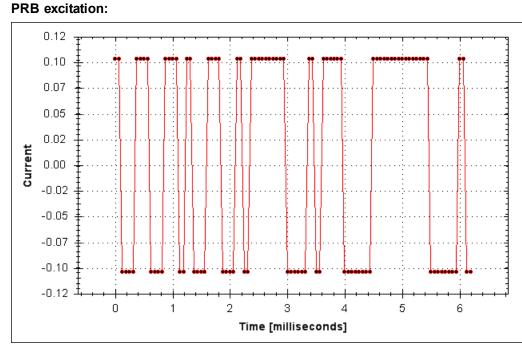
Description

BODE.MODE sets the mode of the excitation. The excitation can be set to the modes shown in the table below. BODE.MODE is always set to **None** when Ethernet communication is disconnected. The peak amplitude of the excitation is set by either BODE.IAMP or BODE.VAMP (depending on BODE.INJECTPOINT).

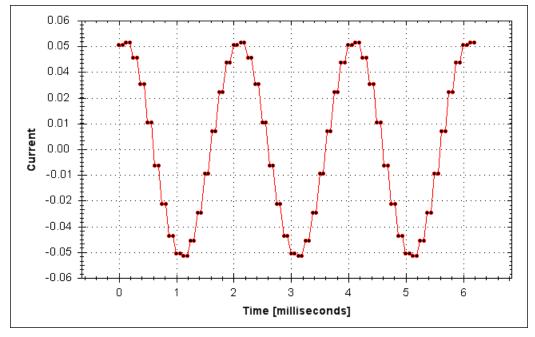
BODE.MODE is subject to a watchdog timer (BODE.MODETIMER) as follows:

- If BODE.MODETIMER is 0, then BODE.MODE is not affected.
- If BODE.MODETIMER is set to a value greater than 0, then BODE.MODE will be set to 0 (None) after the BODE.MODETIMER time milliseconds.
- If BODE.MODE is a nonzero value, and you reset BODE.MODE to another nonzero value, you will reset the watchdog timer. This mechanism is intended to turn off the excitation signal if you lose communication with the drive.

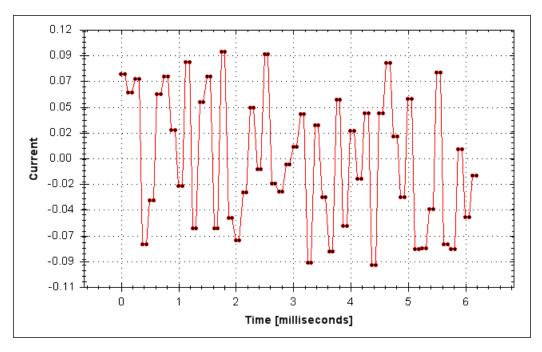
BODE.MODE	Description	Comments
0	None	Turns all excitation off
1	PRB	Uses Pseudo Random Binary (PRB) excitation. PRB is a signal that is always +/- peak amplitude, varying only in phase. PRB excitation results in a flat excitation frequency spectrum. PRB results in a high peak excitation amplitude, which can help minimize friction in a fre- quency response test. PRB excitation repeats every (2^BODE.PRBDEPTH) / BODE.EXCITEGAP drive samples. This repetition can be used to reveal the effects of friction.
2	Sine	Uses Sine excitation
3	Noise	Uses random noise excitation. Noise is a random number generator that varies between +/- peak amplitude.
4	Offset	Sets a torque offset equal to BODE.IAMP


Example

Set BODE.MODE to PRB:


-->BODE.MODE 1

Get BODE.MODE (already set to PRB):


-->BODE.MODE 1

Sine excitation:

Noise excitation:

Related Topics

Using the PST

Using the Autotuner: Advanced

Scope (pg 79)

1 Settings (set command source)

F126 (pg 104)

Error: Invalid Bode plot mode for this function. (pg 131) and others)

22.8 BODE.MODETIMER

General Information		
Туре	R/W Parameter	
Description	Sets the watchdog timer of the excit- ation.	
Units	ms	
Range	0 to 268,435,456	
Default Value	0	
Data Type	Integer	
See Also	BODE.MODE (pg 208)	
Start Version	M_1-03-00-000	

Variants Supported

Fieldbus Information

Description

BODE.MODETIMER sets the watchdog timer for the excitation. This watchdog is used to automatically turn off the excitation of the system if communication is lost. It is highly recommended that you use the watchdog for any excitation measurements. The <u>EWV</u>¹ Performance Servo Tuner and Bode tool automatically use these values, requiring no action from you.

If the BODE.MODETIMER is a nonzero value, the Bode watchdog is enabled. BODE.MODE will be set to 0 (None) after the BODE.MODETIMER value elapses. To reset the watchdog timer, reset BODE.MODE to a nonzero value.

BODE.MODETIMER	Comments
0	BODE.MODE is left at the value you set it to.
> 0	Uses pseudo random binary (PRB) excitation. PRB is a signal that is always +/- peak amplitude, varying only in phase.
	PRB excitation results in a flat excitation frequency spectrum. PRB also results in a high peak excitation amplitude, which can help minimize friction in a fre- quency response test. PRB excitation repeats every (2^BODE.PRBDEPTH)/BODE.EXCITEGAP
	drive samples. This repetition can be used to reveal the effects of friction.

Example

Disable BODE.MODETIMER:

-->BODE.MODETIMER //

Set to 0 to disable the watchdog

```
0
```

-->BODE.MODE // Observe starting state of the Bode mode

0

-->BODE.MODE 1 // Set Bode mode to PRB

-->BODE.MODE // Observe Bode mode state is the same after 0.5 seconds

1

-->BODE.MODE // Observe Bode mode state is the same after 10 seconds

1

Enable BODE.MODETIMER:

-->BODE.MODETIMER 1000 // Set watchdog to 1 second

-->BODE.MODE 1 // Set Bode mode to PRB

-->BODE.MODE // Observe Bode mode state is the same after 0.5 seconds

1

-->BODE.MODE // Observe Bode mode state has been set to zero after 1.0 seconds

0

¹Embedded Workbench Views

Enable and reenable BODE.MODETIMER:

-->BODE.MODETIMER 2500 // Set watchdog to 2.5 seconds

-->BODE.MODE 1 // Set Bode mode to PRB

-->BODE.MODE // Observe Bode mode state is the same after 1.5 seconds

1

--->BODE.MODE 1 // Set Bode mode to PRB, resetting the watchdog timer to the original 2.5 second value

set above.

--->BODE.MODE // Observe Bode mode state is the same after 3.0 seconds after the original enabling of BODE.MODE 1

-->BODE.MODE // Observe Bode mode state has been set to zero after 4.0 seconds after the original enabling

of BODE.MODE

0

Related Topics

```
1 Using the Autotuner
```

Using the Autotuner: Advanced

Scope (pg 79)

1 Settings (set command source)

F126 (pg 104)

Error: Invalid Bode plot mode for this function. (pg 131) and others)

22.9 BODE.PRBDEPTH

General Information		
Туре	R/W Parameter	
Description	Sets the length of the PRB signal before it repeats.	
Units	NA	
Range	4 to 19	
Default Value	19	
Data Type	Integer	
See Also	BODE.MODE (pg 208), BODE.INJECTPOINT (pg 208), BODE.IAMP (pg 205), BODE.VAMP (pg 214)	
Start Ver- sion	M_01-00-000	

Variants Supported

Fieldbus Information

Description

BODE.PRBDEPTH sets the length of the PRB signal before it repeats. This applies only when BODE.MODE = PRB. The PRB excitation will repeat after (2^BODE.PRBDEPTH) / BODE.EXCITEGAP drive samples.

Example

Set BODE.PRBDEPTH to 19:

-->BODE.PRBDEPTH 19

Get BODE.PRBDEPTH (already set to 19):

-->BODE.PRBDEPTH 19

Related Topics

1 Using the PST

Using the Autotuner: Advanced

Scope (pg 79)

1 Settings (set command source)

F126 (pg 104)

Error: Invalid Bode plot mode for this function. (pg 131) and others)

22.10 BODE.VAMP

General Information		
Туре	R/W Parameter	
Description	Sets the amplitude of the excitation when in velocity	
	mode.	
Units	Rotary: rpm, rps, deg/s, rad/s	
	Linear: counts/s, mm/s, μm/s	
Range	Rotary:	
	0.000 to 15,000.000 rpm	
	0.000 to 250.000 rps	
	0.000 to 90,000.000 degree/s	
	0.000 to 1,570.796 rad/s	
	Linear:	
	0.000 to 1,073,741,824,000.000 counts/s	
	0.000 to 8,000.000 mm/s	
	0.000 to 8,000,000.000 µm/s	
Default	0	
Value	·	
Data Type	Float	

General Information		
See Also	BODE.MODE (pg 208), BODE.INJECTPOINT (pg 208)	
Start Version	M_01-00-000	

Variants Supported

Fieldbus Information

Description

BODE.VAMP sets the amplitude of the excitation when in velocity mode as set in BODE.INJECTPOINT.

Example

Set the excitation velocity to 100 RPM

-->BODE.VAMP 100

Get the excitation velocity(already set to 100 RPM)

-->BODE.VAMP

100.000 [rpm]

Related Topics

1 Using the PST

Using the Autotuner: Advanced

Scope (pg 79)

1 Settings (set command source)

F126 (pg 104)

Error: Invalid Bode plot mode for this function. (pg 131) and others)

22.11 BODE.VFLIMIT

General Information		
Туре	R/W Parameter	
Description	Sets the velocity fault duration limit (seconds) for the BODE.MODE 5 stability test	
Units	S	
Range	0.001 to 60.000	
Default Value	0	
Data Type	Decimal	
See Also	BODE.MODE, BODE.MODETIMER, BODE.IFLIMIT, BODE.IFTHRESH, BODE.VFTHRESH	
Start Ver- sion	M_01-02-10-000	

Variants Supported

Fieldbus Information

Description

When BODE.MODE is set to 5, the firmware monitors the drive feedback velocity VL.FB. When VL.FB goes above BODE.VFTHRESH, an internal counter records the length of time VL.FB was above BODE.VFTHRESH. If the internal counter reaches BODE.VFLIMIT, Fault 133 – Instability during Auto-tune will be generated.

The smaller BODE.VFLIMIT, the quicker Fault 133 will be generated when VL.FB exceeds BODE.VFLIMIT.

Example

Set BODE.VFTHRESH to 10 RPM:

```
-->BODE.VFTHRESH 10
```

Set BODE.VFLIMIT to 0.500 seconds

-->BODE.VFLIMIT 0.5

Set BODE.MODE to 5 to enable stability detection

-->BODE.MODE 5

Related Topics

1 Using the PST Using the Autotuner: Advanced

F133 (pg 104)

22.12 BODE.VFTHRESH

General Information		
Туре	R/W Parameter	
Description	Sets the current fault threshold for the BODE.MODE 5 stability test.	
Units	Rotary: rpm, rps, deg/s, rad/s	
	Linear: counts/s, mm/s, μm/s	
	Rotary:	
	0.000 to 15,000.000 rpm	
	0.000 to 250.000 rps	
	0.000 to 90,000.000 deg/s	
_	0.000 to 1,570.796 rad/s	
Range	Linear:	
	0.000 to 1,073,741,824,000.000 counts/s	
	0.000 to 8,000.000 mm/s	
	0.000 to 8,000,000.000 μm/s	
	0.000 to 1,250.000 Custom UnitsCustom Units/s	
Default	0	
Value	·	
Data Type	Decimal	

General Information		
See Also	BODE.MODE, BODE.MODETIMER, BODE.IFLIMIT, BODE.IFTHRESH, BODE.VFLIMIT	
Start Ver- sion	M_01-02-10-000	

Variants Supported

Fieldbus Information

Description

When BODE.MODE is set to 5, the firmware monitors the drive feedback velocity VL.FB. When VL.FB goes above BODE.VFTHRESH, an internal counter records the length of time VL.FB was above BODE.VFTHRESH. If the internal counter reaches BODE.VFLIMIT, Fault 133 – Instability during Auto-tune will be generated.

The smaller BODE.VFLIMIT, the quicker Fault 133 will be generated when VL.FB exceeds BODE.VFLIMIT.

Example

Set BODE.VFTHRESH to 10 RPM:

-->BODE.VFTHRESH 10 Set BODE.VFLIMIT to 0.500 seconds:

-->BODE.VFLIMIT 0.5 Set BODE.MODE to 5 to enable stability detection: -->BODE.MODE 5

Related Topics

1 Using the PST Using the Autotuner: Advanced F133 (pg 104)

23 CS Parameters

Controlled stop (CS) parameters set the values for the controlled stop process.

23.1	CS.DEC	219
23.2	CS.STATE	220
23.3	СЅ.ТО	220
23.4	CS.VTHRESH	221

23.1 CS.DEC

General Information			
Туре	NV Parameter		
Description	Sets the deceleration value for the controlled stop process.		
Units	Rotary: rps/s, rpm/s, deg/s ² , rad/s ²		
Onito	Linear: counts/s², mm/s², μm/s²		
	Rotary:		
	0.002 to 833,333.333 rps/s		
	0.112 to 50,000,000.000 rpm/s		
	0.009 to 300,000,000.000 deg/s ²		
Range	0.012 to 5,235,987.968 rad/s ²		
	Linear:		
	16,000.000 to 3,579,139,408,000.000 counts/s ²		
	0.031*MOTOR.PITCH (pg 392) to 833333.333*MOTOR.PITCH (pg 392) mm/s ²		
	30.994*MOTOR.PITCH (pg 392) to 83333333333333*MOTOR.PITCH (pg 392) $\mu\text{m/s}^2$		
	Rotary:		
	166.669 rps/s		
	10,000.000 rpm/s		
Default	60,000.000 deg/s ²		
Value	1,047.2 rad/s ²		
Value	Linear:		
	715,840,000.000 counts/s ²		
	166.714*MOTOR.PITCH (pg 392)MOTOR.PITCH (pg 392) mm/s ²		
	166,714.191*MOTOR.PITCH (pg 392)MOTOR.PITCH (pg 392) µm/s ²		
Data Type Float			
	CS.VTHRESH (pg 221), CS.TO (pg 220), DRV.DIS, DIN1.MODE TO DIN24.MODE (pg		
See Also	229),		
	DRV.DISMODE (pg 256), DRV.DISSOURCES (pg 258)		
Start Ver- sion	M_01-00-000		
Fieldbus	Index/Subindex Object Start Version		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3440h/1	M 01-00-00-000
CANopen	34401/1	M_01-00-00-000

Description

This parameter sets the deceleration value for the controlled stop process.

Related Topics

Controlled Stop (pg 54)

1 Digital Inputs and Outputs (Digital input mode 13)

Fault and Warning Messages (pg 102) (this table indicates faults for which a controlled stop occurs)

23.2 CS.STATE

General Information				
Туре	R/O Parameter			
Description	Returns the internal status of the controlled stop process.			
Units	N/A			
Range	N/A			
Default Value	N/A			
Data Type	N/A			
See Also	CS.DEC (pg 219), CS.VTHRESH (pg 221), CS.TO (pg 220)DRV.DISMODE (pg 256), DRV.DISSOURCES (pg 258)			
Start Ver- sion	M_01-00-000			
Fieldbus	Index/Subindex Object Start Version			

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	24416/0	M 01 00 00 000
CANopen	3441h/0	M_01-00-00-000

Description

CS.STATE returns the internal state machine value of the controlled stop.

0 = controlled stop is not occurring.

1 = controlled stop is occurring

Related Topics

Controlled Stop (pg 54)

1 Digital Inputs and Outputs (Digital input mode 13)

Fault and Warning Messages (pg 102) (this table indicates faults for which a controlled stop occurs)

23.3 CS.TO

General Information			
Туре	NV Parameter		
Description	Sets the time value for the drive velocity to be within CS.VTHRESH (pg 221).		
Units	ms		
Range	1 to 30,000 ms		
Default Value	6 ms		

General Information		
Data Type	Integer	
See Also	CS.DEC (pg 219), CS.VTHRESH (pg 221), CS.STATE, DRV.DIS, DIN1.MODE TO DIN24.MODE (pg 229), DRV.DISMODE (pg 256), DRV.DISSOURCES (pg 258)	
Start Ver- sion	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3440h/3	M 01-00-00-000
CANopen	34401/3	WI_01-00-00-000

CS.TO is the time value for the drive velocity to be within CS.VTHRESH (pg 221) before the drive disables.

Example

Set time value to 100 ms:

-->CS.TO 100

Related Topics

Controlled Stop (pg 54)

1 Digital Inputs and Outputs (Digital input mode 13)

Fault and Warning Messages (pg 102) (this table indicates faults for which a controlled stop occurs)

23.4 CS.VTHRESH

General Info	ormation		
Туре	NV Parameter		
Description	n Sets the velocity threshold for the controlled stop.		
Units	rpm, rps, deg/s		
	Rotary:		
	0.000 to 15,000.000 rpm		
	0.000 to 250.000 rps		
	0.000 to 90,000.000 deg/s		
Range	0.000 to 1,570.796 rad/s		
	Linear:		
	0.000 to 1,073,741,824,000.000 counts/s		
	0.000 to 8,000.000 mm/s		
	0.000 to 8,000,000.000 μm/s		
Default	5 rpm		
Value			
Data Type	Float		

General Information			
See Also	CS.DEC (pg 219), CS.TO (pg 220), CS.STATE (pg 220), DRV.DIS (pg 256), DIN1.MODE TO DIN24.MODE (pg 229), DRV.DISMODE (pg 256), DRV.DISSOURCES (pg 258)		
Start Ver- sion	M_01-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3440h/2	M 01-00-00-000
CANopen	34401/2	M_01-00-00-000

CS.VTHRESH is the velocity threshold for the controlled stop algorithm.

Example

Set velocity threshold for controlled stop at 100 rpm:

-->CS.VTHRESH 100

Related Topics

Controlled Stop (pg 54)

1 Digital Inputs and Outputs (Digital input mode 13)

Fault and Warning Messages (pg 102) (this table indicates faults for which a controlled stop occurs)

24 **DIN Parameters**

This section describes the DIN parameters.

DIN.HCMD1 TO DIN.HCMD4	224
DIN.LCMD1 to DIN.LCMD4	224
DIN.ROTARY	.225
DIN.STATES	226
DIN1.FILTER TO DIN7.FILTER	.227
DIN1.INV to DIN7.INV	227
DIN1.MODE TO DIN24.MODE	229
DIN1.PARAM TO DIN7.PARAM	230
DIN1.STATE TO DIN7.STATE	.232
DIN9.STATE to DIN11.STATE	232
DIN21.FILTER to DIN32.FILTER	.233
DIN21.STATE to DIN32.STATE	.234
	DIN.HCMD1 TO DIN.HCMD4 DIN.LCMD1 to DIN.LCMD4 DIN.ROTARY DIN.STATES DIN1.FILTER TO DIN7.FILTER DIN1.FILTER TO DIN7.FILTER DIN1.INV to DIN7.INV DIN1.MODE TO DIN24.MODE DIN1.PARAM TO DIN7.PARAM DIN1.STATE TO DIN7.STATE DIN9.STATE to DIN11.STATE DIN9.STATE to DIN12.FILTER DIN21.FILTER to DIN32.FILTER DIN21.STATE to DIN32.STATE

24.1 DIN.HCMD1 TO DIN.HCMD4

General Information			
Туре	NV parameter		
Description	A buffer of commands to be used in digital input "command buffer"		
Description	mode.		
Units	None		
Range	A string of up to 128 characters		
Default	<empty></empty>		
Value			
Data Type	String		
See Also	DINx.MODE, DINx.PARAM, DIN.LCMDx		
Start Version	M_01-02-08-000		

Description

DIN.HCMDx sets the string of commands to be used in the digital input mode command buffer. Digital input mode **9-Command buffer** can execute four different sets of command buffers.

Each set of command buffers contains two buffers:

- High buffer: Executes upon a rising edge of a digital input.
- Low buffer: Executes upon a falling edge of a digital input.

DIN.HCMDx sets the string for the four high buffers (depending on x).

Example

Set the command buffer mode to digital input 1:

```
DIN1.MODE 9
```

Set the first sets of buffers to digital input 1:

DIN1.PARAM 1

Set the command DRV.OPMODE 0 to the high buffer:

DIN.HCMD1 DRV.OPMODE 1

Now, upon a rising edge in digital input 1, the drive mode is 1.

Related Topics

Command Buffer

1 Digital Inputs and Outputs

24.2 DIN.LCMD1 to DIN.LCMD4

General Information		
Туре	NV parameter	
Description	A buffer of commands to be used in digital input "command buffer" mode.	
Units	N/A	

General Information		
Range	A string of up to 128 characters	
Default Value	Empty	
Data Type	String	
See Also	DIN1.MODE TO DIN24.MODE (pg 229), DIN1.PARAM TO DIN7.PARAM (pg 230), DIN.HCMD1 TO DIN.HCMD4 (pg 224)	
Start Ver- sion	M_01-02-08-000	

DIN.LCMDx sets the string of commands to be used in the digital input mode command buffer. Digital input mode **9-Command buffer** can execute four different sets of command buffers.

Each set of command buffers contains two buffers:

- High buffer: Executes upon a rising edge of a digital input.
- Low buffer: Executes upon a falling edge of a digital input.

DIN.LCMDx sets the string for the four "low" buffers, depending on x.

Example

Set the command buffer mode to digital input 1:

```
DIN1.MODE 9
```

Set the first sets of buffers to digital input 1:

```
DIN1.PARAM 1
```

Set the command DRV.OPMODE 0 to the "low buffer":

DIN.LCMD1 DRV.OPMODE 0

Now, upon a falling edge in digital input 1, the drive mode is 0.

Related Topics

Command Buffer

1 Digital Inputs and Outputs

24.3 DIN.ROTARY

General Information			
Туре	R/O Parameter		
Description	Reads the rotary knob		
Description	value.		
Units	N/A		
Range	0 to 99		
Default	N/A		
Value			

General Information		
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

DIN.ROTARY reads the rotary knob value.

Related Topics

1 Digital Inputs and Outputs

24.4 DIN.STATES

General Information			
Туре	R/O Parameter		
Description	Reads the digital input states.		
Units	N/A		
Range	0000000 to 1111111		
Default Value	N/A		
Data Type	String		
See Also	N/A		
Start Version	M_01-00-00-000		

Description

DIN.STATES reads the states of the seven digital inputs. The leftmost bit represents digital input 1 (DIN1) and the rightmost bit represents digital input 7 (DIN7).

Related Topics

1 Digital Inputs and Outputs

24.5 DIN1.FILTER TO DIN7.FILTER

General Information				
Туре	R/W Parameter			
Description	Filter mode for digital inputs 1 to 7.			
Units	N/A			
Range	0 to 3			
Default	1 for DIN1 and DIN2			
Value	2 for DIN3 to DIN7			
Data Type	Integer			
See Also	N/A			
Start Version	M_01-03-07-000			

Description

This parameter sets the digital input filter configuration for channel x when followed with the values defined below. DINx.FILTER retrieves this information when not followed by data.

Value	Description			
DINX.FILTER	The drive digital input channel detects all input signals with an input			
0	pulse width of \geq 40 ns (no filtering applied).			
DINX.FILTER	The drive digital input channel detects all input signals with an input			
1	pulse width of \ge 10.24 µs, ± 0.64 µs (fast filter applied).			
DINX.FILTER	The drive digital input channel detects all input signals with an input			
2	pulse width of \geq 163 µs, ± 10.24 µs (standard filter applied).			
DINX.FILTER	The drive digital input channel detects all input signals with an input			
3	pulse width of \geq 2.62 ms, ± 0.16384 ms (slow filter applied).			

Related Topics

Digital Inputs and Outputs

24.6 DIN1.INV to DIN7.INV

General Info	ormation
Туре	RW Parameter
Description	Sets the indicated polarity of a digital input mode.
Units	N/A
Range	0 to 1
Default	0
Value	5
Data Type	Boolean
See Also	N/A
Start Ver-	M 01-00-000
sion	

Sets the indicated polarity of a digital input mode.

Example

DIN1.INV = 0 : Input is active high. DIN1.INV = 1 : Input is active low.

Related Topics

Digital Inputs and Outputs

24.7 DIN1.MODE TO DIN24.MODE

General Information		
Туре	R/W Parameter	
Description	Sets the digital input modes.	
Units	N/A	
Range	0 to 24	
Default Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

AKD SynqNet Information Range 0 AKD BASIC Information

Range

0, 1, 13, 18, 19

Fieldbus	Index/Subindex		Object Start Ver- sion
	3562h/0	DIN1.MODE	
	3565h/0	DIN2.MODE	
	3568h/0	DIN3.MODE	
EtherCAT COE and	356Bh/0	DIN4.MODE	
	CANopen	36F6h/0	DIN5.MODE
	36F9h/0	DIN6.MODE	
	36FCh/0	DIN7.MODE	
	60FDh/0	DIN1.MODE TO DIN7.MODE	

Description

This parameter sets the functionality of the digital inputs 1 through 7. Digital inputs and corresponding X7 and X8 pin connectors are described in the *AKD PDMM Installation Manual*, section 8.16.4, Digital Inputs. The table below summarizes the digital input modes; for detailed descriptions of each mode, see Digital Inputs and Outputs (pg 1).

DINx.MODE	Description	Task	
0	No function; off	0 - None	
0			
1	Fault reset	1 - Background	
1	Fault Teset	I - Background	
2	Start motion task (use <u>DINx.PARAM</u> for this task)	2 - 1 KHz	

DINx.MODE	Description	Task
6	Start jog	6 - Background
7	Reserved	7 - None
8	Zero latch	8 - Background
9	Command buffer	9 - Background
10	Control fault relay	10 - Background
11	Home reference	11 - 1 kHz
12	Reserved	12 - None
13	Controlled Stop (pg 54)	13 - 1 kHz
13	Controlled Stop	13 - 1 KHZ
14	Reserved	14 - None
15	Quick stop	15 - Background
17	Activate electronic gear position shift	17 - Background
18 18	Positive limit switch	18 - 4 kHz
19 19	Negative limit switch	19 - 4kHz
20	Brake release	20 - Background
21	Current limit	21 - 4 kHz
22	Opmode and Command Source switch	22 - Background
23	Change algebraic sign of the measured analog input voltage.	23 - 1 kHz
24	Reserved	24 - 1 kHz
25	Controlled stop without re-enable.	25 - 1 kHz
		I

Related Topics

Command Buffer

- 1 Digital Inputs and Outputs
- 1.3 Digital Inputs (includes detailed description of each input mode and examples)

Controlled Stop (pg 54)

Clearing Faults (pg 127)

F245 (pg 110)

CS Parameters (pg 218)

24.8 DIN1.PARAM TO DIN7.PARAM

General Information	
Туре	R/W Parameter

General Information			
Description	Sets a value used as an extra parameter for digital inputs		
	nodes.		
Units	N/A		
Banga	-9,223,372,036,854,775,000 to +9,223,372,036,854,775,000		
Range	Note: Varies based on DINx.MODE. See below.		
Default	0		
Value	0		
Data Type	Float		
See Also	N/A		
Start Version	M_01-00-000		

This parameter sets a value that is used as an extra parameter for digital inputs nodes.

Example

The digital input mode "Start motion task" is used to start a motion task. This mode uses an extra parameter as the ID of the motion task to be started.

Range

DINx.PARAM is used for various Digital Input modes. This causes the parameter's range to change based on the current Digital Input mode selected with the corresponding DINx.MODE

Listed below are the possible ranges for each Digital input mode.

If an input mode is not listed, then the default range above is used.

Input Mode	Min	Max	Notes
2	0	128	
6	Velocity Min	Velocity Max	This value changes based on user selected velocity units.
9	0	4	
17	Position Min	Position Max	This value changes based on user selected position units.
21	0	DRV.IPEAK	This value changes based on the specific AKD PDMMs drive limits.
22	0	32	See Digital Input Mode 22 for details.
23	0	2056	See Digital Input Mode 23 for details.

Dependency on DINx.MODE

Typically, the user can set DINx.PARAM before the corresponding DINx.MODE is set. However, if DINx.PARAM is set before DINx.MODE is set, and the value of DINx.PARAM is outside the new DINx.MODE's range, then DINx.PARAM will be set to zero.

Example:

DIN1.MODE is set to 0 by default

DIN1.PARAM is set to 200

DIN1.MODE is changed to 2 (execute motion taks)

200 is larger than the maximum for DIN1.MODE 2, so DIN1.PARAM will be set to 0 to prevent errors.

Related Topics

1 Digital Inputs and Outputs

24.9 DIN1.STATE TO DIN7.STATE

General Information		
Туре	R/O Parameter	
Description	Reads a specific digital input state.	
Units	N/A	
Range	0 to 1	
Default Value	N/A	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

DIN1.STATE to DIN7.STATE reads the state of one digital input according to the number identified in the command.

Related Topics

1 Digital Inputs and Outputs

24.10 DIN9.STATE to DIN11.STATE

General Information		
Туре	NV Parameter	
Description	Shows on selected pin if signal is high or low.	
Units	N/A	
Range	0 to 1	
Default	0	
Value	o	
Data Type	U8	
See Also	N/A	
Start Ver-	M 01-05-00-000	
sion		

This parameter allows the user to see the actual level of the input signal, when the IO is set to input mode. Parameter value is 0 if signal is low and 1 if signal is high. DIOx.INV can affect the value in this register.

This parameter can be read at any time. The value is only guaranteed to correspond to the output on the X9 connector when DRV.EMUEMODE is set to 10 and the DIOX.DIR is 0.

Related Topics

DRV.EMUEMODE (pg 262)

24.11 DIN21.FILTER to DIN32.FILTER

General Information		
Туре	R/W Parameter	
Description	Filter mode for digital inputs 21 to 32.	
Units	N/A	
Range	0 to 3	
Default Value	2	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-03-07-000	

Description

This parameter sets the digital input filter configuration for channel x when followed with the values defined below. DINx.FILTER retrieves this information when not followed by data.

Value	Description
DINX.FILTER	The drive digital input channel detects all input signals with an input
0	pulse width of \geq 40 ns (no filtering applied).
DINX.FILTER	The drive digital input channel detects all input signals with an input
1	pulse width of \ge 10.24 µs, ± 0.64 µs (fast filter applied).
DINX.FILTER	The drive digital input channel detects all input signals with an input
2	pulse width of \ge 163 µs, ± 10.24 µs (standard filter applied).
DINX.FILTER	The drive digital input channel detects all input signals with an input
3	pulse width of \geq 2.62 ms, ± 0.16384 ms (slow filter applied).

Related Topics

Digital Inputs and Outputs

24.12 DIN21.STATE to DIN32.STATE

General Information		
Туре	R/O Parameter	
Description	Reads a specific digital input state.	
Units	N/A	
Range	0 to 1	
Default Value	N/A	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

DIN21.STATE to DIN32.STATE reads the state of one digital input according to the number identified in the command.

Related Topics

1 Digital Inputs and Outputs

25 DOUT Parameters

This section describes the DOUT parameters.

25.1	DOUT.CTRL	236
25.2	DOUT.RELAYMODE	236
25.3	DOUT.STATES	.237
25.4	DOUT1.MODE to DOUT21.MODE	.237
25.5	DOUT1.PARAM AND DOUT2.PARAM	239
25.6	DOUT1.STATE AND DOUT2.STATE	.240
25.7	DOUT1.STATEU AND DOUT2.STATEU	.240
25.8	DOUT9.STATE to DOUT11.STATE	241
25.9	DOUT9.STATEU to DOUT11.STATEU	242
25.10	DOUT21.STATE to DOUT32.STATE	242
25.11	DOUT21.STATEU to DOUT32.STATEU	243

25.1 DOUT.CTRL

General Information		
Туре	NV Parameter	
Description	Sets the source of digital outputs (firmware or field- bus).	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Boolean	
See Also	N/A	
Start Version	M_01-00-000	

SynqNet Information		
Range	1	

Description

DOUT.CTRL sets the source of the digital outputs:

0 = Firmware controlled

1 = Fieldbus controlled

Related Topics

1.4 Digital Outputs

25.2 DOUT.RELAYMODE

General Information		
Туре	R/W Parameter	
Description	Indicates faults relay mode.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

DOUT.RELAYMODE indicates the faults relay mode as follows:

If DOUT.RELAYMODE= 0 and faults exist, then the relay is open.

If DOUT.RELAYMODE= 0 and faults do not exist, then the relay is closed.

If DOUT.RELAYMODE = 1 and the drive is disabled, then the relay is open. If DOUT.RELAYMODE = 1 and the drive is enabled, then the relay is closed.

Related Topics

1.4 Digital Outputs

25.3 DOUT.STATES

General Information		
Туре	R/O Parameter	
Description	Reads the state of the two digital out- puts.	
Units	N/A	
Range	0 to 11	
Default Value	N/A	
Data Type	String	
See Also	N/A	
Start Version	M_01-00-00-000	

AKD-C Information		
Description	Reads the state of DOUT1.	

AKD BASIC Information		
Data Type	Integer	

Description

DOUT.STATES reads the states of the two digital outputs. The rightmost bit represents DOUT2 and the leftmost bit represents DOUT1.

NOTE AKD PDMM-C only reads the state of DOUT1.

Related Topics

1.4 Digital Outputs

25.4 DOUT1.MODE to DOUT21.MODE

General Information		
Туре	NV Parameter	
Description	Sets the digital output mode.	
Units	N/A	
Range	0 to 21	

General Information		
Default	0	
Value		
Data Type	Integer	
See Also	DOUT1.PARAM AND DOUT2.PARAM (pg	
	239)	
Start Version	M_01-04-02-000	

AKD BASIC Information		
Range	0, 8, 10, 11, 15	
AKD CPS Information		
Range	0, 1, 7, 11, 16	
AKD EtherNet/IP Information		
Range	0 to 2	

DOUTx.MODE sets the functionality of the digital outputs. The table below summarizes the digital output modes; for detailed descriptions of each mode, see Digital Inputs and Outputs.

DOUTx.MODE	Description	
0	User (default = 0)	
0		
1	Mains ready	
2	Software limit switch reached	
3	Move complete	
4	In position	
5	Position greater than x	
6	Position less than x	
7	Drive produced warning	
8	Drive enabled	
8	Drive enabled	
9	Reserved	
9		
10	Motor brake	
10		
11	Drive produced fault	
11		
12	Absolute velocity greater than x	
13	Absolute velocity less than x	
14	Homing complete	

DOUTx.MODE	Description	
15	PLS.STATE bits or connected	
15		
16	Description Command buffer Active	
17	Mt in Position	
19	Encoder Z pulse	
20	Controlled Stop Active	
21	Fault Disabling Power Stage	

Related Topics

1.4 Digital Outputs

25.5 DOUT1.PARAM AND DOUT2.PARAM

General Information		
Туре	NV Parameter	
Description	Sets extra parameters for the digital outputs.	
Units	N/A	
	0	
Range	Note: Range changes based on Digital Output Mode. See	
	below.	
Default	0	
Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-000	

Description

DOUT1.PARAM and DOUT2.PARAM set the extra parameter needed for the digital outputs calculations, respectively.

Range

DOUTx.PARAM is used for various Digital Output modes. This causes the parameter's range to change based on the current Digital Output mode selected with the corresponding DOUTx.MODE.

Below is a list of the possible range for each Digital Output Mode.

If an output mode is not listed, then the default range of 0 is used.

Input Mode	Min	Max	Notes
4	Position Min	Position Max	This value changes based on user selected position units.
5	Position Min	Position Max	This value changes based on user selected position units.
6	Position Min	Position Max	This value changes based on user selected position units.
12	0	Velocity Max	This value changes based on user selected velocity units.
13	0	Velocity Max	This value changes based on user selected velocity units.

Dependency on DOUTx.MODE

Since the default range of DOUTx.PARAM does not allow a user to enter a value, DOUTx.MODE must be set to a mode which uses DOUTx.PARAM before a value can be set.

Each time DOUTx.MODE is changed, DOUTx.PARAM is automatically set to zero to prevent unintended interactions.

Related Topics

1.4 Digital Outputs

25.6 DOUT1.STATE AND DOUT2.STATE

General Information	
Туре	R/O Parameter
Description	Reads the digital output state.
Units	N/A
Range	0 to 1
Default Value	N/A
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

DOUT1.STATE and DOUT2.STATE read the state of one digital output according to the value stated in the command.

Related Topics

1.4 Digital Outputs

25.7 DOUT1.STATEU AND DOUT2.STATEU

General Information		
Туре	R/W Parameter	
Description	Sets the state of the digital output	
	node.	
Units	N/A	
Range	0 to 1	
Default	0	
Value	5	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-01-01-000	

DOUT1.STATEU and DOUT2.STATEU set the state of the digital output node as follows:

0 = deactivated

1 = activated

DOUT1.STATEU and DOUT2.STATEU are used when DOUT1.MODE to DOUT21.MODE (pg 237) = 0 (user mode).

Related Topics

1.4 Digital Outputs

25.8 DOUT9.STATE to DOUT11.STATE

General Information		
Туре	NV parameter	
Description	Shows on selected pin if signal is high or low.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	U8	
See Also	N/A	
Start Version	M_01-05-00-000	

Description

This parameter allows the user to see the actual level of the output signal, when the IO is set to output mode. Parameter value is 0 if signal is low and 1 if signal is high. DIOx.INV can affect the signals driven onto the X9 connector.

This parameter can be read at any time. The value is only guaranteed to correspond to the output on the X9 connector when DRV.EMUEMODE is set to 10 and the DIOX.DIR is 0.

Related Topics

DOUT9.STATEU to DOUT11.STATEU (pg 242) DRV.EMUEMODE (pg 262)

25.9 DOUT9.STATEU to DOUT11.STATEU

General Information		
Туре	NV Parameter	
Description	Allows user to set level of selected pin to high or	
	low.	
Units	N/A	
Range	0 to 1	
Default	0	
Value	0	
Data Type	U8	
See Also	N/A	
Start Version	M_01-05-00-000	

Description

This parameter allows the user to set the level of the output signal, when the IO is set to output mode. Parameter value is 0 if signal is low and 1 if signal is high. DIOx.INV can affect the signals driven onto the X9 connector.

This parameter can be written at any time. The value is only guaranteed to correspond to the output on the X9 connector when DRV.EMUEMODE is set to 10 and the DIOX.DIR is 0.

Example

The following settings set the direction for the differential signals on pin 4 and 5, so that the output will have a high level signal.

First set the following settings:

DRV.EMUEMODE 10

DIO10.DIR 1

DOUT10.STATEU 1

Then change the level of the signal:

DOUT.STATEU 0

or

DIO10.INV

Note: Inverting the signal will also alter the signal in input mode.

Related Topics

DRV.EMUEMODE (pg 262)

25.10 DOUT21.STATE to DOUT32.STATE

General Information	
Туре	R/O Parameter

General Information		
Description	Reads the digital output state.	
Units	N/A	
Range	0 to 1	
Default Value	N/A	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

DOUTx.STATE reads the state of one digital output according to the value stated in the command.

Related Topics

1.4 Digital Outputs

25.11 DOUT21.STATEU to DOUT32.STATEU

General Information		
Туре	R/W Parameter	
Description	Sets the state of the digital output node.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-01-01-000	

Description

DOUTx.STATEU sets the state of the digital output node as follows:

0 = deactivated

1 = activated

DOUTX.STATEU is used when DOUT1.MODE to DOUT21.MODE (pg 237) = 0 (user mode).

Related Topics

1.4 Digital Outputs

26 DRV Parameters

This section describes the DRV parameters.

26.1	DRV.ACC	246
26.2	DRV.ACTIVE	247
26.3	DRV.BLINKDISPLAY	248
26.4	DRV.BOOTTIME	248
26.5	DRV.CLRFAULTHIST	249
26.6	DRV.CLRFAULTS	249
26.7	DRV.CMDDELAY	250
26.8	DRV.CMDSOURCE	250
26.9	DRV.CRASHDUMP	251
26.10	DRV.DBILIMIT	252
26.11	DRV.DEC	253
26.12	DRV.DIFVAR	254
26.13	DRV.DIR	254
26.14	DRV.DIS	256
26.15	DRV.DISMODE	256
26.16	DRV.DISSOURCES	258
26.17	DRV.DISSOURCESMASK	258
26.18	DRV.DISTO	259
26.19	DRV.DOWNLOADALLOWED	260
26.20	DRV.EMUECHECKSPEED	261
26.21	DRV.EMUEDIR	261
26.22	DRV.EMUEMODE	262
26.23	DRV.EMUEMTURN	263
26.24	DRV.EMUEPULSEWIDTH	264
26.25	DRV.EMUERES	265
26.26	DRV.EMUEZOFFSET	266
26.27	DRV.EN	267
26.28	DRV.ENDEFAULT	267
26.29	DRV.ERRORLIST	268
26.30	DRV.FAULTHIST	268
26.31	DRV.FAULT1 to DRV.FAULT10	269
26.32	DRV.FAULTS	270
26.33	DRV.HANDWHEELSRC	270

26.34	DRV.HELP	. 271
26.35	DRV.HELPALL	. 271
26.36	DRV.HWENABLE	.272
26.37	DRV.HWENDELAY	.272
26.38	DRV.HWENMODE	. 273
26.39	DRV.ICONT	. 274
26.40	DRV.INFO	. 274
26.41	DRV.IPEAK	. 275
26.42	DRV.IZERO	. 276
26.43	DRV.LIST	276
26.44	DRV.LOGICVOLTS	. 277
26.45	DRV.MEMADDR	. 277
26.46	DRV.MEMDATA	.278
26.47	DRV.NAME	. 278
26.48	DRV.NVCHECK	.279
26.49	DRV.NVLIST	.280
26.50	DRV.NVLOAD	. 280
26.51	DRV.NVSAVE	. 281
26.52	DRV.ONTIME	. 281
26.53	DRV.OPMODE	.282
26.54	DRV.READFORMAT	. 283
26.55	DRV.RSTVAR	. 283
26.56	DRV.RUNTIME	. 284
26.57	DRV.SETUPREQBITS	. 284
26.58	DRV.SETUPREQLIST	.285
26.59	DRV.STOP	. 286
26.60	DRV.TEMPERATURES	. 286
26.61	DRV.TIME	. 287
26.62	DRV.TYPE	287
26.63	DRV.VER	.288
26.64	DRV.VERIMAGE	. 289
26.65	DRV.WARNING1 to DRV.WARNING3	. 289
26.66	DRV.WARNINGS	. 290
26.67	DRV.ZERO	. 291

26.1 DRV.ACC

General Info	rmation	
Туре	NV Parameter	
Description	Describes the acceleration ramp for the velocity loop.	
	Depends on or	
Units	Rotary: rps/s, rpm/s, deg/s², (custom units)/s², rad/s²	
	Linear: counts/s ² , mm/s ² , µm/s ² , (custom units)/s ²	
Range	Note: The range and default values of (custom units)/s ² units depend on the values of PIN and POUT. The range and default values listed in this table are derived from the default val- ues of PIN and POUT. Rotary: 0.002 to 833,333.333 rps/s 0.112 to 50,000,000.000 rpm/s 0.009 to 300,000,000.000 deg/s ² 0.155 to 4,166,666.752 (custom units)/s ² 0.012 to 5,235,987.968 rad/s ² Linear: 16,000.000 to 3,579,139,408,000.000 counts/s ² 0.031*MOTOR.PITCH (pg 392) to 833,333.333*MOTOR.PITCH (pg 392) mm/s ² 30.995*MOTOR.PITCH (pg 392) to 2,147,483.647*MOTOR.PITCH (pg 392) µm/s ² 0.155 to 2,147,483.647 (custom units)/s ²	
Default Value	Note: The range and default values of (custom units)/s ² units depend on the values of PIN and POUT. The range and default values listed in this table are derived from the default val- ues of PIN and POUT. Rotary: 166.669 rps/s 10,000.000 rpm/s 60,000.000 deg/s ² 833.333 (custom units)/s ² 1,047.2 rad/s ² Linear: 715,840,000.000 counts/s ² 166.714*MOTOR.PITCH (pg 392) mm/s ² 166,714.191*MOTOR.PITCH (pg 392) µm/s ² 833.571 (custom units)/s ²	
Data Type	Float	
See Also	DRV.DEC (pg 253), ,	
Start Ver- sion	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3501h/0	M 01-00-00-000
CANopen	350 11/0	M_01-00-00-000

Describes the acceleration ramp for the velocity central loop.

Related Topics

9.1 Limits

26.2 DRV.ACTIVE

General Information		
Туре	R/O Parameter	
Description	Reads the enable status of an axis.	
Units	N/A	
Range	0, 1, 3	
Default	N/A	
Value		
Data Type	Integer	
See Also	DRV.EN (pg 267), DRV.DISSOURCES (pg	
000 1130	258)	
Start Version	M_01-00-000	

Description

DRV.ACTIVE reads the enable status of an axis as follows:

- DRV.ACTIVE = 0 drive disabled
- DRV.ACTIVE = 1 drive enabled
- DRV.ACTIVE = 3 drive enabled and in dynamic brake mode

There is no state 2.

When the drive is in state 3, the drive display shows a blinking decimal point.

If an axis is not enabled (DRV.ACTIVE is 0), but DRV.EN (pg 267) is 1 and the hardware enable is high, read the value of DRV.DISSOURCES (pg 258) to query the reason that the drive is not enabled.

Related Topics

9.2 Enable/Disable

26.3 DRV.BLINKDISPLAY

General Information			
Туре	Command		
Description	Causes the display to blink for 10 seconds.		
Units	N/A		
Range	N/A		
Default Value	N/A		
Data Type	N/A		
See Also	N/A		
Start Version	M_01-00-000		

Description

DRV.BLINKDISPLAY causes the drive display located on the front of the drive to blink for 10 seconds.

This command allows the user to identify the drive that is currently communicating with EWV¹.

26.4 DRV.BOOTTIME

General Information		
Туре	R/O	
Description	Returns the time when the current session booted up.	
Units	Days:Hours:Minutes:Seconds	
Range	N/A	
Default Value	N/A	
Data Type	String	
Start Version	M_01-06-05-000	

Description

DRV.BOOTTIME returns the time that the current session started running. This time includes total amount of time from all previous sessions.

This keyword can be used with DRV.RUNTIME to determine the length of time the drive has been running since it was last power cycled.

Session Time = DRV.RUNTIME – DRV.BOOTTIME

Related Topics

DRV.RUNTIME (pg 284)

¹Embedded Workbench Views

26.5 DRV.CLRFAULTHIST

General Information		
Туре	Command	
Description	Clears the fault history log in the NV.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	N/A	
Start Version	M_01-00-000	

Description

DRV.CLRFAULTHIST clears the fault history from the nonvolatile memory of the drive.

This command erases all faults returned by DRV.FAULTHIST (pg 268).

26.6 DRV.CLRFAULTS

General Inform	mation	
Туре	Command	
Description	Tries to clear all active faults in the drive.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	N/A	
See Also	DRV.FAULTS (pg 270), DRV.EN (pg 267), DRV.DIS (pg 256)	
Start Version	M_01-00-000	

Description

When DRV.CLRFAULTS is sent, the drive will try to clear all active faults. When a fault occurs, the fault is registered in the drive fault handler. DRV.CLRFAULTS clears the fault from the drive fault handler. However, if the fault still exists in the system, DRV.CLRFAULTS fails and the fault is re-registered in the fault handler.

If the DRV.CLRFAULTS succeeds, then the reply to DRV.FAULTS states that no faults exist. If the condition that triggered the fault is still present, the fault condition will remain.

See Fault and Warning Messages (pg 102) for details regarding the behavior of individual faults.

Note that executing a drive disable (DRV.DIS (pg 256)) followed by a drive enable (DRV.EN (pg 267)) has the same effect as executing DRV.CLRFAULTS.

Related Topics

Clearing Faults (pg 127)

26.7 DRV.CMDDELAY

General Information		
Туре	Command	
Description	Issues a delay before next command is executed.	
Units	ms	
Range	0 to 5,000 ms	
Default Value	0 ms	
Data Type	Float	
See Also	N/A	
Start Version	M_01-03-00-000	

Description

This parameter is used when drive commands are used in a script and a delay is needed between the execution of two consecutive commands. DRV.CMDDELAY creates a delay in the execution of drive commands. In the period of time specified, no commands are executed. This feature is especially useful for command buffers.t

Example

If the script is:

DRV.EN IL.CMDU 0.1

then DRV.CMDDELAY is used between the two entries to delay execution 5 ms until the drive is enabled:

```
DRV.EN
DRV.CMDDELAY 5
IL.CMDU 0.1
```

26.8 DRV.CMDSOURCE

General Information		
Туре	NV Parameter	
Description	Sets the command source (service, fieldbus, analog input, gearing, digital, or Bode).	
Units	N/A	
Range	0 to 5	
Default Value	0	
Data Type	Integer	
See Also	DRV.OPMODE (pg 282)	
Start Version	M_01-00-000	

AKD PDMM SynqNet Information			
Range	0		
AKD BASIC Information			
AKD BASI	C Information		

DRV.CMDSOURCE specifies the source of the command to the drive. DRV.OPMODE (pg 282) sets the operation mode to the relevant control loop.

DRV.CMDSOURCE values can be set as follows:

Value	Description	
0	Service, TCP/IP command	
1	Fieldbus command	
2	Gearing command	
3	Analog command	
5	Program command	

If DRV.CMDSOURCE is set to 5 then DRV.OPMODE must be set to 3.

DRV.CMDSOURCE can be changed while the drive is enabled or disabled. If you use the terminal to change the operation mode, then it is recommended that you disable the drive before changing the command source.

WARNING If you change DRV.CMDSOURCE from the terminal while the drive is enabled, the system may experience a step change in command.

Example

To set the command source to the TCP/IP channel and the operation mode to velocity:

```
-->DRV.CMDSOURCE 0
-->DRV.OPMODE 1
```

Related Topics

26.9 DRV.CRASHDUMP

General Information		
Туре	Command	
Description	Retrieves diagnostic information after the drive crashes.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	N/A	

General Information	
See Also	N/A
Start Version	M_01-00-000

Drives rarely crash, but if a crash occurs, information that can help diagnose the cause of a crash is saved to the nonvolatile (NV) memory within the drive. After the drive is restarted, you can use the DRV.CRASHDUMP command to retrieve this diagnostic information, which can be emailed to Koll-morgen for further support.

If the drive crashes (display flashes an F and three bars), it saves the diagnostic information to a specific block of the drive NV memory. The DRV.CRASHDUMP command then prints the diagnostic information from this NV memory block. Subsequent crash conditions will overwrite the NV memory block. Since the NV memory block is overwritten, but never erased, the DRV.CRASHDUMP command always shows the diagnostic information for the most recent crash.

General Info	rmation	
Туре	NV Parameter	
Description	Sets the maximum amplitude of the current for dynamic braking.	
Units	Arms	
Range	0 to minimum of drive peak current (DRV.IPEAK) and motor peak current (MOTOR.IPEAK).	
Default Value	Minimum of drive continuous current (DRV.ICONT) and motor continuous current (MOTOR.ICONT).	
Data Type	Float	
See Also	DRV.DISMODE (pg 256)	
Start Ver- sion	M_01-00-000	

26.10 DRV.DBILIMIT

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3444h/0	M 01 00 00 000
CANopen	34441/0	M_01-00-00-000

Description

This parameter sets the maximum amplitude of the current for dynamic braking.

Example

Setting DRV.DBILIMIT to 2 limits the dynamic brake current to 2 Arms.

Related Topics

9.3 Controlled Stop

23 CS Parameters

9.4 Dynamic Braking

26.11 DRV.DEC

General Information				
Туре	NV Parameter			
Description	Sets the deceleration value for the velocity loop.			
	Depends on or			
Units	Rotary: rps/s, rpm/s, deg/s², (custom units)/s², rad/s²			
Linear: counts/s², mm/s², µm/s², (custom units)/s²				
	Rotary:			
	0.002 to 833,333.333 rps/s			
	0.112 to 50,000,000.000 rpm/s			
	0.009 to 300,000,000.000 deg/s ²			
	0.155 to 4,166,666.752 (custom units)/s ²			
Banga	0.012 to 5,235,987.968 rad/s²			
Range	Linear:			
	16,000.000 to 3,579,139,408,000.000 counts/s ²			
	0.031*MOTOR.PITCH to 833,333.333*MOTOR.PITCH mm/s ²			
	30.994*MOTOR.PITCH to 833,333,333.333*MOTOR.PITCH			
	μm/s²			
	0.155 to 4,166,666.667 (custom units)/s ²			
	Rotary:			
	166.669 rps/s			
	10,000.000 rpm/s			
	60,000.000 deg/s²			
	833.333 (custom units)/s²			
Default Value	1,047.2 rad/s ²			
value	Linear:			
	715,840,000.000 counts/s ²			
	166.71*MOTOR.PITCH4MOTOR.PITCH (pg 392) mm/s ²			
	166,714.191*MOTOR.PITCHMOTOR.PITCH (pg 392) µm/s ²			
	833.571 (custom units)/s²			
Data Type	Float			
See Also	DRV.ACC (pg 246), , , DRV.OPMODE (pg 282)			
Start Version				
Fieldbus	Indov/Subindov Object Start Version			
EtherCAT CC	Index/Subindex Object Start Version			
CANopen	3522h/0 M_01-00-000			

CANopen

DRV.DEC sets the deceleration value for the velocity loop command (VL.CMDU (pg 474)) and for the analog

velocity command (). The operation mode (DRV.OPMODE (pg 282)) must be set to velocity mode for this command to function.

Related Topics

9.3 Controlled Stop

9.1 Limits

26.12 DRV.DIFVAR

General Information				
Туре	R/O			
Description	Lists all parameters which differ from their default value.			
Units	N/A			
Range	N/A			
Default	N/A			
Value				
Data Type	N/A			
Start Version	M_01-05-01-000			

Description

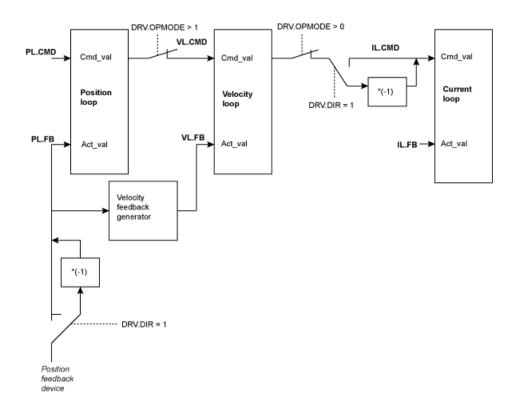
This parameter displays all parameters which have different values than their default setting. The actual value of each parameter is directly shown after the command name and the corresponding default value is then shown in brackets.

This command also shows differences in parameters which hold a string, such as DRV.NAME.

Example

```
-->DRV.DIFVAR
DRV.EMUEMODE 10 (0)
DRV.NAME MyDrive(no-name)
FB1.ENCRES 0(1024)
IL.KP 50.009(24.811)
PL.KP 99.998(49.999)
VL.KP 0.108(0.000)
```

26.13 DRV.DIR


General Information			
Туре	R/W Parameter		
Description	Changes drive direction.		
Units	N/A		
Range	0 to 1		

General Information				
Default	0			
Value	•			
Data Type	Integer			
Start Version	M_01-00-00-000			
Fieldbus Index/Su			bindex	Object Start Version
EtherCAT CO CANopen	E and	352Ah/0		M_01-00-00-000

DRV.DIR changes the direction of the motor by changing the algebraic sign of the current command and position feedback value according to the figure below.

Note the following when using DRV.DIR:

- You can only change the DRV.DIR command when the drive is disabled.
- The drive status changes to "Axis not homed" as soon as the DRV.DIR parameter changes value (see DRV.MOTIONSTAT).
- You must verify the settings of the hardware limit switches. If necessary, switch the positive and negative hardware limit switches by swapping the wires at the digital inputs.

26.14 DRV.DIS

General Information				
Туре	Command			
Description	Disables the axis (software).			
Units	N/A			
Range	N/A			
Default Value	Analog drive software enabled. All other types of drive software disabled.			
Data Type	N/A			
See Also	DRV.EN (pg 267), DRV.DISSOURCES (pg 258), DRV.ACTIVE (pg 247), DRV.DISMODE (pg 256), DRV.DISTO (pg 259)			
Start Ver- sion	M_01-00-000			
Fieldbus	Index/Subindex Object Start Version			

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3443h/0	M 01 00 00 000
CANopen	34431/0	M_01-00-00-000

Description

DRV.DIS issues a software disable to the drive. The method by which the drive will be disabled (either immediately or with a ramp down first) is controlled by DRV.DISMODE (pg 256).

By querying the value of DRV.ACTIVE (pg 247), you can check whether the drive is currently enabled or disabled.

By querying the value of DRV.DISSOURCES (pg 258), you can check whether the software enable bit is high (software enabled was issued by executing DRV.EN) or the software enable bit is low (software disable was issued by executing DRV.DIS).

If DRV.DIS is commanded the emergency timeout is started. If the drive does not disable or activate dynamic brake within DRV.DISTO (pg 259), fault 703"F703" (→ p. 121) is reported.

Related Topics

14.3 Clearing Faults

9.3 Controlled Stop

26.15 DRV.DISMODE

General Information			
Туре	NV Parameter		
Description	Selects among disable immediately or stop and then disable options.		
Units	N/A		

General Inform	mation
Range	0 to 3
Default Value	0
Data Type	Integer
See Also	DRV.DBILIMIT (pg 252) ,DRV.DISTO (pg 259), CS.VTHRESH (pg 221)
Start Version	M_01-00-000

SynqNet InformationRange0 to 2

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	35FFh/0	M 01-00-00-000
CANopen	35661/0	W_01-00-00-000

Description

DRV.DISMODE sets the drive reaction to a DRV.DIS (pg 256) command.

NOTE You must disable the drive in order to set DRV.DISMODE.

Value	Behavior		
0	Disable axis immediately.		
	Use dynamic brake to ramp down. The drive remains in the dynamic brake state after the motor		
1	has stopped. The drive is disabled in the sense that it does not close the control loop and cannot		
	perform a motion, but PWM stays active.		
2	Use a controlled stop to ramp down and then disable the drive.		
	Use a controlled stop to ramp down, and then use dynamic brake. The drive remains in the		
3	dynamic brake state after the motor has stopped. The drive is disabled in the sense that it does		
	not close the control loop and cannot perform a motion, but PWM stays active.		

In all cases described above, if a brake is configured (MOTOR.BRAKE (pg 381)), the brake closes if VL.FB (pg 476) drops below CS.VTHRESH (pg 221).

WARNING

Be careful with vertical loads when modifying this parameter. Coordinate this parameter's correct setting properly with the drive brake settings. If these settings are not coordinated, then vertical loads may have no stopping or holding force when the drive is disabled and the load could fall.

Related Topics

- 9.3 Controlled Stop
- 23 CS Parameters
- 9.4 Dynamic Braking

257

26.16 DRV.DISSOURCES

General Information				
Туре	R/O Parameter			
Description	Returns the possible reason for a drive disable.			
Units	N/A			
Range	N/A			
Default	N/A			
Value				
Data Type	Integer			
See Also	DRV.ACTIVE, DRV.FAULTS, DRV.EN,			
066 7180	DRV.DIS			
Start Version	M_01-00-000			

Description

DRV.DISSOURCES is a bitwise parameter that returns the status of possible causes of a drive disable. If this parameter is 0, then the drive is enabled.

The return value specific bits are as follows:

Bit	Status and Response	Drive Action
0	Software disable (execute DRV.EN to issue soft- ware enable)	Performs action configured by DRV.DISMODE.
1	Fault exists (read DRV.FAULTS to get the active faults)	Device disables using the defined reaction for the detected fault.
2	Hardware disable (remote enable input is low)	Power stage disabled.
3	In-rush disable (the in-rush relay is opened)	Performs action configured by DRV.DISMODE.
4	Initialization disable (the drive did not finish the ini- tialization process)	Power stage disabled.
5	Controlled stop disable from a digital input.	Controlled stop.
6	Field Bus requested disable (SynqNet and EtherNet/IP only)	Performs action configured by DRV.DISMODE.
7	AKD-C requested disable (AKD-N only)	Performs action configured by DRV.DISMODE.

Related Topics

Controlled Stop (pg 54)

26.17 DRV.DISSOURCESMASK

General Information	
Туре	R/O parameter

General Information		
Description	Returns a bitmap of all bits in DRV.DISSOURCES that can be set to one on a given	
	drive.	
Units	N/A	
Range	N/A	
Default	N/A	
Value		
Data Type	Integer	
Start Version	M_01-07-00-000	

DRV.DISSOURCESMASK is a bitwise parameter that returns all possible causes of a drive disable. If a bit is set, the drive can be disabled for this reason.

The return value specific bits are as follows:

Bit	Status and Response	
0	Software triggered disable	
1	Fault exists	
2	Hardware Enable input inactive	
3	In-rush relay state prevents enable	
4	Initialization not complete	
5	Controlled stop requested from digital input	
6	Field bus requested disable	
7	AKD-C requested disable (AKD-N only)	
8	Pre-charge successful (AKD-C only)	

For most AKD models, this parameter will return the value 63. For EtherNet/IP and SynqNet version of the drive, the parameter will return the value 127.

For AKD-N, this parameter will return the value 179. For AKD-C, this parameter will return the value 286.

Related Topics

DRV.DISSOURCES (pg 258)

26.18 DRV.DISTO

General Information		
Туре	R/W Parameter	
Description	Sets the emergency timeout	
Units	ms	
Range	0 to 120,000 ms	
Default Value	1,000 ms	

General Information				
Data Type	U32			
See Also	DRV.DIS (pg 256), DRV.DISMODE (pg 256)			
Start Version	M_01-00-00-000			
Fieldbus Index/Subindex Object Star			rt Version	
EtherCAT COE and CANopen		3445h/0	M_01-00-0	0-000

This timer starts when DRV.DIS (pg 256) is issued (regardless of the DRV.DIS (pg 256) origin). After this timeout elapses, the actual state of the drive is compared to the DRV.DISMODE (pg 256) setting. If the actual state does not match the DRV.DISMODE (pg 256) setting, a fault is reported and the hardware immediately executes the DRV.DISMODE setting (for instance, disable or activate dynamic brake). Setting DRV.DISTO to 0 will disable the timeout.

Related Topics

9.3 Controlled Stop

26.19 DRV.DOWNLOADALLOWED

General Information		
Туре	R/O Parameter	
Description	Returns whether the drive is in a safe state to begin a firmware down- oad.	
Units	N/A	
Range	0 to 1	
Default Value	N/A	
Data Type	Integer	
Start Version	M_01-09-02-000	

Description

This parameter returns whether the drive is in a safe state to begin a firmware download. A download can only be performed if the value is one. If the value is zero, \underline{EWV}^1 will block the download.

For an AKD PDMM or NSD, the value depends on the drive enable status. For a CPS, the value depends on the enable states of the NSDs on its string. If one more more NSDs are enabled on a string, download to the CPS will be blocked.

Related Topics

9.1 Limits

¹Embedded Workbench Views

26.20 DRV.EMUECHECKSPEED

General Info	General Information		
Туре	TBD		
Description	Enable / disable motor velocity vs. maximum emulated encoder velocity monitoring func- tion. See Fault F486 for details.		
Units	None		
Range	0 to 1		
Default Value	0 (disabled)		
Data Type	Boolean		
See Also	DRV.EMUEMODE (pg 262)		
Start Ver- sion			

Description

Enables comparison of the current motor velocity against the maximum speed the emulated encoder output can generate. The maximum speed is based on lines/rev (DRV.EMUERES) and the pulse width (DRV.EMUEPULSEWIDTH). If the motor velocity exceeds this speed, fault F486 is raised.

Related Topics

26.21 DRV.EMUEDIR

General Information			
Туре	R/W Parameter		
Description	Sets the direction of the emulated encoder output (EEO) sig- nal.		
Units	N/A		
Range	0 to 1		
Default Value	0		
Data Type	Integer		
Start Version	M_01-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3493h/0	M 01-00-00-000
CANopen	3493170	W_01-00-00-000

Description

This parameter sets the direction of the emulated encoder output (EEO). DRV.DIR (pg 254) also effects the output direction (through an XOR, "exclusive or", operation). The drive uses DRV.DIR (pg 254) and DRV.EMUEDIR to decide the direction of the EEO. If DRV.DIR (pg 254) and DRV.EMUEDIR have the

261

same value, then DRV.EMUEDIR is set to 0 (meaning an increase in the motor feedback will result an increase of the EEO and vice-versa). If these parameters have different values, then DRV.EMUEDIR is set to 1 (meaning an increase in the motor feedback will result in a decrease of the EEO and vice-versa).

26.22 DRV.EMUEMODE

General Infor	General Information		
Туре	R/W Parameter		
Description	Sets the mode of the emulated encoder output (EEO) connector.		
Units	N/A		
Range	0 to 14		
Default	0		
Value	0		
Data Type	Integer		
See Also	DRV.EMUERES (pg 265), DRV.EMUEZOFFSET (pg 266), DRV.EMUEMTURN (pg		
SEE AISU	263)		
Start Version	M_01-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3534h/0	M 01-00-00-000
CANopen	33341/0	M_01-00-00-000

Description

When the emulated encoder output (EEO) is configured to generate an index pulse (Z pulse) once per rev (DRV.EMUEMODE is 1, 6, or 8) this parameter and DRV.EMUEZOFFSET define the location of the Z pulse. DRV.EMUEZOFFSET defines the position of the Z pulse within one revolution. The pulse is generated each time this position is reached. For example, if this value is set to 32,768 (180 degrees), the Z pulse will be generated at 180 degrees, 540 degrees, 900 degrees, and so on.

When the EEO is configured to generate and absolute index pulse (DRV.EMUEMODE is 2,7, or 9) this parameter, DRV.,EMUEZOFFSET and DRV.EMUEMTURN define the location of the Z pulse.

DRV.EMUEMTURN is used to define which turn of the position range the Z pulse is located.

DRV.EMUEZOFFSET is used to define the position of the Z pulse within one revolution. For example, if DRV.EMUETURN is set to 1, and DRV.EMUEZOFFSET is set to 32,768 (180 degrees), then the index pulse will be generated at position 540 degrees.

When the EEO is configured in pass through mode (DRV.EMUEMODE is 12, 13, or 14) the EEO Z pulse will be generated each time the encoder's physical Z pulse is generated (the physical Z pulse is "passed through").

DRV.EMUEMODE sets the EEO connector to act as either an input or output as follows.

Setting	Function
0 (recom- mended)	Input (see to select the type of inputs the secondary feedback will accept)
1	EEO Output, A/B with once per rev index
2	EEO Output, A/B with absolute index pulse.
3	Input, A/B signals (Deprecated)
4	Input, step and direction signals (Deprecated)
5	Input, CW/CCW (Up/Down) Signals (Deprecated)
6	Step/Dir with one Z-pulse/rev
7	Step/Dir with one absolute Z-pulse (depends on DRV.EMUEOFFSET and DRV.EMUETURN)
8	CW/CCW output with one Z-pulse/rev
9	CW/CCW output with one absoulte Z-pulse (depends on DRV.EMUEOFFSET and DRV.EMUETURN)
10	Allows the X9 connector to be used as a General Purpose I/O or SynqNet fieldbus controlled I/O
11	FB3 Input (Tertiary feedback is reported with FB3.P (pg 326)). Use FB3.MODE (pg 326) to select the feedback type.
12	Output - A/B with index pass through.
13	Output - Step/Dir with index pass through.
14	Output - CW/CCW with index pass through.

Modes 3 to 5 are backwards compatible but deprecated. Refer to FB2.MODE (pg 1) and FB2.SOURCE (pg 1) instead.

NOTE If you are using multi-turn or single tune absolute feedback devices, and the once per rev or absolute Z pulse modes (DRV.EMUEMODES 1,2,6,7,8, or 9) the Z pulse generated by the EEO will always be aligned with the same mechanical position of the primary feedback position. If you are using an incremental feedback device and these modes, then the origin of the primary feedback is not at the same mechanical position each time the drive powers up. If you are using the pass through mode (DRV.EMUEMODES 12, 13, or 14) the Z pulse generated by the EEO will always be aligned with the same mechanical position of the primary feedback position.

Related Topics

26.23 DRV.EMUEMTURN

General Information	
Туре	R/W Parameter

General Info	ormation	
Description	Defines the location of the index pulse on the EEO (emulated encoder output) when	
	DRV.EMUEMODE=2.	
Units	revolutions	
Range	0 to 4,294,967,295	
Default	0	
Value		
Data Type	Integer	
See Also	DRV.EMUEMODE (pg 262), DRV.EMUERES (pg 265)	
Start Ver-	M_01-00-000	
sion		
Fieldbus	Index/Subindex Object Start Version	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3491h/0	M 01-00-00-000
CANopen	34911/0	W_01-00-00-000

When the emulated encoder output (EEO) is configured to generate an absolute index pulse (DRV.EMUEMODE is 2, 7 or 9) this parameter and DRV.EMUEZOFFSET define the location of the Z pulse. DRV.EMUEMTURN is used to define which turn of the position range the Z pulse is located. DRV.EMUEZOFFSET is used to define the position of the Z pulse within one revolution.

Note: If you are using multi-turn or single tune absolute feedback devices the Z pulse from generated by the EEO will always be aligned with the same mechanical position of the of the primary feedback position. If you are using an incremental feedback device then the origin of the primary feedback is not at the same mechanical position each time the drive powers up.

Related Topics

General Information			
Туре	TBD		
Description	Sets the encoder output pulse width for modes 6 to 7.		
Units	us(microseconds)		
Range	4.08 us to 2621.48 us		
Default Value	4.08 us		
Data Type	Float		

26.24 DRV.EMUEPULSEWIDTH

General Information	
See Also	DRV.EMUEMODE (pg 262)
Start Version	

EMU Encoder Out Pulse Width Register

Sets pulse width for CW/CCW and Step and Direction modes. This parameter does not effect the A quad B mode. To calculate emuOutPulseWidth:

(Desired pulse width -40 nsec)/520 nsec

Requirement		DSFPGA-03-306
Bits	Bits	Description
11:0	emuOutPulseWidth	Read/Write 12 bit unsigned number minimum resolution is 520 nsec. Reset state – 0
15:12		reserved

- Register is in counts (12 bit)
- Register * 520ns + 40ns is the actual pulse with.
- Register = 1 = pulse width is 560ns = 0.56us (minimum value)
- For each register increment the pulse width is raised by 0.52us

Example

```
50 usecs pulse width
emuOutPulseWidth = (50 usecs - 40 nsec)/520 nsec = 96
actual pulse = 96*520 nsec + 40 nsec = 49.88 usecs.
```

Related Topics

26.25 DRV.EMUERES

General Information		
Туре	R/W Parameter	
Description	Sets the resolution of the EEO (emulated encoder output).	
Units	lines/rev (when DRV.EMUEMODE (pg 262) = 1, 2, or 3)	
	counts/rev (when DRV.EMUEMODE (pg 262) = 4 or 5)	
Range	0 to 16,777,215 lines per revolution	
Default	0 lines per revolution	
Value		
Data Type	Integer	
See Also	DRV.EMUEMODE (pg 262)	
Start Version	M_01-00-000 (resolution increased from 65,535 to 16,777,215 in M_01-04-00-	
	000)	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3535h/0	M 01-00-00-000
CANopen	35351/0	W_01-00-00-000

This parameter sets the emulated encoder (EEO) resolution. DRV.EMUERES also defines how many lines are output for one revolution of the primary feedback (when this port is configured as an output), or how many lines will be considered a full revolution of the handwheel (when this port is configured as an input).

Related Topics

26.26 DRV.EMUEZOFFSET

General Information		
Туре	R/W Parameter	
Description	Sets the location of the EEO (emulated encoder output) index pulse (when	
Decemption	DRV.EMUEMODE=1).	
Units	1/65536 rev	
Range	0 to 65535 rev	
Default	0 rev	
Value		
Data Type	Integer	
See Also	DRV.EMUEMODE (pg 262), DRV.EMUEMTURN (pg 263)	
Start Ver-	M 01-00-000	
sion		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3537h/0	M 01-00-00-000
CANopen		

Description

When emulated encoder output (EEO) multitum is selected (DRV.EMUEMODE (pg 262)=1), this parameter is used by itself to define the position if the Z pulse within one revolution. When the primary feedback position (within a revolution) equals this value, an index pulse will output. Also, if DRV.EMUEMODE=1 then this parameter is used in conjunction with DRV.EMUEMTURN.

When the EEO is configured to generate an absolute index pulse (DRV.EMUEMODE is 2, 7 or 9) this parameter and DRV.EMUEZOFFSET define the location of the Z pulse. DRV.EMUEMTURN is used to define which turn of the position range the Z pulse is located and DRV.EMUEZOFFSET is used to define the position of the Z pulse within one revolution.

Note: If you are using multi-turn or single tune absolute feedback devices the Z pulse from generated by the EEO will always be aligned with the same mechanical position of the of the primary feedback position.

If you are using an incremental feedback device then the origin of the primary feedback is not at the same mechanical position each time the drive powers up.

Related Topics

26.27 DRV.EN

General Information		
Туре	Command	
Description	Enables the axis (software).	
Units	N/A	
Range	N/A	
Default	Analog drive software is enabled.	
Value	All other types of drive software are disabled.	
Data Type	N/A	
See Also	DRV.DIS (pg 256), DRV.DISSOURCES (pg 258) DRV.ACTIVE (pg	
	247)	
Start Version	M_01-00-000	

Description

DRV.EN issues a software enable to the drive. You can query the value of DRV.ACTIVE (pg 247) to check whether the drive is currently enabled or disabled.

You can also query the value of DRV.DISSOURCES (pg 258) to check whether the software enable bit is high (software enabled was issued by executing DRV.EN) or the software enable bit is low (software disable was issued by executing DRV.DIS). If the drive software enable bit is low and DRV.EN is executed, then drive faults are automatically cleared during the software enable process.

Related Topics

14.3 Clearing Faults

9.2 Enable/Disable

26.28 DRV.ENDEFAULT

General Information		
Туре	R/W Parameter	
Description	Sets the default state of the software	
Description	enable.	
Units	N/A	
Range	0 to 1	

General Information	
Default	0
Value	0
Data Type	Boolean
See Also	N/A
Start Version	M_01-00-00-000

DRV. ENDEFAULT sets the default state of the software enable on power up for drives without fieldbuses (DRV.CMDSOURCE other than 1).

NOTE It is recommended to not use this parameter with a BASIC program (keep DRV.ENDEFAULT = 0 / default value). Instead set DRV.SWENABLE = 1 at the beginning of the BASIC program.

Related Topics

Enable/Disable (pg 51)

26.29 DRV.ERRORLIST

General Information	
Туре	R/O
Description	Prints a list of all possible error codes and error text.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	String
Start Version	M_01-09-00-000

Description

AKD PDMM commands and parameters reports an error code when a command cannot be executed. Use DRV.ERRORLIST to print a list of all possible error codes and their descriptions.

26.30 DRV.FAULTHIST

General Information	
Туре	R/O Parameter
Description	Reads the last 50 faults from NV memory.
Units	N/A
Range	N/A

General Information	
Default Value	N/A
Data Type	N/A
See Also	DRV.FAULTS (pg 270), DRV.CLRFAULTHIST (pg 249)
Start Version	M_01-00-000

DRV.FAULTHIST returns the last 50 faults that occurred in the drive. The faults are shown with their fault number (which matches the one displayed on the drive display) and a time stamp that indicates when they last occurred.

Issue a DRV.CLRFAULTHIST (pg 249) to clear this fault log.

26.31 DRV.FAULT1 to DRV.FAULT10

General Information		
Туре	R/O	
Description	Location of fault codes for any active fault conditions.	
Units	N/A	
Range	Any supported fault code or 0.	
Default	N/A	
Value		
Data Type	Integer	
Start Version	tbd	

Description

These parameters are holding registers where any active faults will be kept. A value of zero represents that no fault is present. Non-zero values correspond to specific fault codes in the drive (see fault and warning messages). The registers are populated in the order of when the fault occurs (DRV.FAULT1, DRV.FAULT2, DRV.FAULT3, and so on).

Notes:

- If DRV.FAULT1 value is 0, then the drive does not have any faults.
- Only active faults are shown. This is not a fault history.
- These registers are an alternative to the string type parameter DRV.FAULTS (pg 270), so that fieldbusses and AKD BASIC users have easier access to the details of the faults in the drive.
- Warnings are not shown in the registers, only faults.

Related Topics

DRV.ACTIVE (pg 247) | DRV.WARNING1 to DRV.WARNING3 (pg 289)

26.32 DRV.FAULTS

General Information	
Туре	R/O Parameter
Description	Reads the active faults.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	DRV.CLRFAULTS (pg 249), DRV.FAULTHIST (pg 268), DRV.CLRFAULTHIST (pg 249)
Start Version	M_01-00-000

Description

DRV.FAULTS returns a list of all currently active faults in the system, preceded by their fault number which matches the number displayed on the drive display.

To clear the faults, either issue a DRV.CLRFAULTS or issue a DRV.DIS followed by DRV.EN.

If no active faults are in the system, then after executing DRV.CLRFAULTS the value read by DRV.FAULTS is "No faults active".

Example

-->DRV.FAULTS 502: Bus under voltage. -->

26.33 DRV.HANDWHEELSRC

General Information	
Туре	NV Parameter
Description	Selects the feedback for handwheel operation.
Units	None
Range	2-3
Default Value	2
Data Type	U8
See Also	N/A
Start Version	M_01-05-08-000

Description

This command sets the feedback which will be used as the handwheel source. If the selected Feedback is incompatible with the selected emulated encoder mode, a warning will be displayed.

Feedback 3 is only supported on drives with model numbers similar to AKD PDMM-x-xxxx-NBxx-xxxx and will only work with Endat 2.2 multiturn encoder.

26.34 DRV.HELP

General Information	
Туре	R/O Parameter
Description	Reads the minimum, maximum, and default values for a specific parameter or com- mand.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	N/A
Start Version	M_01-00-000

Description

This parameter returns more information about a specific parameter or command.

In most cases, except special parameters, this command tells you the minimum, maximum, default, and actual value of a parameter. Exceptions are commands that do not have these values (such as DRV.EN (pg 267)) or information commands (such as DRV.VER (pg 288)).

Related Topics

Terminal (pg 94)

26.35 DRV.HELPALL

General Information	
Туре	R/O Parameter
Description	Retrieves the minimum, maximum, default, and actual values for all available parameters and commands.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	N/A
Start Ver- sion	M_01-00-000

Description

This parameter retrieves all information about all parameters and commands in the firmware. In most cases, DRV.HELPALL returns the minimum, maximum, default, and actual value for each parameter and command. Exceptions include parameters and commands that do not have these values (such as DRV.EN (pg 267)) or pure INFO commands (such as DRV.VER (pg 288)).

Related Topics

Terminal (pg 94)

26.36 DRV.HWENABLE

General Information		
Туре	R/O	
Description	Status of the hardware enable.	
Units	N/A	
Range	0 to 1	
Default	N/A	
Value		
Data Type	Integer	
Start Version	tbd	

Description

Status of the Hardware Enable.

- 0 not enabled
- 1 enabled

Notes: This parameter reflects the status of the hardware enable only, not if the status of the power stage. The status of the power stage enable is determined by DRV.ACITVE.

Related Topics

DRV.DISSOURCES (pg 258) | DRV.ACTIVE

26.37 DRV.HWENDELAY

General Information		
Туре	NV Parameter	
Description	Delay time between inactive Hardware Enable input and drive disable.	
Units	Milliseconds	
Range	0 to 167 ms	
Default Value	0 ms	
Data Type	Integer	
Start Ver- sion	01-05-08-000	

Description

By default, when the Hardware Disable input deactivates, the drive is immediately disabled. However, on a vertical axis this may allow the load to drop slightly before the brake is applied.

To ensure that the brake is applied before the power stage is disabled, set DRV.HWENDELAY to a value which allows the brake to apply fully.

While the brake is applying, the drive will also attempt to decelerate the motor using the standard drive disable settings such as DRV.DISMODE, CS.DEC, CS.VTHRESH and CS.TO.

NOTE Prior to version 01-05-08-000, the brake would only apply when velocity dropped below CS.VTHRESH or MOTOR.TBRAKETO expired. Starting with 01-05-08-000, the brake will now apply immediately when the Hardware Enable Input line is deactivated.

Related Topics

DRV.DISMODE (pg 256) | CS.DEC (pg 219) | CS.VTHRESH (pg 221) | CS.TO (pg 220) | MOTOR.TBRAKEAPP (pg 394)

26.38 DRV.HWENMODE

General Information	
Туре	R/W Parameter
Description	Selects the action that the hardware enable digital input will per-
Description	form.
Units	N/A
Range	0 to 1
Default	0
Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-03-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3506h/0	M 01-03-00-000
CANopen	33001/0	M_01-03-00-000

Description

This parameter selects the action that the hardware enable digital input will perform.

0 = The rising edge of the hardware enable will clear the drive faults.

1 = The rising edge of the hardware enable will not clear the drive faults.

The high/low state of the hardware enable is always used to control the active enable state of the drive.

Related Topics

9.2 Enable/Disable

26.39 DRV.ICONT

General Information		
Туре	R/O Parameter	
Description	Reads the continuous rated current value.	
Units	Arms	
Range	N/A	
Default Value	N/A	
Data Type	Float	
See Also	DRV.IPEAK (pg 275)	
Start Version	M_01-00-000	

Description

DRV.ICONT returns the drive continuous rated current in Arms.

26.40 DRV.INFO

General Information		
Туре	R/O Parameter	
Description	Reads general information about the drive.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	String	
See Also	N/A	
Start Version	M_01-00-000	

Description

DRV.INFO returns general information about the drive.

Example

```
Advanced Kollmorgen Drive

----
Drive model : AKD-P00306-NACC-0000
Drive type : Position Indexer
Continuous current : 3.000 Arms
Peak current: 9.000 Arms
Voltage : 120/240 VAC
Option Board : Not applicable
Connectivity : EtherCAT
```

```
Product serial number: R-0939-00048
Hardware version : --
Mac address: 00-23-1B-00-50-F1
Processor ID: 0xE5040003
Firmware version: M 01-04-16-000 Z 2011-09-12 14-03-45 AP
Operational image : M 01-04-16-000 Z 2011-09-12 14-03-45 AP
Resident image : R 00-00-28-000
Revision : 19074
Source Location: local
FPGA Version: FP0003 0103 00 00
Operational image : FP0003 0103 00 00
Resident image : FPB003 0100 00 00
Size: 1600
Control board serial number : 4-0921-00196
Part number : 0
Revision : 7
Board ID : Standard
Power board serial number : 4-0922-00156
Part number : 0
TCP/IP IP address : 169.254.250.241
Subnet mask : 255.255.0.0
Default gateway : 0.0.0.0
DHCP server : 0.0.0.0
Temporary fieldbus type : EtherCAT
FPGA size : 1600
```

26.41 DRV.IPEAK

General Information	
Туре	R/O Parameter
Description	Reads the peak rated current value.
Units	Arms
Range	N/A
Default Value	N/A
Data Type	Float
See Also	DRV.ICONT (pg 274)
Start Version	M_01-00-00-000

Description

DRV.IPEAK returns the drive peak rated current in Arms.

Related Topics

6.4 Foldback

26.42 DRV.IZERO

General Inform	mation
Туре	NV Parameter
Description	Sets the current that will be used during the DRV.ZERO pro- cedure.
Units	Arms
Range	Drive peak current to 0 Arms
Default Value	0 Arms
Data Type	Float
See Also	DRV.ZERO (pg 291)
Start Version	M_01-00-000

Description

This parameter sets the current that is used during the DRV.ZERO (pg 291) procedure.

26.43 DRV.LIST

General Information		
Туре	R/O Parameter	
Description	Reads the list of available parameters and com-	
	mands.	
Units	N/A	
Range	N/A	
Default	N/A	
Value		
Data Type	String	
See Also	N/A	
Start Version	M_01-00-000	

Description

DRV.LIST reads the list of available commands and parameters from the drive.

To filter this list, enter DRV.LIST followed by the prefix of the commands and parameters that you wish to display.

Example

Return a list of all available commands in the system:

-->DRV.LIST

Return all commands with the prefix DRV:

-->DRV.LIST DRV

26.44 DRV.LOGICVOLTS

General Information		
Туре	R/O Parameter	
Description	Reads the logic voltages.	
Units	mv , Ω	
Range	N/A	
Default Value	N/A	
Data Type	String	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

DRV.LOGICVOLTS reads the logic voltages data of 1.2 V, 2.5 V, 3.3 V, 5 V, 12 V, -12 V, and 3.3 AV.

Example

Below is an example of the output for this command:

ch0	=	1.2V	: 1211 mv
ch1	=	2.5V	:2488 mv
ch2	=	3.3V	:3274 mv
ch3	=	5V	:4950 mv
ch4	=	12V	:11892 mv
ch5	=	-12V	:-11912 mv
ch6	=	3.3AV	:3300 mv
ch7	=	R ohm	:100000 ohm

26.45 DRV.MEMADDR

General Information		
Туре	R/W Parameter	
Description	Sets the read and write	
	address.	
Units	N/A	
Range	N/A	
Default	U8	
Value	00	
Data Type	N/A	
See Also	DRV.MEMDATA (pg 278)	
Start Version	M_01-00-00-000	

Description

DRV.MEMADDR sets the address that is used by DRV.MEMDATA. The input can be either an internal parameter of the drive or any direct address from the DSP address space (SDRAM, internal RAM, or asynchronous memory). The input value can be either decimal or hexadecimal with 0x prefix.

Type extension can be one of the following:

U8,S8,U16,S16,U32,S32,U64,S64.

Examples

Setting to an internal parameter:

-->DRV.MEMADDR CCommandHandler.Debug1

Setting to an internal address:

-->DRV.MEMADDR 0xffabcde.u16

26.46 DRV.MEMDATA

General Information		
Туре	R/W Parameter	
Description	Sets or reads a value from an internal address.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	N/A	
See Also	DRV.MEMADDR (pg 277)	
Start Version	M_01-00-000	

Description

DRV.MEMDATA reads a value from the address that was set by DRV.MEMADDR (pg 277) or writes a value to this address. The input value can be either decimal or hexadecimal with 0x prefix.

Examples

Read a value from internal address:

```
-->DRV.MEMDATA 01
```

Write a hexadecimal value to an internal address:

```
-->DRV.MEMADDR 0x01
```

26.47 DRV.NAME

General Information	
Туре	NV Parameter
Description	Sets and reads the name of the drive.
Units	N/A

General Information		
Range	N/A	
Default Value	No-Name	
Data Type	String	
See Also	N/A	
Start Version	M_01-00-00-000	

You can assign a unique name to any drive under the following conditions:

- Only use ASCII characters
- Max length of 10 characters
- No spaces in name

This name is one way to identify the drive in a multiple drive network (for instance, in a TCP/IP network on which multiple drives reside).

From the terminal screen, DRV.NAME returns the name of the drive as ASCII characters.

26.48 DRV.NVCHECK

General Information	
Туре	R/O Parameter
Description	NV Parameter Check-
Description	sum
Units	None
Range	N/A
Default	N/A
Value	
Data Type	Integer
See Also	DRV.NVLIST (pg 280)
Start Version	M_01-04-12-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	2019h/0	M 01 04 13 000
CANopen	20191/0	M_01-04-12-000

Description

DRV.NVCHECK returns a checksum of all the drives NV parameters. This parameter can be used to detect changes in parameters.

In some applications a master device needs to confirm the AKD PDMM drive contains an expected set of drive parameters. Reading and checking all the drive parameters individually is viable but this would be a

long process involving many reads over the network. DRV.NVCHECK is a checksum on all the NV parameters and this parameter can be read in a single transaction. DRV.NVCHECK will return the same number if all the drive parameters match. If any of the drive parameters are changed then DRV.NVCHECK will return a different value.

26.49 DRV.NVLIST

General Information		
Туре	R/O Parameter	
Description	Lists the NV parameters and values from the RAM.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	N/A	
See Also	N/A	
Start Version	M_01-00-000	

Description

DRV.NVLIST lists all the drive parameters that reside in NV memory.

The list includes each parameter name, followed by its current value from the RAM.

26.50 DRV.NVLOAD

General Information	
Туре	R/O Parameter
Description	Loads all data from the NV memory of the drive into the RAM para- meters.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	DRV.NVLOAD DRV.NVLIST
Start Version	M_01-00-000

Description

DRV.NVLOAD loads all data from the NV memory of the drive into the RAM parameters.

26.51 DRV.NVSAVE

General Information		
Туре	Command	
Description	Saves the drive parameters from the RAM to the NV	
Description	memory.	
Units	N/A	
Range	N/A	
Default	N/A	
Value		
Data Type	N/A	
See Also	DRV.RSTVAR (pg 283)	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	1010h/1	M 01 00 00 000
CANopen	35EBh/0	M_01-00-00-000

Description

DRV.NVSAVE saves the current drive parameter values from the RAM to the NV memory.

The drive parameters that were saved to the NV are read from the NV on the next drive boot, causing the values to be automatically set to the saved values on every drive boot.

Executing DRV.RSTVAR does not modify the values of the NV, but instead sets the drive values in RAM to their defaults.

26.52 DRV.ONTIME

General Information		
Туре	R/O Parameter	
Description	Returns how long the drive has been running since last power up.	
Units	Days:Hours:Minutes:Seconds	
Range	N/A	
Default	N/A	
Value		
Data Type	String	
See Also	Returns how long the drive has been running since first activated. (pg	
0007400	284)	
Start Version	M_01-00-000	

Description

This parameter returns the length of time that the drive has been running for the current session (since the last power up).

26.53 DRV.OPMODE

General Information		
Туре	NV Parameter	
Description	Sets the drive operation mode (current, velocity, or pos- ition).	
Units	N/A	
Range	0 to 2	
Default Value	0	
Data Type	Integer	
See Also	DRV.CMDSOURCE (pg 250)	
Start Version	M_01-00-000	
Fieldbus	Index/Subindex Object Start Version	

Fielubus	muez/Submuez	Object Start Version
EtherCAT COE and	35B4h/0	M 01-00-00-000
CANopen	550411/0	w_01-00-00-000

Description

DRV.OPMODE specifies the operation mode of the drive. You must also use DRV.CMDSOURCE to set the source of the command to the drive.

The operation mode values can be set as follows:

Mode	Description
0	Current (torque) operation
	mode
1	Velocity operation mode
2	Position operation mode

DRV.OPMODE can be changed while the drive is enabled or disabled. If you are using the terminal to change the operation mode, then it is recommended that you disable the drive before changing the operation mode. If you change the operation mode from the terminal while the drive is enabled, the system may experience a step change in demand.

Example

Set the source of the command to a TCP/IP channel and the desired operation mode to velocity:

```
-->DRV.CMDSOURCE 0
-->DRV.OPMODE 1
```

Related Topics

9.3 Controlled Stop

- 1 Current Loop
- 1 Velocity Loop
- 1 Position Loop

26.54 DRV.READFORMAT

General Information		
Туре	R/W Parameter	
Description	Sets the value returned to either decimal or hexa- decimal.	
Units	N/A	
Range	10 or 16	
Default Value	10	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-000	

Description

DRV.READFORMAT sets the return values type to either decimal or hexadecimal.

Format	-
10	Sets the read values to decimal format
16	Sets the read values to hexadecimal
10	format

26.55 DRV.RSTVAR

General Info	rmation
Туре	Command
Description	Sets default values in the drive without re-booting the drive and without resetting the NV memory.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	
Start Ver- sion	M_01-00-000

DRV.RSTVAR causes the drive to return to the default values without the need to re-boot the drive first and without resetting the NV memory. Use DRV.RSTVAR to return to the default settings and recover a working drive.

26.56 DRV.RUNTIME

General Information		
Туре	R/O Parameter	
Description	Returns how long the drive has been running since first activated.	
Units	Days:Hours:Minutes:Seconds	
Range	N/A	
Default Value	N/A	
Data Type	String	
See Also	N/A	
Start Version	M_01-00-000	

Description

DRV.RUNTIME returns the length of time that the drive has been running since it was first activated. This time includes the current session and the total amount of time from all previous sessions.

26.57 DRV.SETUPREQBITS

General Information		
Туре	R/O Parameter	
Description	Reads the bitwise set status of parameters that must be set before the drive can be enabled.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	N/A	
See Also	DRV.SETUPREQLIST (pg 285), MOTOR.AUTOSET (pg 380)	
Start Ver- sion	M_01-00-000	

Description

This parameter returns the bitwise set status of parameters that needs to be set up before the drive can be enabled. Only when this parameter returns 0 can the drive be enabled.

Parameter	Bits
IL.KP	0x0000001
MOTOR.IPEAK	0x0000002
MOTOR.ICONT	0x0000004
MOTOR.VMAX	0x0000008
MOTOR.POLES	0x0000010
MOTOR.PHASE	0x0000020

Please note that if MOTOR.AUTOSET (pg 380) is set to 1 (parameters automatically calculated from motor ID data), then all values in the list will be initialized from the feedback device. Otherwise, the parameters must be set manually.

26.58 DRV.SETUPREQLIST

General Information		
Туре	R/O Parameters	
Description	Reads the list of parameters that must be set before the drive can be enabled.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	N/A	
See Also	DRV.SETUPREQBITS (pg 284), MOTOR.AUTOSET (pg 380)	
Start Version	M_01-00-000	

Description

This parameter returns the list of parameters that must be set before the drive can be enabled and also whether or not each one of those parameters is set. Only when all commands have value of 0 can the drive be enabled.

Please note that if MOTOR.AUTOSET (pg 380) is set to 1 (parameters automatically calculated from motor ID data), then all values in the list will be initialized from the feedback device. Otherwise, the parameters must be set manually.

Example

```
-->DRV.SETUPREQLIST
IL.KP 0
MOTOR.ICONT 0
MOTOR.IPEAK 0
MOTOR.POLES 0
-->
```

26.59 DRV.STOP

General Infor	mation		
Туре	Command		
Description	This command motion.	stops all drive	
Units	N/A		
Range	N/A		
Default Value	N/A		
Data Type	N/A		
See Also	N/A		
Start Version	M_01-00-00-000)	
Fieldbus		Index/Subindex	Object Start Versi

EtherCAT COE and	35FEh/0	M 01-00-00-000
CANopen	JOFEII/0	M_01-00-00-000

Description

This command stops drive motion. In torque and velocity modes, the command value will immediately be set to 0. In position mode, the axis will decelerate to a full stop. If the position command is from a gearing master, the drive will cancel gearing and decelerate to a stop. This command has no effect if the command source is an analog input (Analog Position, Analog Velocity, or Analog Torque).

If the command values are coming from a fieldbus master, the stop may be immediately overwritten by a new fieldbus command. Use a controlled stop input or disable command to ensure a stop.

26.60 DRV.TEMPERATURES

General Information		
Туре	R/O Parameter	
Description	Reads the temperature of drive components.	
Units	٦°	
Range	55 to 125 °C	
Default Value	N/A	
Data Type	String	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3610h/0	M 01-00-00-000
CANopen	3611h/0	W_01-00-00-000

DRV.TEMPERATURES reads the temperature in different parts of the drive (power and control boards). The temperature is read from temperature sensors located in the drive.

Example

Below is an example of the output for this command :

Control Temperature: 39 °C Power1 Temperature: 31 °C Power2 Temperature: Sensor does not exist. Power3 Temperature: Sensor does not exist.

26.61 DRV.TIME

General Information		
Туре	R/W	
Description	A continuous time counter in the drive.	
Units	Milliseconds	
Range	0 to 4294967295 (~ 49 days)	
Default Value	N/A	
Data Type	Integer	
Start Version	tbd	

Description

A continuous time counter in the drive. The timer starts at zero and counts up until it rolls over. If a new value is written to the timer, it continues to count up starting at the written value. The DRV.TIME value is set to zero when the AKD BASIC is powered on.

Related Topics

DRV.RUNTIME (pg 284) | WHEN.DRV.TIME

26.62 DRV.TYPE

General Inform	mation
Туре	R/W on the CC drive model. R/O on all other drive mod-
	els.
Description	Selects the operational fieldbus on CC drive models.
Units	N/A
Range	0 to 8
Default	2
Value	2
Data Type	Integer
See Also	FBUS.TYPE (pg 339), DRV.INFO (pg 274)
Start Version	M_01-03-00-000

DRV.TYPE allows you to select the operational fieldbus for your drive. This parameter is read-write on the CC drive models and read-only on all other drive models. To change the operational fieldbus of your drive:

- 1. Set DRV.TYPE to one of the following values. Only values 0 to 3 are selectable. All other values are read only.
 - 0 = Analog (no EtherCAT or CANopen) with no position indexer functionality.
 - 1 = Analog (no EtherCAT or CANopen) with position indexer functionality.|
 - 2 = EtherCAT
 - 3 = CANopen
 - 4 = SynqNet
 - 5 = EtherNet/IP
 - 6 = BASIC Langauge (not fieldbus)
 - 7 = Profinet
 - 8 = sercos[®] III
- 2. Save the parameters to the NV memory on the drive by issuing the DRV.NVSAVE command
- 3. Power cycle the 24 V supply to the drive. When the drive has finished powering up, it will be working with the new selection.

Changing DRV.TYPE does not immediately change the type of the drive fieldbus selection. You must power cycle the drive to start the drive with the selected functionality.

You cannot use EtherCAT and CANopen at the same time. Use FBUS.TYPE or DRV.INFO to identify the fieldbus currently in use.

DRV.TYPE does not change if you use DRV.RSTVAR.

Related Topics

AKD PDMM Models (pg 5)

26.63 DRV.VER

General Information		
Туре	R/O Parameter	
Description	Reads the drive ver- sion.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	String	
See Also	N/A	
Start Version	M_01-00-00-000	

DRV.VER reads both FPGA and firmware versions.

The version data presented is hard coded in the firmware code.

Example

Below is an example of the output for this command:

```
Danaher Motion - Digital Servo Drive
------
FPGA version : FP0004_0001_00_07
Firmware Version : M_0-0-15_T_2009-01-19_10-36-28_IR
```

26.64 DRV.VERIMAGE

General Information	
Туре	R/O Parameter
Description	Returns the version data from each
Description	image.
Units	N/A
Range	N/A
Default	N/A
Value	
Data Type	String
See Also	N/A
Start Version	M_01-00-00-000

Description

DRV.VERIMAGE reads the versions of the different images in the drive. This parameter returns the version data from each image .i00 file.

Example

Below is an example of the output for this parameter:

```
Danaher Motion - Digital Servo Drive

Resident Firmware: R_0-0-11

Operational Firmware: M_0-0-15

Resident FPGA: FPB004_0001_00_07

Operational FPGA : FP0004_0001_00_07
```

26.65 DRV.WARNING1 to DRV.WARNING3

General Information	
Туре	R/O

General Information		
Description	Location of fault codes for any active warning con- ditions.	
Units	N/A	
Range	Any supported fault code or 0	
Default Value	N/A	
Data Type	Integer	
Start Ver- sion	tbd	

These parameters are holding registers where any active warnings will be displayed. A value of zero represents that no warning is present. Non-zero values correspond to specific warning codes in the drive (see fault and warning messages). The registers are populated in the order of when the warning occurs (DRV.WARNING1, DRV.WARNING2, DRV.WARNING3, and so on).

Notes:

- If DRV.WARNING1 value is 0, then the drive does not have any faults.
- Only active warnings are shown. This is not a warning history.
- These registers are an alternative to the string type parameter DRV.WARNINGS so that fieldbuses and AKD BASIC user programs have integer-type parameters to access to the details of the warnings in the drive.
- Faults are not shown in the registers, only warnings.

Related Topics

DRV.FAULT1 to DRV.FAULT10 (pg 269) |

26.66 DRV.WARNINGS

General Information	
Туре	R/O Parameter
Description	Reads the active warn- ings.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	N/A
Start Version	M_01-00-00-000

Description

DRV.WARNINGS returns a list of all currently active warnings in the system.

26.67 DRV.ZERO

General Information		
Туре	R/W Parameter	
Description	Sets the zero mode. The procedure is activated when the drive is enabled.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Integer	
See Also	DRV.IZERO (pg 276)	
Start Version	M_01-00-000	

Description

The zero procedure is a sequence in which phase commutation is initialized. During this procedure, the motor is held at a certain known electrical position (by applying a current defined by DRV.IZERO (pg 276)). After the motor rests at this position, the commutation angle is calculated and set automatically.

27 EIP Parameters

This section describes the EIP parameters.

27.1	EIP.CONNECTED	293
27.2	EIP.POSUNIT	293
27.3	EIP.PROFUNIT	.294

27.1 EIP.CONNECTED

General Information		
Туре	R/O Parameter	
Description	Returns state of EtherNet/IP con- nection.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Integer	

Fieldbus Information

Description

Returns state of EtherNet/IP connection.

Value	Description
0	Not connected
1	Connected

Related Topics

EtherNet/IP View (pg 1)

27.2 EIP.POSUNIT

General Information		
Туре	R/W	
Description	Unit scaling for Position values over EtherNet/IP.	
Units	N/A	
Range	0 to 4,294,967,295	
Default	65536	
Value		
Data Type	Integer	
Start Ver-	M 01-05-00-000	
sion		

Description

Position values are scaled according to the Ethernet/IP Position Controller Device standard. One "Position Units" scaling value is defined, which gives the number of actual position feedback counts (at 32 bits per revolution) equal to one position unit.

From Workbench, this scaling parameter is visible in the Ethernet/IP screen or as EIP.POSUNIT in the terminal. From Ethernet/IP, this value can be accessed at attribute 0x04 Position Units of the Position Controller object.

The default value is $2^{16} = 65536$, which provides $2^{32} / 2^{16} = 2^{16}$ counts per revolution. A value of 1 would provide $2^{32} / 1 = 2^{32}$ counts per revolution.

Related Topics

EIP.PROFUNIT (pg 294)

27.3 EIP.PROFUNIT

General Info	General Information		
Туре	R/W		
Description	Unit scaling for Velocity and Acceleration values over EtherNet/IP.		
Units	N/A		
Range	0 to 4,294,967,295		
Default Value	65536		
Data Type	Integer		
Start Ver-	M 01-05-00-000		
sion			

Description

Velocity and Acceleration values are scaled according to the EtherNet/IP Position Controller Device standard. One "Profile Units" scaling value is defined, which affects both velocity and acceleration.

For velocity values, Profile Units gives the number of actual position feedback counts (at 32 bits per revolution) per second equal to one velocity unit. For acceleration values, Profile Units gives the number of actual position feedback counts (at 32 bits per revolution) per second^2 equal to one acceleration unit.

From Workbench, this scaling parameter is visible in the EtherNet/IP screen or as EIP.PROFUNIT in the terminal. From EtherNet/IP, this value can be accessed at attribute 0x05 Profile Units of the Position Controller object.

The default value is $2^{16} = 65536$, which provides $2^{32} / 2^{16} = 2^{16}$ counts per second per revolution. A value of 1 would provide $2^{32} / 1 = 2^{32}$ counts per second per revolution.

Related Topics

EIP.POSUNIT (pg 293)

28 FAULT Parameters

This section describes the FAULT parameters.

28.1	FAULTX.ACTION	
------	---------------	--

28.1 FAULTX.ACTION

General Information		
Туре	R/W	
Description	Gets/Sets the Fault Action for Fault 130, 131, 132, 134, 139, 451, and 702.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Integer	
Start Ver- sion	M_01-04-16-000	

Description

This Parameter determines the action the drive should take when Fault 130, 131, 132, 134, 139, 451, or 702 occurs.

Parameter Value	Drive Action
0	Disable Ampllifier
1	Ignore (fault will not be reported)

29 FB1 Parameters

This section describes the FB1 parameters.

29.1 FB1	BISSBITS	98
29.2 FB1	.DIAG	98
29.3 FB1	.ENCRES	99
29.4 FB1	.FAULTS	00
29.5 FB1	.HALLSTATE	01
29.6 FB1	.HALLSTATEU	03
29.7 FB1	.HALLSTATEV	03
29.8 FB1	.HALLSTATEW	04
29.9 FB1	.IDENTIFIED	04
29.10 FB	1.INITPSAVED	05
29.11 FB	1.INITPSTATUS	06
29.12 FB	1.INITPWINDOW	06
29.13 FB	1.INITSIGNED	07
29.14 FB	1.MECHPOS	08
29.15 FB	1.MEMVER	08
29.16 FB	1.OFFSET	09
29.17 FB	1.ORIGIN	09
29.18 FB	1.P	11
29.19 FB	1.PDIR	12
29.20 FB	1.PFIND	12
29.21 FB	1.PFINDCMDU	13
29.22 FB	1.PIN	13
29.23 FB	1.POFFSET	13
29.24 FB	1.POLES	14
29.25 FB	1.POUT	15
29.26 FB	1.PSCALE	15
29.27 FB	1.PUNIT	16
29.28 FB	1.RESKTR	16
29.29 FB	1.RESREFPHASE	17
29.30 FB	1.SELECT	17
29.31 FB	1.TRACKINGCAL	20
29.32 FB	1.USERBYTE0 to FB1.USERBYTE7	21
29.33 FB	1.USERDWORD0 to FB1.USERDWORD1	22

29.1 FB1.BISSBITS

General Information	
Туре	NV Parameter
Description	Specifies the number of Biss Sensor (Position) Bits for the BiSS Mode C encoder in
	use.
Units	bits
Range	0 to 64 bits
Default	32 bits
Value	
Data Type	Integer
See Also	FB1.SELECT (pg 317), FB1.IDENTIFIED (pg 304)
Start Version	M_01-01-00-100 and M_01-01-03-000

Description

FB1.BISSBITS specifies the number of BiSS sensor (position) bits for the BiSS Mode C encoder in use. Typically the value is either 26 or 32 for a BiSS Mode C Renishaw encoder. The required value for this parameter is provided by the feedback device manufacturer for the particular device being used.

Related Topics

Feedback 1 (pg 31)

29.2 FB1.DIAG

General Information	
Туре	R/O
Description	Returns feedback diagnostic inform- ation.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	String
Start Version	M_01-08-00-006

Description

Some fault documentation may reference this keyword to collect additional information. The results of this keyword vary for each situation.

If you have been directed to use this keyword, please collect the results and contact Kollmorgen support for the next steps in resolving your problem.

FB1.FAULTS (pg 300)

29.3 FB1.ENCRES

General Information		
Туре	Depends on FB1.IDENTIFIED. See table in description	
	below.	
Description	Sets the resolution of the motor encoder.	
Units	Encoder counts	
Range	0 to 2 ³² -1	
Default	1,024	
Value	1,027	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3533h/0	M 01 00 00 000
CANopen	3333H/U	M_01-00-00-000

Description

This parameter sets or gets the resolution of the motor encoder (encoder feedback systems only) in number of counts per revolution for a rotary motor and the number of encoder pitches per motor pole pitch for a linear motor. The number of encoder counts per revolution is obtained by multiplying the motor catalog resolution in units of PPR by four. For example, for a 1024 PPR resolution motor, the number of encoder counts per revolution is 1024*4 = 4096. For this motor FB1.ENCRES must be set to 4096.

For linear motors, the value of FB1.ENCRES is set to the number of encoder pitches per motor pole pitch. For a motor with 32 mm pole pitch, and a 40 μ m encoder pitch, the value for FB1.ENCRES should be set to 32 mm/40 μ m = 800.

Depending on the value of FB1.IDENTIFIED, FB1.ENCRES changes between read-only and read-write. The following table lists the FB1.IDENTIFIED values and FB1.ENCRES's corresponding type.

FB1.IDENTIFIED value	FB1.ENCRES type
10 (Incremental encoder)	R/W
11 (Incremental encoder, no halls)	R/W
20 (Sine encoder)	R/W
21 (Sine encoder, no halls)	R/W
30 (Endat 2.1)	R/O
31 (Endat 2.2)	R/O
32 (biSS)	R/O
33 (hiperface)	R/O

FB1.IDENTIFIED value	FB1.ENCRES type
34 (biSS Mode C)	R/W
40 (Resolver)	R/W
41 (sfd)	R/O
42 (Tamagawa)	R/O

6.2 Feedback 1

29.4 FB1.FAULTS

General Information	
Туре	R/O
Description	Returns a string describing the root cause of Fault 467.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	String
Start Version	M_01-08-00-006

Description

Use this parameter to determine the root cause of feedback fault 467. This parameter can currently be used to diagnose faults on Hiperface DSL feedback types. FB1.FAULTS will return one of the following strings as a root cause for fault 467.

Strings	
1000: A log reset was carried out	
1001: Acceleration overrun, position invalid	
1002: Test in process	
1004: Internal error with angle tracking, position invalid	
1005: Internal error with vector length, position invalid	
1006: Internal error with position counter, position invalid	
1007: Internal error with position synchronization, position invalid	
1010: Error in absolute position with one rotation	
1011: Error 1 in absolute position with multiple rotations	
1012: Error 2 in absolute position with multiple rotations	
1013: Error 3 in absolute position with multiple rotations	
1020: Power on self-test done (only safety-version)	
1021: Warning safety-parameter: error has been rectified (only safety-version)	

Strings
1022: Error safety-parameter: error could not been rectified (only safety-version)
1023: Error calibration-data
1024: Internal communication error 1
1025: Internal communication error 2
1026: Internal general error
1030: Critical temperature
1031: Critical LED current
1032: Critical supply voltage
1033: Critical speed
1035: Critical overrun
1036: Internal checking error
1040: Invalid argument input during resources access
1041: Resources access refused due to incorrect access level
1042: Internal error on resources access
1043: Error on access to user file
1100: No link
1101: No sync
1102: Fault in short command
1103: No FPGA support
1105: Long command read timeout
1106: Long command poll timeout
1107: Spinlock timeout
1110: Long command failure (Refer to FB1.DIAG (pg 298) if Fault 1110 is returned)
1111: Resource ID timeout

FB1.DIAG (pg 298)

29.5 FB1.HALLSTATE

General Information	
Туре	R/O Parameter
Description	Reads the Hall switch values (encoder feedback
	only).
Units	Termianl: Binary
	Scope: N/A

General Information	
Denge	Terminal: 0 0 0 to 1 1 1
Range	Scope: 0 to 7
Default	N/A
Value	
Data Typo	Terminal: String
Data Type	Scope: Integer
Start Version	M_01-00-000

AKD BASIC Information
Data Type Integer

Description

FB1.HALLSTATE reads the Hall switch values (encoder feedback only).

Terminal:

When called from the terminal, FB1.HALLSTATE will return three numbers from 0 0 0 to 1 1 1, where:

- Hall U = Digit 1
- Hall V = Digit 2
- Hall W = Digit 3

0 is a low voltage state, and 1 is a high voltage state on the hall effect.

Scope:

When viewing FB1.HALLSTATE from the scope screen, the result is a single integer. This integer is the sum of the three hall bit states, where FB1.HALLSTATE = Hall U + Hall V + Hall W. If the hall is not active, it will return 0. When a hall is active, each hall will contribute the following value to the sum:

- Hall U = 1
- Hall V = 2
- Hall W = 4

Value	Hall U	Hall V	Hall W
0	-	-	-
1	\checkmark	-	-
2	-	\checkmark	-
3	\checkmark	\checkmark	-
4	-	-	\checkmark
5	\checkmark	-	\checkmark
6	-	\checkmark	\checkmark
7	\checkmark	\checkmark	\checkmark

Related Topics

Feedback 1 (pg 31)

29.6 FB1.HALLSTATEU

General Information		
Туре	R/O Parameter	
Description	Reads the state of Hall switch U.	
Units	N/A	
Range	0 and 1	
Default Value	1	
Data Type	Integer	
See Also	FB1.HALLSTATE (pg 301)	
Start Version	M_01-03-07-000	

Description

FB1.HALLSTATEU reads the state of Hall switch U.

Related Topics

Feedback 1 (pg 31)

29.7 FB1.HALLSTATEV

General Information		
Туре	R/O Parameter	
Description	Reads the state of Hall switch V.	
Units	N/A	
Range	0 and 1	
Default Value	1	
Data Type	Integer	
See Also	FB1.HALLSTATE (pg 301)	
Start Version	M_01-03-07-000	

Description

FB1.HALLSTATEV reads the state of Hall switch V.

Related Topics

Feedback 1 (pg 31)

29.8 FB1.HALLSTATEW

General Information		
Туре	R/O Parameter	
Description	Reads the state of Hall switch W.	
Units	N/A	
Range	0 and 1	
Default Value	1	
Data Type	Integer	
See Also	FB1.HALLSTATE (pg 301)	
Start Version	M_01-03-07-000	

Description

FB1.HALLSTATEW reads the state of Hall switch W.

Related Topics

Feedback 1 (pg 31)

29.9 FB1.IDENTIFIED

General Information		
Туре	R/O Parameter	
Description	Reads the type of feedback device used by the drive/- motor.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	Integer	
See Also	FB1.SELECT	
Start Version	M_01-00-000	

Description

This parameter is set according to FB1.SELECT on drive power up if FB1.SELECT is not –1; otherwise the parameter value is read from the drive memory.

Туре	Description
0	Unknown
1	None
10	Incremental encoder with A/B Quad, marker pulse and Hall

Туре	Description
11	Incremental encoder with A/B Quad, marker pulse and no Hall
20	Sine Encoder, with marker pulse and Hall
21	Sine encoder , with marker pulse & No Halls
30	EnDat 2.1 with Sine Cosine
31	EnDat 2.2
32	BiSS with Sine Cosine
33	HIPERFACE
34	BiSS Mode C Renishaw
40	Resolver
41	SFD (Smart Feedback Device)
42	Tamagawa
43	Network Cyclic Feedback
44	FB2 Cyclic Feedback
46	Hiperface DSL
50	Reserved

Feedback 1 (pg 31)

29.10 FB1.INITPSAVED

General Information		
Туре	R/O Parameter	
Description	Reads position saved at last power down.	
Units	Depends on UNIT.PLINEAR (pg 1) or UNIT.PROTARY (pg 1) Rotary: counts, rad, deg, (custom units), 16-bit counts Linear: counts, mm, µm, (custom units), 16-bit counts	
Range	N/A	
Default Value	N/A	
Data Type	Integer	
Start Version	M_01-10-00-000	

Description

This parameter reports the position FB1.P (pg 311) that was saved at the last power-down. The position can be represented in internal counts or in custom units depending on the value of FB1.PUNIT. In internal units, the format is 32:32. The upper 32 bits represent turns, and the lower 32 bits represent position within a turn.

Initial Position Check (pg 34) | FB1.INITPSTATUS (pg 306) | FB1.INITPWINDOW (pg 306)

29.11 FB1.INITPSTATUS

General Information		
Туре	R/O Parameter	
Description	Reads result of initial position com- parison.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	Integer	
Start Version	M_01-10-00-000	

Description

This parameter reports the status of the initial position comparison:

Value	Description
0	Initial position check is in progress.
1	Initial position check is disabled.
2	Position difference between power-up and power-down is less than value of FB1.INITPWINDOW at start up.
3	Position difference between power-up and power-down is greater than or equal to value of FB1.INITPWINDOW at start up.
4	Initial position check encountered an error condition.

Related Topics

Initial Position Check (pg 34) | FB1.INITPSAVED (pg 305) | FB1.INITPWINDOW (pg 306)

29.12 FB1.INITPWINDOW

General Information		
Туре	R/W Parameter	
Description	Reads and writes size of the initial position comparison win- dow.	
Units	Depends on FB1.PUNIT (pg 316).	
Range	N/A	
Default Value	N/A	
Data Type	Integer	
Start Version	M_01-10-00-000	

This parameter defines the amount by which the position measured at power-up may differ from the position saved at power-down. If the difference is less than the window size, the position change at power off is considered small, and homing may be avoided. If the difference is greater than or equal to the window size, the position change during power off is large enough to require homing. Changes in the window size take effect after a non-volatile memory save and a power cycle. A window value of 0 disables the initial position check.

Related Topics

Initial Position Check (pg 34) | FB1.INITPSAVED (pg 305) | FB1.INITPSTATUS (pg 306)

General Information		
Туре	NV Parameter	
Description	Sets initial feedback value as signed or unsigned.	
Units	N/A	
Range	0 to 1	
Default Value	1	
Data Type	Integer	
See Also	FB1.ORIGIN	
Start Version	M_01-00-000	

29.13 FB1.INITSIGNED

Description

This parameter sets whether the initial value of the feedback read from the feedback device will be set as a signed or as an unsigned value.

0 = Unsigned

1 = Signed

The drive internal process for the feedback initialization is as follows:

- 1. Reads the position feedback.
- 2. Adds the origin to the feedback.
- 3. Determines modulo from Step 2 by the actual feedback bits.
- 4. Sets the position feedback sign according to FB1.INITSIGNED.

Related Topics

Feedback 1 (pg 31)

29.14 FB1.MECHPOS

General Information		
Туре	R/O Parameter	
Description	Reads the mechanical pos- ition.	
Units	counts	
Range	0 to 4,294,967,295 counts	
Default Value	N/A	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

FB1.MECHPOS reads the mechanical angle which is equal to the lower 32 bits in the 64-bit position feedback word.

Related Topics

Feedback 1 (pg 31)

29.15 FB1.MEMVER

General Information		
Туре	R/O Parameter	
Description	Returns the memory feedback ver- sion.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

FB1.MEMVER returns the memory feedback version (only applicable for feedbacks with memory).

Related Topics

Feedback 1 (pg 31)

29.16 FB1.OFFSET

General Inform	mation
Туре	NV-Parameter
Description	Sets position feedback offset.
Units	Rotary: counts, rad, deg, 16-bit counts Linear: counts, mm, μm, 16-bit counts
Range	Rotary: -5,123,372,000,000,005.000 to 5,123,372,000,000,005.000 counts -7495.067 to 7495.067 rad -429,436.096 to 429,436.096 deg -78,176,452.637 to 78,176,452.636 16-bit counts Linear: -5,123,372,000,000,005.000 to 5,123,372,000,000,005.000 counts -1192.878*MOTOR.PITCH (pg 392) to 1192.878*MOTOR.PITCH mm -1192877.952*MOTOR.PITCH to 1192877.952*MOTOR.PITCH μm -78176452.637 to 78176452.636 16-bit counts
Default Value	0
Data Type	Float
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3533h/0	M 01-00-00-000
CANopen	3535170	W_01-00-00-000

Description

FB1.OFFSET is a value added to the position feedback (PL.FB (pg 410)).

Example

If PL.FB is 10 deg and FB1.OFFSET is set to -10 deg, then the next read of PL.FB will return ~0 deg.

Related Topics

Feedback 1 (pg 31) | PL.FB (pg 410)

29.17 FB1.ORIGIN

General Information	
Туре	NV Parameter
Description	Adds to the initial feedback position.

General Infor	mation	
Units	Depends on UNIT.PROTARY or UNIT.PLINEAR	
	Rotary: counts, rad, deg, custom units, 16-bit	
	counts	
	Linear: counts, mm, µm, custom units, 16-bit counts	
	Rotary:	
	0.000 to 5,123,372,000,000.000 counts	
	0.000 to 7,495.067 rad	
	0.000 to 429,436.096 deg	
	0.000 to 5,964.390 custom units	
Dense	0.000 to 78,176,452.636 16-bit counts	
Range	Linear:	
	0.000 to 5,123,372,000,000.000 counts	
	0.000 to 1,192.878 mm	
	0.000 to 1,192,877.952 μm	
	0.000 to 5,964.390 custom units	
	0.000 to 78, 176, 452.636 counts 16 Bit	
Default	0 counts	
Value		
Data Type	Float	
See Also	FB1.INITSIGNED	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3656h/0	M 01-00-00-000
CANopen	30301/0	M_01-00-00-000

FB1.ORIGIN is a value that is added to the feedback device position.

If the modulo is disabled (PL.MODPEN is set to disabled), then the origin is added to the position feedback.

Initial position value = (<feedback from device> + FB1.ORIGIN)

However, if modulo is enabled (PL.MODPEN is set to enabled) then the modulo is applied to both the feedback device position and the origin value.

The modulo value is defined by PL.MODP1 and PL.MODP2

Initial position value = (<feedback from device> + FB1.ORIGIN) modulo

The drive internal process for the feedback initialization is as follows:

- 1. Reads the position feedback.
- 2. Adds the origin to the feedback.

- 3. Determines modulo from Step 2 by the actual feedback bits.
- 4. Sets the position feedback sign according to FB1.INITSIGNED (pg 307).

Example

This example assumes that the drive is connected to a single turn feedback device with memory.

FB1.ORIGIN is set to 22 degrees and saved into NV memory.

Drive boots and reads from feedback device position 340 degrees. According to the description section above, calculation will be:

With PL.MODPEN disabled:

Initial feed back will be set to 366 degrees.

(340 + 22) = 366 degrees.

With PL.MODPEN enabled:

Initial feedback will be set to 2 degrees.

PL.MODP1 = 0

PL.MODP2 = 360

(340 + 22) modulo 360 = 2 degrees.

Related Topics

6.2 Feedback 1

29.18 FB1.P

General Information		
Туре	R/O Parameter	
Description	Reads position from the primary feedback.	
Units	Depends on FB1.PUNIT (pg 316) counts or custom units.	
Range	N/A	
Default	N/A	
Value		
Data Type	S64	
Start Version	M_01-05-08-000	

Description

This parameter reads the position of the primary feedback device connected to X10. The position can be read as counts or in custom units. This is the raw position read back from the device. The output format is 32:32, the upper 32 bits represent the multi-turns and the lower 32 bits represent the position of the feedback.

Related Topics

Feedback 1 (pg 31) | FB1.PUNIT (pg 316) | FB1.PIN | FB1.POUT

29.19 FB1.PDIR

General Information		
Туре	NV-Parameter	
Description	Sets the counting direction for feedback channel 1.	
Units	None	
Range	0 to 1	
Default Value	0	
Data Type	U8	
See Also	N/A	
Start Version	M_01-05-11-000	

Description

FB1.PDIR will change the sign and with it the direction of feedback channel 1.

Example

If position feedback = 35,185.932 counts and you set:

--> FB1.PDIR 1

then position feedback = -35,185.932 counts

29.20 FB1.PFIND

General Info	rmation
Туре	R/W Parameter
Description	A procedure that allows the user to find the commutation angle for encoder feedback, which has no halls.
Units	NA
Range	0, 1
Default Value	0
Data Type	Integer
See Also	FB1.PFINDCMDU (pg 313)
Start Ver- sion	M_01-00-000

Description

A procedure that allows the user to find the commutation angle for encoder feedback (which has no Halls).

Related Topics

Feedback 1 (pg 31)

29.21 FB1.PFINDCMDU

General Inform	mation
Туре	R/W Parameter
Description	Current value used during the phase finding procedure (PFB.PFIND=1)
Units	A
Range	0 to DRV.IPEAK
Default Value	0
Data Type	Float
See Also	PFB.PFIND
Start Version	M_01-00-000

Description

FB1.PFINDCMDU sets the current value used during the phase finding procedure.

Related Topics

Feedback 1 (pg 31)

29.22 FB1.PIN

General Information	
Туре	NV Parameter
Description	Sets gear IN for FB1.P (pg 311).
Units	N/A
Range	0 to 4,294,967,295
Default Value	100
Data Type	Integer
Start Version	M_01-05-011-000

Description

Use FB1.PIN with FB1.POUT (pg 315) to set the user units for FB1.P (pg 311).

Related Topics

Feedback 1 (pg 31) | FB1.PUNIT (pg 316) | FB1.P (pg 311) | FB1.POUT (pg 315)

29.23 FB1.POFFSET

General Information	
Туре	NV-Parameter

General Information	
Description	Sets the offset for primary feedback.
Units	counts, custom units
	-5,123,372,000,000,005.000 to 5,123,372,000,000,005.000 counts
Range	or
	-10,485,760.000 to 10,485,760.000 custom units
Default	0
Value	0
Data Type	S64
See Also	N/A
Start Version	M_01-05-11-000

FB1.POFFSET is the value added to the primary feedback position (FB1.P (pg 311)).

Example

If FB1.P is 10000 counts and FB1.POFFSET is set to –10000 counts, then the next read of FB1.P will return ~0 counts.

General Information	
Туре	R/W Parameter
Description	Reads the number of feedback
Description	poles.
Units	N/A
Range	2 to 128
Default	2
Value	2
Data Type	Integer
See Also	MOTOR.POLES
Start Version	M_01-00-00-000

29.24 FB1.POLES

Description

FB1.POLES sets the number of individual poles in the feedback device. This variable is used for the commutation function, as well as for velocity feedback scaling, and represents the number of individual poles (not pole pairs). The division value of motor poles (MOTOR.POLES) and feedback poles (FB1.POLES) must be an integer when moving drive to enable, otherwise a fault is issued.

Related Topics

Feedback 1 (pg 31)

29.25 FB1.POUT

General Information	
Туре	NV Parameter
Description	Sets gear IN for FB1.P (pg 311).
Units	N/A
Range	0 to 4,294,967,295
Default Value	20
Data Type	Integer
Start Version	M_01-05-011-000

Description

Use FB1.POUT with FB1.PIN (pg 313) to set the user units for FB1.P (pg 311).

Related Topics

Feedback 1 (pg 31) | FB1.PUNIT (pg 316) | FB1.P (pg 311) | FB1.PIN (pg 313)

General Information	
Туре	R/W Parameter
Description	Sets position scaling value for fieldbus transferred position objects.
Units	N/A
Range	0 to 32
Default Value	20
Data Type	Integer
See Also	N/A
Start Version	M_01-00-000

29.26 FB1.PSCALE

Description

Position values transfered over fieldbus are converted from native 64-bit values to a maximum 32-bit position value. This parameter sets the resolution/revolution of position values back to the controller.

FB1.PSCALE determines the counts per revolution of position values delivered by fieldbus. The default value is 20, which yields 2^20 counts/revolution. This scaling is used for CAN PDOs 6064 (Position Actual Value) and 60F4 (Following Error Actual Value).

Example

The drive always works internally with 64-bit position values. The drive internal 64-bit actual position should contain the following value:

0x0000.0023.1234.ABCD

The lower 32 bits represent the mechanical angle of the feedback. The upper 32 bits represent the number of turns.

FB1.PSCALE = 20

The 32-bit position is: 0x0231234A

FB1.PSCALE = 16

The 32-bit position is: 0x00231234

Related Topics

Feedback 1 (pg 31)

29.27 FB1.PUNIT

General Information	
Туре	NV Parameter
Description	Sets the unit for FB1.P.
Units	N/A
Range	0, 3
Default Value	0
Data Type	U8
See Also	N/A
Start Version	M_01-05-11-000

Description

FB1.PUNIT sets the position unit for FB1.P.

Value	Description
0	Counts (32.32 format)
3	(FB1.PIN/FB1.POUT) per revolution.

Related Topics

FB1.P (pg 311)

29.28 FB1.RESKTR

General Information	
Туре	NV Parameter
Description	Sets the resolver nominal transformation ratio.
Units	N/A
Range	0.001 to 50.000

General Information	
Default	0.5
Value	0.5
Data Type	Float
See Also	N/A
Start Version	M_01-00-000

This parameter sets the resolver nominal transformation ratio. It affects the resolver excitation output amplitude.

The value can be obtained from the resolver data sheet.

Related Topics

Feedback 1 (pg 31)

29.29 FB1.RESREFPHASE

General Information	
Туре	NV Parameter
Description	Sets the electrical degrees of phase lag in the resolver.
Units	electrical degrees
Range	-180 to 180°
Default Value	-2°
Data Type	Float
See Also	N/A
Start Version	M_01-00-000

Description

This parameter sets the electrical degrees of phase lag in the resolver.

See the motor resolver datasheet for the value for this parameter .

Related Topics

Feedback 1 (pg 31)

29.30 FB1.SELECT

General Information	
Туре	NV Parameter
Description	Sets user entered type or identified type (-1).
Units	N/A

General Information				
Range	-1, 1, 10, 11, 20, 21, 30, 31, 32, 33, 34, 40, 41, 42, 43, 46, 50			
Default Value	-1			
Data Type	Integer			
See Also	FB1.IDENTIFIED			
Start Version	M_01-00-000			
Fieldbus		Index/Subindex	Object Start Version	
EtherCAT COE and CANopen		353Bh/0	M_01-00-00-000	

FB1.SELECT sets the feedback type manually (see FB1.IDENTIFIED) or allows the drive to automatically identify the feedback type on power up.

FB1 5V Power Supply Notes:

If FB1.SELECT = -1, the 5V power supply will only turn on during the initialization phase. If the feedback type cannot be automatically detected, the 5V power supply will be turned off, and remain off until a DRV.CLRFAULTS is issued (which will re-start the FB1 initialization), or FB1.SELECT is manually set to a specific feedback type.

When FB1.SELECT is manually set to a specific feedback type, the FB1 5V power supply will remain on, unless a short is detected. This is useful for encoder types that may require calibration.

Input Value	Description
-1	The drive automatically identifies the type of feedback as part of the power up process. Setting this value does not modify FB1.IDENTIFIED, unless it is saved in the NV memory for the next power up. If a feedback with memory is connected to the drive, the value of FB1.IDENTIFIED is set automatically to the feedback identified and all parameters read from the feedback are set according to the values read from the feedback. If no feedback is connected or a feedback with no memory is connected, the value of FB1.IDENTIFIED is set to 0 (no feedback identified) and all values normally read from the feedback are read from NV memory (if stored in NV) otherwise they are set to the default values.
0	Unknown. No feedback identified.
1	Manually sets the type to None. This input sets the value of FB1.IDENTIFIED to 1 (None). This setting can be used if no feedback device is connected to the X10 connector. This may be the case if FB2 or FB3 is used for position or velocity control.
10	Manually sets the type to incremental encoder. This input sets the value of FB1.IDENTIFIED to 10. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 1 (no feedback iden- tified).

Input Value	Description
11	Manually sets the type to incremental encoder without hall sensors. This input sets the value of FB1.IDENTIFIED to 11. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 1 (no feedback identified).
20	Manually sets the type to sine encoder. This input sets the value of FB1.IDENTIFIED to 20. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 1 (no feedback identified).
21	Manually sets the type to sine encoder without hall sensors. This input sets the value of FB1.IDENTIFIED to 21. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 1 (no feedback identified).
30	Manually sets the type to Endat 2.1. This input sets the value of FB1.IDENTIFIED to 30. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 1 (no feedback identified).
31	Manually sets the type to Endat 2.2. This input sets the value of FB1.IDENTIFIED to 31. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 1 (no feedback identified).
32	Manually sets the type to BiSS. This input sets the value of FB1.IDENTIFIED to 32. If the feed- back setting fails, FB1.IDENTIFIED is automatically set to 1 (no feedback identified).
33	Manually sets the type to Hiperface. This input sets the value of FB1.IDENTIFIED to 33. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 1 (no feedback identified). Note that all Hiperface feedback types are supported by the AKD PDMM. This includes SEL/SEK 37, SEL/SEK 52, SKM/SKS 36, SRS/SRM 50, SRS/SRM 60, SEK 90, SEK160, and SEK 260. The AKD PDMM drive will support any new Hiperface device, since any new device will be released with a label type of 0xFF. Devices with this label type have all of the pertinent information to configure these devices (number of single turn bits, number of multi-turn bits, and number of sine/cosine periods) stored in their memory. The AKD PDMM is able to read this information, and automatically configure the drive for proper operation. Note that the devices SEK 90, SEK 160, and SEK 260 are label type 0xFF.
34	Manually sets the type to BiSS Mode C, Renishaw. This input sets the value of FB1.IDENTIFIED to 34. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 1 (no feedback identified).
40	Manually sets the type to resolver. This input sets the value of FB1.IDENTIFIED to 40. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 1 (no feedback identified).
41	Manually sets the type to SFD. This input sets the value of FB1.IDENTIFIED to 41. If the feed- back setting fails, FB1.IDENTIFIED is automatically set to 1 (no feedback identified).
42	Manually sets the type to Tamagawa. This input sets the value of FB1.IDENTIFIED to 42. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 1 (no feedback identified).
43	Manually sets the type to use Cylic Feedback from the Motion Network. This input sets the value of FB1.IDENTIFIED to 43. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 1 (no feedback identified).

Input Value	Description
46	Manually sets the type to Hiperface DSL. This value is only supported on model numbers AKD- xxyyzz-NBxx. This value is not supported on model numbers AKD-Nxxyyz-xxyy. This value is only supported for firmware versions 01-09-00-000 and later. An external dongle between the two wires from the DSL to the X10 connector is required to use Hiperface DSL.
50	This value is reserved and should not be used.

FB1.SELECT Feedback Types

Туре	Description
0	Unknown
1	None
10	Incremental encoder with A/B Quad, marker pulse and Hall
11	Incremental encoder with A/B Quad, marker pulse and no Hall
20	Sine Encoder, with marker pulse and Hall
21	Sine encoder , with marker pulse & No Halls
30	EnDat 2.1 with Sine Cosine
31	EnDat 2.2
32	BiSS with Sine Cosine
33	HIPERFACE
34	BiSS Mode C Renishaw
40	Resolver
41	SFD
42	Tamagawa
43	Network Cyclic Feedback
44	FB2 Cyclic Feedback
46	Hiperface DSL
50	Reserved

Related Topics

6.2 Feedback 1

29.31 FB1.TRACKINGCAL

General Information		
Туре	NV Parameter	
Description	Controls tracking calibration algorithm.	

General Inform	General Information		
Units	N/A		
Range	0 to 1		
Default Value	0		
Data Type	Integer		
See Also	N/A		
Start Version	M_01-00-00-000		

This parameter turns the tracking calibration algorithm on or off for sine-cosine or resolver.

0 = Tracking calibration is off.

1 = Tracking calibration is on.

Related Topics

Feedback 1 (pg 31)

29.32 FB1.USERBYTE0 to FB1.USERBYTE7

General Inform	General Information		
Туре	R/W		
Description	Reads and writes data stored in two 32 bit words in the Endat feedback device.		
Units	N/A		
Range	0 to 255		
Default Value	0		
Data Type	Integer		
Start Version	M_01-05-08-000		

Description

FB1.USERBYTE, FB1.USERWORD, and FB1.USERDWORD share two 32bit words in the Endat feedback device. These three parameters offer different ways to store and access the data stored in these two 32bit words. The table below defines each parameters function. The values are automatically stored nonvolatile in the feedback device.

Parameter	Bits	Attributes
FB1.USERBYTE0 to FB1.USERBYTE7	8 bit	signed or unsigned char
FB1.USERWORD0 to FB1.USERWORD3	16 bit	signed or unsigned short
FB1.USERDWORD0 to FB1.USERDWORD1	32 bit	singed or unsigned int

The parameters overlap each other in the following way:

BYTE0	BYTE1	BYTE2	BYTE3	BYTE4	BYTE5	BYTE6	BYT7
WO	RD0	WORD1		WORD2		WORD3	
DWORD0			DWORD1				

For example, if BYTE1 is modified, WORD0 and DWORD0 are modified as well.

Example

```
-->FB1.USERDWORD1 65536

-->FB1.USERBYTE1

0

-->FB1.USERBYTE2

1

-->FB1.USERBYTE3 1 (write to the highest byte of FB1.USERDWORD0)

-->FB1.USERDWORD0

16842752

-->FB1.USERWORD0

0

-->FB1.USERWORD1

257
```

Related Topics

Feedback 1 (pg 31) | FB1.USERWORD0 to FB1.USERWORD3 (pg 323) | FB1.USERDWORD0 to FB1.USERDWORD1 (pg 322)

29.33 FB1.USERDWORD0 to FB1.USERDWORD1

General Information			
Туре	R/W		
Description	Reads and writes data stored in two 32 bit words in the Endat feedback device.		
Units	N/A		
Range	0 to 4,294,967,295		
Default Value	0		
Data Type	Integer		
Start Version	M_01-05-08-000		

Description

FB1.USERBYTE, FB1.USERWORD, and FB1.USERDWORD share two 32bit words in the Endat feedback device. These three parameters offer different ways to store and access the data stored in these two 32bit words. The table below defines each parameters function. The values are automatically stored nonvolatile in the feedback device.

Parameter	Bits	Attributes
FB1.USERBYTE0 to FB1.USERBYTE7	8 bit	signed or unsigned char
FB1.USERWORD0 to FB1.USERWORD3	16 bit	signed or unsigned short
FB1.USERDWORD0 to FB1.USERDWORD1	32 bit	singed or unsigned int

The parameters overlap each other in the following way:

BYTE0	BYTE1	BYTE2	BYTE3	BYTE4	BYTE5	BYTE6	BYT7	
WO	RD0	WO	RD1	WO	RD2	WORD3		
	DWORD0			DWORD1				

For example, if BYTE1 is modified, WORD0 and DWORD0 are modified as well.

Example

```
-->FB1.USERDWORD1 65536

-->FB1.USERBYTE1

0

-->FB1.USERBYTE2

1

-->FB1.USERBYTE3 1 (write to the highest byte of FB1.USERDWORD0)

-->FB1.USERDWORD0

16842752

-->FB1.USERWORD0

0

-->FB1.USERWORD1

257
```

Related Topics

Feedback 1 (pg 31) | FB1.USERBYTE0 to FB1.USERBYTE7 (pg 321) | FB1.USERWORD0 to FB1.USERWORD3 (pg 323)

29.34 FB1.USERWORD0 to FB1.USERWORD3

General Information				
Туре	R/W			
Description	Reads and writes data stored in two 32 bit words in the Endat feedback device.			
Units	N/A			
Range	0 to 65,535			
Default Value	0			
Data Type	Integer			
Start Version	M_01-05-08-000			

Description

FB1.USERBYTE, FB1.USERWORD, and FB1.USERDWORD share two 32bit words in the Endat feedback device. These three parameters offer different ways to store and access the data stored in these two 32bit words. The table below defines each parameters function. The values are automatically stored nonvolatile in the feedback device.

Parameter	Bits	Attributes
FB1.USERBYTE0 to FB1.USERBYTE7	8 bit	signed or unsigned char
FB1.USERWORD0 to FB1.USERWORD3	16 bit	signed or unsigned short
FB1.USERDWORD0 to FB1.USERDWORD1	32 bit	singed or unsigned int

The parameters overlap each other in the following way:

BYTE0	BYTE1	BYTE2	BYTE3	BYTE4	BYTE5	BYTE6	BYT7
WO	RD0	WO	RD1	WORD2		WORD3	
DWORD0			DWORD1				

For example, if BYTE1 is modified, WORD0 and DWORD0 are modified as well.

Example

```
-->FB1.USERDWORD1 65536

-->FB1.USERBYTE1

0

-->FB1.USERBYTE2

1

-->FB1.USERBYTE3 1 (write to the highest byte of FB1.USERDWORD0)

-->FB1.USERDWORD0

16842752

-->FB1.USERWORD0

0

-->FB1.USERWORD1

257
```

Related Topics

Feedback 1 (pg 31) | FB1.USERBYTE0 to FB1.USERBYTE7 (pg 321) | FB1.USERDWORD0 to FB1.USERDWORD1 (pg 322)

30 FB3 Parameters

This section describes the FB3 parameters.

30.1	FB3.MODE	
30.2	FB3.P	
30.3	FB3.PDIR	
30.4	FB3.PIN	
30.5	FB3.POFFSET	
30.6	FB3.POUT	
30.7	FB3.PUNIT	

30.1 FB3.MODE

General Information		
Туре	NV Parameter	
Description	Selects the type of feedback connected to X9.	
Units	N/A	
Range	0	
Default Value	0	
Data Type	Integer	
See Also	NA	
Start Version	M_01-04-15-000	

Description

This parameter selects the type of feedback connected to X9. The position is reported as the tertiary feedback position, by FB3.P.

Value	Feedback
0	Endat 2.2 Feedback Device

This parameter is only supported on drives with model numbers similar to AKD PDMM-x-xxxxx-NBxxxxxx.

30.2 FB3.P

General Information		
Туре	R/O Parameter	
Description	Reads position from the tertiary feedback.	
Units	Depends on FB3.PUNIT (pg 329) counts or custom units.	
Range	N/A	
Default Value	N/A	
Data Type	S64	
See Also	N/A	
Start Version	M_01-04-15-000	

Description

This parameter reads the position back from the tertiary feedback device that is connected to X9, when DRV.EMUEMODE = 11. The position can be read as 64-bit singed count or in customer units. Values read by this parameter depend on FB3.Dir and FB3.OFFSET.

This parameter is only supported on drives with model numbers similar to AKD PDMM-x-xyyzz-NBxxyyzz and will only work with Endat 2.2 multitum encoder. The output format is 32:32 the upper 32 bits represents the multitums and the lower 32 bits for position of the feedback.

Related Topics

DRV.EMUEMODE (pg 262) | FB3.PUNIT (pg 329) | FB3.PIN | FB3.POUT | FB3.PDIR (pg 327) |

30.3 FB3.PDIR

General Information		
Туре	NV-Parameter	
Description	Sets the counting direction for feedback channel 3.	
Units	None	
Range	0 to 1	
Default Value	0	
Data Type	U8	
See Also	N/A	
Start Version	M_01-05-11-000	

Description

FB3.PDIR will change the sign and with it the direction of feedback channel 3.

Example

If position feedback = 35,185.932 and you set:

--> FB3.PDIR 1

then position feedback = -35,185.932

30.4 FB3.PIN

General Information	
Туре	NV Parameter
Description	Sets gear IN for FB3.P (pg 326).
Units	N/A
Range	0 to 4,294,967,295
Default Value	100
Data Type	Integer
Start Version	M_01-05-011-000

Description

Use FB3.PIN with FB3.POUT (pg 328) to set the user units for FB3.P (pg 326).

Related Topics

Feedback 1 (pg 31) | FB3.PUNIT (pg 329) | FB3.P (pg 326) | FB3.POUT (pg 328)

30.5 FB3.POFFSET

General Information		
Туре	NV-Parameter	
Description	Sets the offset for tertiary feedback.	
Units	counts, custom units	
Range	-5,123,372,000,000,005.000 to 5,123,372,000,000,005.000 counts or -10,485,760.000 to 10,485,760.000 custom units	
Default Value	0	
Data Type	S64	
See Also	N/A	
Start Version	M_01-05-11-000	

Description

FB3.POFFSET is the value added to the primary feedback position (FB3.P (pg 326)).

Example

If FB3.P is 10000 counts and FB3.POFFSET is set to –10000 counts, then the next read of FB3.P will return ~0 counts.

30.6 FB3.POUT

General Information	
Туре	NV Parameter
Description	Sets gear IN for FB3.P (pg 326).
Units	N/A
Range	0 to 4,294,967,295
Default Value	20
Data Type	Integer
Start Version	M_01-05-011-000

Description

Use FB3.POUT with FB3.PIN (pg 327) to set the user units for FB3.P (pg 326).

Related Topics

Feedback 1 (pg 31) | FB3.PUNIT (pg 329) | FB3.P (pg 326) | FB3.PIN (pg 327)

30.7 FB3.PUNIT

General Information		
Туре	NV Parameter	
Description	Sets the unit for FB3.P.	
Units	N/A	
Range	0, 3	
Default Value	0	
Data Type	U8	
See Also	N/A	
Start Version	M_01-05-11-000	

Description

FB3.UNIT sets the position unit for FB3.P.

Value	Description
0	Counts (32.32 format)
3	(FB3.PIN/FB3.POUT) per revolution.

Related Topics

FB3.P (pg 326)

31 FBUS Parameters

This section describes the FBUS parameters.

31.1	FBUS.PARAM1 TO FBUS.PARAM10	331
31.2	FBUS.PLLSTATE	333
31.3	FBUS.PLLTHRESH	334
31.4	FBUS.PROTECTION	334
31.5	FBUS.REMOTE	336
31.6	FBUS.SAMPLEPERIOD	336
31.7	FBUS.STATE	337
31.8	FBUS.SYNCACT	. 338
31.9	FBUS.SYNCDIST	338
31.10	FBUS.SYNCWND	339
31.11	FBUS.TYPE	339

31.1 FBUS.PARAM1 TO FBUS.PARAM10

General Information	
Туре	NV Parameter
Description	Set fieldbus specific meanings.
Units	N/A
Range	See table below.
Default	See table below.
Value	
Data Type	Unsigned 32
See Also	CANbus Communication Manual, EtherCAT Communication
000 7180	Manual
Start Version	M_01-00-000

Parameter	EtherCAT COE Range	CANopen Range
FBUS.PARAM01	N/A	125; 250; 500; 1000
FBUS.PARAM02	0 to 1	0 to 1
FBUS.PARAM03	1,001 to 65,535	N/A
FBUS.PARAM04	0 to 1	0 to 1
FBUS.PARAM05	0 to 511	0 to 511

Parameter	EtherCAT COE Default Value	CANopen Default Value
FBUS.PARAM01	N/A	125
FBUS.PARAM02	1	0
FBUS.PARAM03	0	N/A
FBUS.PARAM04	1	0
FBUS.PARAM05	0	0

Fieldbus	Index/Subindex			Object Start Ver- sion	
EtherCAT COE and CANopen	36E5h/0	FBUS.PARAM01	36EAh/0	FBUS.PARAM06	
	36E6h/0	FBUS.PARAM02	36Ebh/0	FBUS.PARAM07	
	36E7h/0	FBUS.PARAM03	36ECh/0	FBUS.PARAM08	M_01-00-00-000
	36E8h/0	FBUS.PARAM04	36EDh/0	FBUS.PARAM09	
	36E9h/0	FBUS.PARAM05	36EEh/0	FBUS.PARAM10	

Description

FBUS.PARAM01 sets the baud rate for the CANbus. Supported baud rates are 125, 250, 500 and 1000 kBaud.

FBUS.PARAM02 switches the phase locked loop (PLL) for synchronized use: 0 = OFF, 1 = ON. FBUS.PARAM02 only works when FBUS.TYPE = 3 (CANopen).

FBUS.PARAM03 sets the configured station alias for EtherCAT.

FBUS.PARAM04 switches the surveillance of SYNC-signals: 0 = OFF, 1 = ON FBUS.PARAM05 is used to configure some special behaviors of the DS402. FBUS.PARAM06 - FBUS.PARAM10 are reserved.

FBUS.PARAM04 Additional Notes

FBUS.PARAM04 enables (1) or disables(0) the synchronization supervision of the CAN or EtherCAT fieldbus.

Default values:

- CAN: disabled (0)
- EtherCAT: enabled (1)

The synchronization supervision is active when:

- FBUS.PARAM04 = 1
- The first CANopen Sync message or first EtherCAT frame was received.

When more than three CANopen sync messages or seven EtherCAT frames have not been received, and the drive is enabled, fault F125 (pg 103), "Synchronization lost", occurs.

FBUS.PARAM05 Additional Notes

Bit 0 configures the behavior of DS402 state machine in case of fault resets.

- Bit 0 = 1: Faults can only be reset using DS402 control word bit 7.
- **Bit 0 = 0**: The reset can also be done via telnet or digital input and the DS402 state machine reflects this condition.
- Bit 1 = 1: The state of the hardware enable does not change the state machine state Operation Enable.
- **Bit 1 = 0**: If the state Operation Enable or Switched on is active it falls back to the state switched On Disabled, if the Hardware enable goes to 0.
- **Bit 2 = 1**: Workbench/Telnet can software enable the drive when CANopen/EtherCAT are operational.
- **Bit 2 = 0**: Workbench/Telnet can switch the DS402-state machine to the state "Switched On" (enable the power stage), if the former state was "Switched on Disabled." This requires the hardware enable to be set to 1.
- **Bit 3 = 1**: DS402-state machine is not influenced, if the softwareenable is taken away via Telnet.
- Bit 3 = 0: DS402-state machine is influenced, if the softwareenable is taken away via Telnet.

- Bit 4 = 1: Position scaling for DS402-parameters is done dependent on DS402-scaling parameters via objects 6091 / 6092. Velocity scaling via 204c.
- **Bit 4 = 0**: Position scaling for DS402-parameters is done dependent on UNIT.PIN.
- Bit 5 = 1: EtherCAT: The setting of the rotary switches define the station alias address, if FBUS. PARAM03 is on 0 else FBUS.PARAM03 is used to store the station alias address.
- **Bit 5 = 0**: EtherCAT: The setting of the rotary switches define the station alias address. If the setting is 0, FBUS.PARAM03 can be used.
- Bit 6 = 1: Bit 0 of the parameter MT.CNTL (object 35D9 sub 0) can be accessed.
- Bit 6 = 0: Bit 0 of the parameter MT.CNTL (object 35D9 sub 0) is exclusively used for DS402 control word.
- Bit 7: Reserved
- Bit 8 = 1: DS402-state switched on, power stage disabled.
- Bit 8 = 0: DS402-state switched on, power stage enabled.

31.2 FBUS.PLLSTATE

General Infor	General Information				
Туре	R/O Parameter				
Description	Returns the status of the PLL				
Units	N/A				
Range	N/A				
Default	N/A				
Value					
Data Type	N/A				
See Also	FBUS.PARAM1 TO FBUS.PARAM10 (pg 331), Fieldbus doc-				
0007400	umentation				
Start Version	M_01-02-00-000				

Description

FBUS.PLLSTATE returns the status of the phase locked loop (PLL). The PLL states are as follows:

PLL State	Description
PLL not activ-	This state is set using FBUS.PARAM02. Not each fieldbus or operation mode needs
ated	synchronization.
PLL activated,	The PLL is activated but has not yet been locked successfully. This state is related to
but unlocked	the fieldbus master, as well as to the fieldbus mode of operation.

333

PLL State	Description		
PLL activated	PLL is fully operational and locked		
and locked			

For more information, see the AKD PDMM CANopen Manual, Phase Locked Loop.

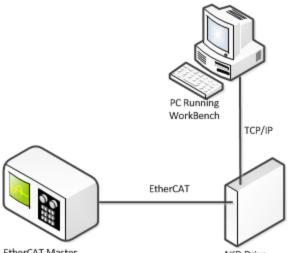
31.3 FBUS.PLLTHRESH

General Inform	General Information		
Туре	NV Parameter		
Description	Sets number of successful synchronized cycles needed to lock the		
Description	PLL.		
Units	N/A		
Range	0 to 10,000		
Default	0		
Value	0		
Data Type	Integer, U32		
See Also	Appendix B: Fieldbus Manuals		
Start Version	M_01-00-000		

Description

This parameter sets number of successful synchronized cycles needed to lock the PLL.

31.4 FBUS.PROTECTION


General Info	General Information				
Туре	R/W Parameter				
Description	Controls which parameters are blocked from being accessed through telnet while a field- bus is operational.				
Units	N/A				
Range	0 to 1				
Default Value	0				
Data Type	Integer				
Start Ver- sion	M_01-08-00-000				

Fieldbus Information

M_01-08-00-000

Description

When an AKD PDMM is a slave node on a fieldbus (for example an AKD PDMM is connected to an Ether-CAT master) and EWV¹ is simultaneously connected to an AKD PDMM via a service channel, then you have several options on how you would like the AKD PDMM to respond to commands from each of the channels.

EtherCAT Master

AKD Drive

When the fieldbus is operational the AKD PDMM uses the FBUS.PROTECTION parameter to allow the user to select how commands from EWV, or any other device sending commands to the drive through a service channel, should be handled. EWV can use either of two service channels: Telnet or ASCII SDO. Both service channels are affected identically by FBUS.PROTECTION.

The following table shows the available options. If the fieldbus is not connected or not started, then parameters executed through a service channel will not be blocked.

Value	Description
0	Motion and Tuning Commands Allowed - Commands that would interfere with motion are
0	allowed. Gain and IO configuration changes are allowed.
1	Block Motion but Allow Tuning Commands - Commands that would interfere with motion are
	blocked. Gain and I/O configuration changes are allowed.

DRV.HELP will include the [Blocked] attribute to indicate whether a parameter is being blocked. For example, if FBUS.PROTECTION is 0 and the network is operational, the following help will be shown.

```
-->DRV.HELP DRV.EN
Help for: DRV.EN [ActionCommand] [Blocked]
-->
```

If you attempt to execute a blocked parameter the following error would display.

```
-->DRV.EN
Error: [0008] Command blocked.
```

All write or command functions of a parameter will be blocked by FBUS.PROTECTION.

FBUS.PROTECTION will not block the read function of any parameter.

When the fieldbus is operational, FBUS.PROTECTION is always blocked, but can be edited through the fieldbus. This ensures that the protection level can only be modified by the fieldbus when it is in control.

¹Embedded Workbench Views

If a parameter is blocked through telnet, it will be accessible through the fieldbus. For example, SDO's in the case of CANopen or EtherCAT.

Parameters Affected by FBUS.PROTECTION

This table shows how the blocked attribute affects the following parameters in each state of FBUS.PROTECTION. This table is true only if FBUS.STATE = 5 (operational).

FBUS.PROTECTION	0 - Block Nothing	1 - Block Motion Commands
DRV.EN		[Blocked]
DRV.DIS		[DIOCKEU]
FBUS.PROTECTION		[Blocked]
DRV.OPMODE		[Blocked]
DRV.CMDSOURCE		[DIOCKEU]
DRV.STOP		[Blocked]
DRV.CLRFAULTS		[Blocked]

Related Topics

FBUS.STATE

31.5 FBUS.REMOTE

General Inform	General Information			
Туре	R/W Parameter			
Description	Changes or shows the control of the drive (fieldbus mas- ter/telnet)			
Units	N/A			
Range	0 to 1			
Default Value	0			
Data Type	U8			
See Also	Fieldbus ManualsPL.FBSOURCE (pg 411)			
Start Version	M_01-05-06-000			

Description

DS402 (CAN/EtherCAT):

With this parameter the bit 9 (remote) of the DS402-status word can be set directly via Telnet to show the DS402-master-system that the control is removed. The master has to react on that.

31.6 FBUS.SAMPLEPERIOD

General Information	
Туре	NV Parameter

General Information		
Description	Sets fieldbus sample period.	
Units	Whole multiples of MTS 250 μs	
Range	4 to 128 and value must be a power of 4	
Default Value	32 = 2 ms	
Data Type	U8	
See Also	Appendix B: Fieldbus Manuals	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	60C2h/0	M 01-00-00-000
CANopen	00021/0	W_01-00-00-000

Description

This parameter sets the fieldbus cycle time. It is normally written in the startup phase of the field busses via the object 60C2 subindex 1 (interpolation time units) and 2 (interpolation time index), where the index stands for a power of 10 seconds (for instance, -3 stands for milliseconds) and the units are the counts of these units. Kollmorgen recommends the following standard cycle rates, 250 us (4), 500 us (8), 1 ms (16), 2 ms (32), 4 ms (64).

31.7 FBUS.STATE

General Information	
Туре	R/O
Description	Reads the state of the fieldbus.
Units	N/A
Range	Depends on fieldbus. See table below.
Default	Depends on fieldbus. See table
Value	below.
Data Type	Integer
Start Version	M_01-08-00-000

Description

FBUS.STATE returns the current state of the fieldbus. The value returned is dependent upon the fieldbus being used.

Value	CANopen over CAN	CANopen over EtherCAT
-1	Not connected	Not connected
0	Init.	-
1	N/A	Init.

Value	CANopen over CAN	CANopen over EtherCAT
2	N/A	Pre-operational
3	-	Boot
4	Stopped	Safe-operational
5	Operational	-
8	-	Operational
127	Pre-operational	-

31.8 FBUS.SYNCACT

General Information	
Туре	R/O Parameter
Description	Reads actual distance from the desired sync dis-
	tance.
Units	ns
Range	0 to 250,000 ns
Default	0 ns
Value	
Data Type	Integer, U 32
See Also	Appendix B: Fieldbus Manuals
Start Version	M_01-00-000

Description

This parameter reads actual distance from the desired sync distance.

31.9 FBUS.SYNCDIST

General Information	
Туре	NV Parameter
Description	Sets time target for syn- chronization.
Units	ns
Range	0 to 250,000 ns
Default Value	100,000 ns
Data Type	Integer, U32
See Also	Appendix B: Fieldbus Manuals
Start Version	M_01-00-00-000

Description

This parameter sets time target for synchronization.

31.10 FBUS.SYNCWND

General Information		
Туре	NV Parameter	
Description	Sets symmetrically arranged window around the desired sync dis-	
Description	tance.	
Units	ns	
Range	0 to 1,000,000 ns	
Default	50.000 ns	
Value	30,000 hs	
Data Type	Integer, U2	
See Also	Appendix B: Fieldbus Manuals	
Start Version	M_01-00-000	

Description

This parameter sets symmetrically arranged window around the desired sync distance.

31.11 FBUS.TYPE

General Information		
Туре	R/O Parameter	
Description	Shows the active fieldbus	
	type.	
Units	N/A	
Range	0 to 6	
Default	0	
Value	0	
Data Type	U8	
See Also	Fieldbus Manuals	
Start Version	M_01-00-00-000	

Description

FBUS.TYPE shows the active fieldbus type.

- 0 = Analog
- 1 = SynqNet
- 2 = EtherCAT
- 3 = CANopen
- 4 = EthernetIP
- 5 = Profinet
- $6 = \operatorname{sercos}^{\mathbb{R}} III$

32 GUI Parameters

GUI parameters are used within <u>EWV</u>¹ for data reporting and data storage.

32.1 GUI.DISPLAY	
32.2 GUI.DISPLAYS	
32.3 GUI.PARAM01	
32.4 GUI.PARAM02	
32.5 GUI.PARAM03	
32.6 GUI.PARAM04	
32.7 GUI.PARAM05	
32.8 GUI.PARAM06	
32.9 GUI.PARAM07	
32.10 GUI.PARAM08	
32.11 GUI.PARAM09	
32.12 GUI.PARAM10	345

¹Embedded Workbench Views

32.1 GUI.DISPLAY

General Information		
Туре	R/O Parameter	
Description	Reads drive display data.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	Display	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

This parameter reports to the GUI what the drive currently is displaying. For all GUI commands, the data is compressed and formatted for the GUI, not for the user.

32.2 GUI.DISPLAYS

General Information	
Туре	R/O Parameter
Description	Reads drive display data.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	Display
Start Version	M_01-09-06-000

Description

This parameter reports to the GUI what the drive currently is displaying. For all GUI commands, the data is compressed and formatted for the GUI, not for the user.

32.3 GUI.PARAM01

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to
	2,147,483,647

General Information	
Default	0
Value	•
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

32.4 GUI.PARAM02

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

32.5 GUI.PARAM03

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

32.6 GUI.PARAM04

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

32.7 GUI.PARAM05

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

32.8 GUI.PARAM06

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to
	2,147,483,647

General Information	
Default	0
Value	•
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

32.9 GUI.PARAM07

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

32.10 GUI.PARAM08

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

32.11 GUI.PARAM09

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

32.12 GUI.PARAM10

General Information		
Туре	NV Parameter	
Description	Used by the GUI to store data.	
Units	N/A	
Pange	2,147,483,648 to	
Range	2,147,483,647	
Default	0	
Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

33 HWLS Parameters

This section describes the HWLS parameters.

33.1	HWLS.NEGSTATE	347
33.2	HWLS.POSSTATE	347

33.1 HWLS.NEGSTATE

General Information		
Туре	R/O Parameter	
Description	Reads the status of the negative hardware limit switch.	
Units	0 to 1	
Range	N/A	
Default Value	Integer	
Data Type	HWLS.POSSTATE (pg 347)	
See Also	N/A	
Start Version	M_01-00-000	

Description

HWLS.NEGSTATE reads the status of the negative HW limit switch as follows:

0 = Low

1 = High

Related Topics

33.2 HWLS.POSSTATE

General Inform	General Information		
Туре	R/O Parameter		
Description	Reads the status of the positive hardware limit switch.		
Units	N/A		
Range	0 to 1		
Default Value	N/A		
Data Type	Integer		
See Also	HWLS.NEGSTATE (pg 347)		
Start Version	M_01-00-000		

Description

HWLS.POSSTATE reads the status of the positive hardware limit switch as follows:

0 = Low

1 = High

Related Topics

34 IL Parameters

This section describes the IL parameters.

34.1 IL.BUSFF
34.2 IL.CMD
34.3 IL.CMDACC
34.4 IL.CMDU
34.5 IL.DIFOLD
34.6 IL.FB
34.7 IL.FBSOURCE
34.8 IL.FF
34.9 IL.FOLDFTHRESH
34.10 IL.FOLDFTHRESHU
34.11 IL.FOLDWTHRESH
34.12 IL.FRICTION
34.13 IL.IFOLD
34.14 IL.IUFB
34.15 IL.IVFB
34.16 IL.KACCFF
34.17 IL.KBUSFF
34.18 IL.KP
34.19 IL.KPDRATIO
34.20 IL.KPLOOKUPINDEX
34.21 IL.KPLOOKUPVALUE
34.22 IL.KPLOOKUPVALUES
34.23 IL.KVFF
34.24 IL.LIMITN
34.25 IL.LIMITP
34.26 IL.MFOLDD
34.27 IL.MFOLDR
34.28 IL.MFOLDT
34.29 IL.MI2T
34.30 IL.MI2TWTHRESH
34.31 IL.MIFOLD
34.32 IL.MIMODE
34.33 IL.OFFSET

34.34	IL.VCMD	368
34.35	IL.VUFB	368
34.36	IL.VVFB	369

34.1 IL.BUSFF

General Information		
Туре	R/O Parameter	
Description	Displays the current feedforward value injected by the field- bus.	
Units	Arms	
Range	N/A	
Default Value	N/A	
Data Type	Float	
See Also	IL.KBUSFF (pg 358)	
Start Version	M_01-00-000	

Description

This parameter displays the current feedforward value injected by the fieldbus.

Related Topics

1 Current Loop

34.2 IL.CMD

General Information		
Туре	R/O Parameter	
Description	Reads the value of the q-component current command.	
Units	Arms	
Range	± Drive peak current (DRV.IPEAK)	
Default Value	N/A	
Data Type	Float	
See Also	DRV.IPEAK (pg 275)	
Start Version	M_01-00-000	

Description

IL.CMD displays the q-component current command value of the current loop after any limitation (such as a parameter setting or I²t calculation).

IL.CMD is limited also by motor peak current, IL.LIMITN (pg 362) and IL.LIMITP (pg 363).

Related Topics

1 Current Loop

34.3 IL.CMDACC

General Information		
Туре	R/O Parameter	
Description	Returns the commanded acceleration from the trajectory gen- erator.	
Units	Depends on UNIT.ACCLINEAR or UNIT.ACCROTARY.	
Range	+/- 64bit	
Default Value	0	
Data Type	Float	
Start Version	M_01-08-03-000	

Fieldbus	Index/Subindex	Is 64 bit?	Attributes	Signed?
Modbus	1760	Yes	64-bit	Yes

Description

Use IL.CMDACC to monitor the commanded acceleration for a given motion. This keyword is useful for tuning acceleration feedforward (IL.KACCFF).

Related Topics

IL.KACCFF (pg 358) | Tuning Guide (pg 64)

34.4 IL.CMDU

General Information		
Туре	R/W Parameter	
Description	Sets the user current command.	
Units	Arms	
Range	Minimum range value = maximum of IL.LIMITN and -MOTOR.IPEAK	
Range	Maximum range value = minimum of IL.LIMITP and MOTOR.IPEAK	
Default	0 Arms	
Value		
Data Type	Float	
See Also	DRV.IPEAK (pg 275), DRV.OPMODE (pg 282), DRV.CMDSOURCE (pg	
	250)	
Start Version	M_01-00-000	

Description

This parameter sets the user current command value.

The current command value, which is provided to the current loop (IL.CMD), can be limited further using a parameter setting or I²t calculation. IL.CMDU is limited also by motor peak current, IL.LIMITN (pg 362) and IL.LIMITP (pg 363).

Related Topics

1 Current Loop

34.5 IL.DIFOLD

General Information		
Туре	R/O Parameter	
Description	Reads the drive foldback current	
	limit.	
Units	Arms	
Range	0 to 2,147,483.647 Arms	
Default	N/A	
Value		
Data Type	Float	
See Also	Foldback	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3559h/0	M 01-00-00-000
CANopen	30091/0	M_01-00-00-000

Description

IL.DIFOLD is the output of the drive foldback algorithm. It is an artificial current, which can be higher or lower than the drive peak current (DRV.IPEAK). When IL.DIFOLD is lower than the existing current limit (such as IL.LIMITP (pg 363)), it becomes the active current limit.

IL.DIFOLD decreases when the actual current is higher than drive continuous current and increases (up to a certain level) when the actual current is lower than drive continuous current.

Related Topics

1 Current Loop

34.6 IL.FB

General Information		
Туре	R/O Parameter	
Description	Reads the actual value of the d-component cur- rent.	
Units	Arms	
Range	± Drive peak current (DRV.IPEAK)	

General Information				
Default	N/A			
Value	11/2			
Data Type	Float			
See Also	N/A			
Start Version	M_01-00-00-000	C		
Fieldbus Index/Subindex Object Start Versi		sion		
EtherCAT CC	E and	3558h/0	M 01-00-00-000	
0.4.1.1		33301/0	101_01-00-00-000	

Description

CANopen

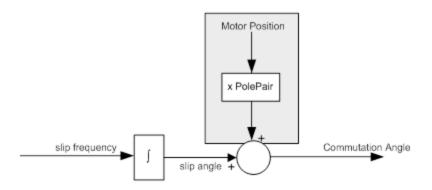
This parameter reads the measured, de-rotated actual current value of the motor.

Note: Internally the resolution of the current scale is 20130 increments. For an AKD PDMM with a peak current of 9 amps, the current resolution applied is 9/20130 = .447 mA. For a 48 amp peak current drive, the resolution is 48/20130 = 2.38 mA. The current scaling is hard coded and cannot be changed by decreasing the peak current settings in the drive.

Related Topics

1 Current Loop

34.7 IL.FBSOURCE


General Inform	mation
Туре	R/W
Description	Sets the feedback source for the current loop. Only applies when MOTOR.TYPE = 4.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Integer
Start Version	M_01-08-00-000

Description

This parameter selects the feedback source that current loop uses for commutation angle calculation.

- 0 = Primary feedback
- 1 = Secondary feedback

For induction motor closed loop control the commutation angle is set as shown in the following figure.

Related Topics

MOTOR.TYPE (pg 398)

34.8 IL.FF

General Info	rmation
Туре	R/O Parameter
Description	Displays the current loop overall feedforward value
Units	Arms
Range	N/A
Default Value	N/A
Data Type	Float
See Also	IL.KBUSFF (pg 358), IL.KVFF (pg 362), IL.OFFSET (pg 367), IL.FRICTION (pg 355), IL.KACCFF (pg 358)
Start Ver- sion	M_01-00-000

Description

This parameter displays the current loop overall feedforward value.

Related Topics

1 Current Loop

34.9 IL.FOLDFTHRESH

General Information	
Туре	R/O Parameter
Description	Reads the foldback fault level.
Units	Arms
Range	0 to 500 Arms
Default	Drive peak current
Value	(DRV.IPEAK)

General Information			
Data Type	Float		
See Also	Foldback		
Start Version	M_01-00-00-000		
Fieldbus		Index/Subindex	Object Start Version
EtherCAT COE and		3420h/0	M 01-00-00-000
CANopen		04201/0	M_01-00-00-000

Description

IL.FOLDFTHRESH is the fault level of the current foldback algorithm. If IL.IFOLD (pg 356) drops below the value for IL.FOLDFTHRESH, then a fault is generated and the drive is disabled.

To avoid reaching the current foldback fault level, set IL.FOLDFTHRESHU well below the continuous current value for both the drive and the motor or set the IL.FOLDFTHRESHU value to zero.

Related Topics

1 Current Loop

34.10 IL.FOLDFTHRESHU

General Information	
Туре	NV Parameter
Description	Sets the user value for the foldback fault level.
Units	Arms
Range	0 to 500 Arms
Default Value	Drive peak current (DRV.IPEAK)
Data Type	Float
See Also	IL.FOLDFTHRESH (pg 353), Foldback (pg 35))
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3421h/0	M 01-00-00-000
CANopen	34211/0	WI_01-00-00-000

Description

IL.FOLDFTHRESHU is the fault level of the current foldback algorithm. The value of IL.FOLDFTHRESH is the minimum of DRV.IPEAK (pg 275), MOTOR.IPEAK (pg 388), and IL.FOLDFTHRESHU.

Related Topics

1 Current Loop

34.11 IL.FOLDWTHRESH

General Information		
Туре	NV Parameter	
Description	Sets the foldback warning level.	
Units	Arms	
Range	0 to 500 Arms	
Default Value	0 A	
Data Type	Float	
See Also	Foldback	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	355Ah/0	M 01-00-00-000
CANopen	333AH/0	W_01-00-00-000

Description

IL.FOLDWTHRESH is the warning level of the current foldback algorithm. When IL.IFOLD (pg 356) drops **below** IL.FOLDWTHRESH a warning is generated.

To ensure that the current foldback warning level is never reached, IL.FOLDWTHRESH should be set well below the continuous current value for both the drive and the motor. You can also set the IL.FOLDFTHRESH (pg 353) value to zero.

Related Topics

1 Current Loop

34.12 IL.FRICTION

General Info	ormation
Туре	R/W Parameter
Description	Sets friction compensation value.
Units	A
Range	0 to the minimum of user positive current limit (IL.LIMITP) and motor peak current (MOTOR.IPEAK).IL.LIMITP (pg 363)
Default Value	0
Data Type	Float
See Also	IL.FF
Start Ver- sion	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3422h/0	M 01-00-00-000
CANopen	3422170	M_01-00-00-000

Description

Position command derivative sign is multiplied by this value to be injected to the current command.

NOTE IL.FRICTION is active in Position and Velocity modes (DRV.OPMODE = 1, 2), but not active in Torque mode (DRV.OPMODE = 0).

Related Topics

1 Current Loop

34.13 IL.IFOLD

General Information		
Туре	R/O Parameter	
Description	Reads the overall foldback current	
Bocomption	limit.	
Units	A	
Range	0 to 2,147,483.647 A	
Default	N/A	
Value		
Data Type	Float	
See Also	Foldback	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3425h/0	M 01-00-00-000
CANopen	5425170	M_01-00-00-000

Description

Two current foldback algorithms run in parallel in the drive: the drive foldback algorithm and the motor foldback algorithm. Each algorithm uses different sets of parameters.

Each algorithm has its own foldback current limit, IL.DIFOLD and IL.MIFOLD. The overall foldback current limit is the minimum of the two at any given moment.

IL.IFOLD = min (IL.DIFOLD, IL.MIFOLD).

IL.DIFOLD is an artificial current, which can be higher or lower than the drive or motor peak current. When IL.IFOLD becomes lower than the existing current limit (such as IL.LIMITP (pg 363)), it becomes the active current limit.

Related Topics

1 Current Loop

34.14 IL.IUFB

General Information		
Туре	R/O Parameter	
Description	Reads the sigma-delta measured current in the u-winding of the motor.	
Units	A	
Range	± Drive peak current (DRV.IPEAK)	
Default Value	N/A	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-000	

Description

This parameter displays the measured current in the u-winding of the motor.

Related Topics

1 Current Loop

34.15 IL.IVFB

General Inform	mation
Туре	R/O Parameter
Description	Sets the sigma-delta measured current in the u-winding of the motor.
Units	A
Range	± Drive peak current (DRV.IPEAK)
Default Value	0 A
Data Type	Float
See Also	N/A
Start Version	M_01-00-000

Description

IL.IVFB is an offset value that is added to the measured current in the u-winding of the motor. This value is used for compensating for an error in the current measurement. The drive measures 256 times the current in the u-winding when powering-up the drive. Afterwards, the drive calculates the average value of the measured current and uses this value for the offset value.

Related Topics

1 Current Loop

34.16 IL.KACCFF

General Inform	mation
Туре	R/W Parameter
Description	Sets current loop acceleration feedforward gain
	value
Units	mArms/(rad/s ²)
Range	0.0 to 2.0 mArms/(rad/s ²)
Default	0 mArms/(rad/s²)
Value	
Data Type	Float
See Also	IL.FF (pg 353)
Start Version	M_01-00-000
Fieldbus	Index/Subindex Object Start Version

Fleidbus	index/Subindex	Object Start Version
EtherCAT COE and	3426h/0	M 01-00-00-000
CANopen	34201/0	M_01-00-00-000

Description

This value sets the gain for the acceleration feedforward (a scaled second derivative of the position command is added to the current command value).

This parameter is valid only in the position mode (DRV.OPMODE = 2).

Related Topics

1 Current Loop

34.17 IL.KBUSFF

General Inform	rmation		
Туре	NV Parameter		
Description	Current loops fieldbus injected feed-forward		
Description	gain		
Units	NA		
Range	0 to 2		
Default	0		
Value	5		
Data Type	Float		
See Also	IL.FF (pg 353), IL.BUSFF (pg 349)		
Start Version	M_01-00-000		

Description

This parameter scales the feedforward term added by the fieldbus to the current command. The nominal feedforward value can be multiplied by this gain value.

This parameter is only used in the position mode (DRV.OPMODE = 2).

Related Topics

1 Current Loop

34.18 IL.KP

General Information		
Туре	NV Parameter	
Description	Sets the proportional gain of the q-component of the PI reg- ulator.	
Units	V/A	
Range	0 to 2,000 V/A	
Default Value	Read from the motor or, if no memory, 50.009 V/A	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3598h/0	M 01-00-00-000
CANopen	33901/0	W_01-00-00-000

Description

IL.KP is used to modify the proportional gain of the PI-loop that controls the q-component of the current.

Related Topics

1 Current Loop

34.19 IL.KPDRATIO

General Inform	General Information		
Туре	NV Parameter		
Description	Sets the proportional gain of the d-component current PI-regulator as a percentage of IL.KP		
Units	N/A		
Range	0 to 100		
Default Value	1		
Data Type	Float		
See Also	IL.KP (pg 359)		
Start Version	M_01-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3596h/0	M 01-00-00-000
CANopen	35901/0	M_01-00-00-000

Description

This parameter modifies the proportional gain of the PI-loop, which controls the d-component of the current.

Related Topics

1 Current Loop

34.20 IL.KPLOOKUPINDEX

General Information	
Туре	R/W Parameter
Description	Sets the index into the Current Loop Gain Scheduling Table.
Units	N/A
Range	0 to 255
Default Value	0
Data Type	Integer
See Also	IL.KPLOOKUPVALUE (pg 360)IL.KPLOOKUPVALUES (pg 361)IL.KP (pg 359)
Start Version	M_01-04-00-000

Description

This parameter sets the index into the Current Loop Gain Scheduling Table. The table is 256 records long, spanning 0 A to 1.62 * DRV.IPEAK.

To determine the level of current that corresponds to a table index, use the following equation:

```
IL.CMD = (Table Index /157) * DRV.IPEAK
```

Related Topics

Current Loop

34.21 IL.KPLOOKUPVALUE

General Information		
Туре	R/W Parameter	
Description	Sets the value of the current loop gain scheduling index.	
Units	%	
Range	0 to 100.000%	
Default	0	
Value		
Data Type	Float	
See Also	IL.KPLOOKUPINDEX (pg 360)IL.KPLOOKUPVALUES (pg 361)IL.KP (pg	
	359)	
Start Version	M_01-04-00-000	

This parameter sets the value at the current index into the Current Loop Gain Scheduling Table. The table is 256 records long, spanning 0 A to 1.62 * DRV.IPEAK. The value can range from 0% to 100% and determines what percentage of IL.KP will be applied to the current loop.

To determine what level of current corresponds to a table index, use the following equation:

IL.CMD = (Table Index/157) * DRV.IPEAK

Example

Assume:

DRV.IPEAK = 9 A

IL.KPLOOKUPINDEX = 100

IL.KPLOOKUPVALUE = 50

IL.KP = 240

When IL.CMD = 100/157 * 9 = 5.73 A, IL.KP will not be 240, but will be 50% * 240 = 120.

Related Topics

Current Loop

34.22 IL.KPLOOKUPVALUES

General Information		
Туре	R/W Parameter	
Description	Gets the Current Loop Gain Scheduling Table.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	Table	
See Also	IL.KPLOOKUPINDEX (pg 360), IL.KPLOOKUPVALUE (pg 360)IL.KP (pg 359)	
Start Version	M_01-04-00-000	

Description

Retrieves the Current Loop Gain Scheduling Table in a comma delimited table.

This table is 256 records long, and the table will return values in the following format:

-->IL.KPLOOKUPVALUES Index Value 0, 100.000 1, 100.000 2, 100.000 3, 100.000 4, 100.000 5, 100.000 6, 100.000 7, 100.000 8, 100.000 9, 100.000 10, 100.000

Related Topics

Current Loop

34.23 IL.KVFF

General Information		
Туре	R/W	
Description	Current loop velocity feed-forward gain.	
Units	N/A	
Range	0 to 2	
Default Value	0	
Data Type	Float	
See Also	IL.FF (pg 353)	
Start Version	M_01-00-00-000	

Description

This parameter sets the gain for the velocity loop feedforward. The nominal feedforward value can be multiplied by this gain value.

This parameter is only used in position mode (DRV.OPMODE (pg 282) = 2).

Related Topics

1 Current Loop

34.24 IL.LIMITN

General Information		
Туре	NV Parameter	
Description	Sets the negative user (application-specific) current limit.	
Units	A	
Range	Negative drive peak current (DRV.IPEAK) to 0 A	
Default Value	Negative drive peak current (DRV.IPEAK)	
Data Type	Float	
See Also	IL.LIMITP (pg 363)	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	356Fh/0	M 01-00-00-000
CANopen	330F1/U	W_01-00-00-000

This parameter sets the negative user limit clamp value of the torqueproducing q-component current command (IL.CMD (pg 349)). The current command is additionally limited by the motor peak current setting (MOTOR.IPEAK (pg 388)) and by the present value of the foldback I²t peak motor current protection.

Related Topics

1 Current Loop

34.25 IL.LIMITP

General Information		
Туре	NV Parameter	
Description	Sets the positive user (application-specific) current limit.	
Units	A	
Range	0 A to drive peak current (DRV.IPEAK)	
Default Value	Drive peak current (DRV.IPEAK)	
Data Type	Float	
See Also	IL.LIMITN (pg 362)	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	356Eh/0	M 01-00-00-000
CANopen	330E1/U	W_01-00-00-000

Description

This parameter sets the positive user limit clamp value of the torque-producing q-component current command (IL.CMD (pg 349)). The current command is additionally limited by the motor peak current setting (MOTOR.IPEAK (pg 388)) and by the present value of the foldback I²t peak motor current protection.

Related Topics

1 Current Loop

34.26 IL.MFOLDD

General Information	
Туре	R/O Parameter
Description	Sets the motor foldback maximum time at motor peak cur- rent.

General Information	
Units	S
Range	0.1 to 2400 s
Default Value	10 s
Data Type	Float
See Also	Foldback
Start Version	M_01-00-000

IL.MFOLDD sets the maximum time allowed for the motor to remain at peak current before starting to fold towards the motor continuous current. When at motor peak current, IL.MFOLDD is the amount of time before the foldback algorithm starts to reduce the current.

Related Topics

1 Current Loop

34.27 IL.MFOLDR

General Information		
Туре	R/O Parameter	
Description	Sets the motor foldback recovery time.	
Units	S	
Range	0.1 to 65,535 s	
Default	Calculated from other foldback para-	
Value	meters.	
Data Type	Float	
See Also	Foldback	
Start Version	M_01-00-000	

Description

IL.MFOLDR sets the recovery time for the motor foldback algorithm. If 0 current is applied for at least the recovery time duration, it is possible to apply motor peak current for the duration of IL.MFOLDD time. The IL.MFOLDR value is automatically calculated from other foldback parameters.

Related Topics

1 Current Loop

34.28 IL.MFOLDT

General Information	
Туре	R/O Parameter

General Information		
Description	Sets the motor foldback time constant of the exponential current drop (fold- back).	
Units	S	
Range	0.1 to 2,400 s	
Default Value	10 s	
Data Type	Float	
See Also	Foldback	
Start Version	M_01-00-000	

IL.MFOLDT sets the time constant of the exponential drop (foldback) of the current towards motor continuous current.

Related Topics

1 Current Loop

34.29 IL.MI2T

General Information		
Туре	R/O parameter	
Description	Motor I2t load.	
Units	%	
Range	0 to 100%	
Default	N/A	
Value		
Data Type	Float	
See Also	IL.MIMODE, IL.MI2TWTHRESH (pg	
000 /130	365)	
Start Version	M_01-04-01-000	

Description

This parameter returns the motor I2t load in percent. The supplied current will be limited by IL.MIFOLD to MOTOR.ICONT case that the load reaches a value of 100%. The current limit IL.MIFOLD will be restored to MOTOR.IPEAK in case that the load falls under 95%.

34.30 IL.MI2TWTHRESH

General Information	
Туре	NV Parameter

General Information		
Description	Motor I2t load warning	
	threshold.	
Units	%	
Range	0 to 100%	
Default	N/A	
Value		
Data Type	Integer	
See Also	IL.MIMODE, IL.MI2T (pg 365)	
Start Version	M_01-04-01-000	

This parameter defines a warning threshold for the IL.MI2T value. A warning n309 will be generated as soon as the IL.MI2T exceeds the IL.MI2TWTHRESH value. The warning n309 will be cleared as soon as IL.MI2T falls below the threshold.

Related Topics

Foldback (pg 35)

34.31 IL.MIFOLD

General Information		
Туре	R/O Parameter	
Description	Sets the motor foldback current limit.	
Units	A	
Range	0 to 2147483.647 A	
Default Value	N/A	
Data Type	Float	
See Also	Foldback	
Start Version	M_01-00-00-000	
Fieldbue	Index/Subindex Ob	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	35A4h/0	M 01 00 00 000
CANopen	35A411/0	M_01-00-00-000

Description

IL.MIFOLD sets the output of the motor foldback algorithm. It is an artificial current, which can be higher or lower than the motor peak current. When IL.MIFOLD becomes lower than the existing current limit (IL.LIMITP (pg 363)) it becomes the active current limit.

IL.MIFOLD decreases when the actual current is higher than motor continuous current and increases (up to a certain level) when the actual current is lower than the motor continuous current.

Related Topics

1 Current Loop

34.32 IL.MIMODE

General Information		
Туре	NV parameter	
Description	Motor protection mode.	
Units	N/A	
Range	0 to 1	
Default	0	
Value	•	
Data Type	Integer	
See Also	IL.MI2T (pg 365),_ IL.MI2TWTHRESH (pg	
0007 400	365)	
Start Version	M_01-04-01-000	

Description

This parameter determines the method of the motor protection.

0 – The motor foldback mechanism is responsible for protecting the motor from overload.

1 – The motor I2t mechanism is responsible for protecting the motor from overload.

Related Topics

Foldback (pg 35)

34.33 IL.OFFSET

General Information		
Туре	RW Parameter	
Description	A constant current command added to compensate for grav-	
Description	ity.	
Units	A	
Range	[IL.LIMITN (pg 362) to IL.LIMITP (pg 363)	
Default	0 A	
Value		
Data Type	Float	
See Also	IL.FF	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3423h/0	M 01-00-00-000
CANopen	34231#U	wi_01-00-00-000

This value is added to the overall current loop feedforward value.

Related Topics

1 Current Loop

34.34 IL.VCMD

General Information		
Туре	R/O Parameter	
Description	Sets the output of the q-component PI reg- ulator.	
Units	Vrms	
Range	0 Vrms to bus voltage	
Default Value	N/A	
Data Type	Integer	
Start Version	M_01-00-000	

Description

Sets the output of the current loop that controls the q-component of the current.

Related Topics

1 Current Loop

34.35 IL.VUFB

General Information		
Туре	R/O Parameter	
Description	Reads the measured voltage on the u-winding of the motor.	
Units	V	
Range	-1200*VBusScale to +1200*VBusScale	
Default Value	N/A	
Data Type	Integer	
See Also	IL.VVFB (pg 369)	
Start Version	M_01-00-000	

Description

Reads the measured voltage on the u-winding of the motor.

Related Topics

1 Current Loop

34.36 IL.VVFB

General Information		
Туре	R/O Parameter	
Description	Reads the measured voltage on the v-winding of the motor.	
Units	V	
Range	-1200*VBusScale to +1200*VBusScale	
Default Value	N/A	
Data Type	Integer	
See Also	IL.VUFB (pg 368)	
Start Version	M_01-00-000	

Description

The range for this parameter depends on whether the drive model is an MV/240 VAC or an HV/480 VAC.

The VBusScale parameter sets the drive model:

MV/240 VAC: VBusScale = 1

HV/480 VAC: VBusScale = 2

VBusScale is used for multiple parameter ranges that are model dependent, such as IL.KP.

Related Topics

1 Current Loop

35 IP Parameters

This section describes the IP parameters.

35.1	IP.ADDRESS	371
35.2	IP.GATEWAY	. 372
35.3	IP.MODE	373
35.4	IP.RESET	374
35.5	IP.SUBNET	375

35.1 IP.ADDRESS

General Information		
Туре	NV Parameter	
Description	Gets/Sets the IP address of the drive.	
Units	N/A	
Range	0.0.0 to 255.255.255.255	
Default	0.0.0.0	
Value	0.0.0.0	
Data Type	IP Address	
See Also		
Start Version	M_01-04-05-000	

Description

This Parameter sets the IP address of the drive. If this parameter has not been set by the user, it will return 0.0.0.0.

By default, DHCP is active, and the drive will acquire an IP Address on its own. When the drive is in DHCP mode, IP.ADDRESS will return 0.0.0.0.

Notes:

- Even when the drive is in DHCP, the actual IP Address will not be returned using this command. The value the user has stored will be returned.
- IP.ADDRESS will only be used by the drive when IP.MODE = 1

If manually setting the IP.ADDRESS, the IP.SUBNET and IP.GATEWAYmust be set up. After the IP.RESET command is issued, the new IP settings will be active only if IP.MODE has been set to 1.

Recovering communications with a drive on an un-reachable IP address

Sometimes a drive may be configured for an IP Address, and the drive needs to be taken off-line, and bench tested, or otherwise used outside of its saved IP Settings. If IP.MODE has been set to 1 (using software defined static IP) the drive will boot up on an IP Address that may be unreachable with the host computer's settings.

If the IP address prevents communication the IP settings can be reset to default by the following procedure:

- Set both rotary switches to 0
- Hold down button B1 (top-side of drive) for 5 seconds.

The display will flash 0.0.0.0 and then attempt to discover an address by DHCP. Without removing logic power from the drive, use Workbench to connect to the drive, reconfigure the IP address settings as desired, and store the values to non-volatile memory.

Related Topics

IP.GATEWAY | IP.RESET | IP.SUBNET | IP.MODE

35.2 IP.GATEWAY

General Information		
Туре	NV Parameter	
Description	Gets/Sets the gateway IP of the drive.	
Units	N/A	
Range	0.0.0.0 to 255.255.255.255	
Default	0.0.0.0	
Value	0.0.0.0	
Data Type	IP Address	
See Also	Communicating with the Drive	
Start Version	M_01-04-05-000	

Description

This Parameter sets the Gateway IP of the drive. This parameter determines what IP the drive can communicate with outside of its current subnet.

By default, DHCP is active, and the drive will acquire an IP Address on its own. When the drive is in DHCP mode, IP.GATEWAY will return 0.0.0.0.

Notes:

- When the drive is in DHCP, the actual IP GATEWAY will not be returned using this command. The value the user has stored will be returned.
- IP.GATEWAY will only be used by the drive when IP.MODE = 1

If manually setting the IP.ADDRESS (pg 371), the IP.SUBNET (pg 375) and IP.GATEWAY must be set up. After the IP.RESET (pg 374) command is issued, the new IP settings will be active only if IP.MODE (pg 373) has been set to 1.

Recovering communications with a drive on an un-reachable IP address

Sometimes a drive may be configured for an IP Address, and the drive needs to be taken off-line, and bench tested, or otherwise used outside of its saved IP Settings. If IP.MODE has been set to 1 (using software defined static IP) the drive will boot up on an IP Address that may be unreachable with the host computer's settings.

If the IP address prevents communication the IP settings can be reset to default by the following procedure:

- Set both rotary switches to 0
- Hold down button B1 (top-side of drive) for 5 seconds.

The display will flash 0.0.0.0 and then attempt to discover an address by DHCP. Without removing logic power from the drive, use Workbench to connect to the drive, reconfigure the IP address settings as desired, and store the values to non-volatile memory.

Related Topics

IP.ADDRESS (pg 371) | IP.RESET (pg 374) | IP.SUBNET (pg 375) | IP.MODE (pg 373)

35.3 IP.MODE

General Information		
Туре	NV Parameter	
Description	Sets method of acquiring IP Address.	
Units	N/A	
Range	0 to 2	
Default	0	
Value	5	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-04-013-000	

Description

This command determines which method of acquiring an IP Address the drive will take.

NOTE

Mode 0 and Mode 1 contain multiple methods of acquiring an IP Address. In these modes each method will be implemented in the order they are listed below until an IP Address is acquired

The drive will attempt to acquire a new IP Address as soon as the IP.RESET (pg 374) command is issued.

IP Mode	Mode of Acquiring IP Address	
0	Rotary Switches, DHCP, Auto IP	
1	IP.ADDRESS, IP.SUBNET, IP.GATEWAY	
2	DHCP, Auto IP	

Recovering communications with a drive on an un-reachable IP address

Sometimes a drive may be configured for an IP Address, and the drive needs to be taken off-line, and bench tested, or otherwise used outside of its saved IP Settings. If IP.MODE has been set to 1 (using software defined static IP), the drive will boot up on an IP Address that may be unreachable with the host computer's settings.

If the IP address prevents communication the IP settings can be reset to default by the following procedure:

- Set both rotary switches to 0
- Hold down button B1 (top-side of drive) for 5 seconds.

The display will flash 0.0.0.0 and then attempt to discover an address by DHCP. Without removing logic power from the drive, use Workbench to connect to the drive, reconfigure the IP address settings as desired, and store the values to non-volatile memory.

Related Topics

IP.ADDRESS (pg 371) IP.GATEWAY (pg 372) IP.RESET (pg 374) IP.SUBNET (pg 375)

35.4 IP.RESET

General Information		
Туре	Command	
Description	Implements new IP settings.	
Units	N/A	
Range	N/A	
Default	N/A	
Value		
Data Type	N/A	
See Also	Communicating with the	
000 /130	Drive	
Start Version	M_01-04-05-000	

Description

When this command is issued a new IP will be acquired using IP.MODE (pg 373) to select what method is used.

Notes:

- When issuing this command, it is likely the connection to the drive will be severed, and a new connection will need to be made.
- IP.RESET will return an error if issued while the drive is enabled. IP.RESET is allowed when drive is disabled, or in dynamic braking mode.
- Ensure all values of IP.ADDRESS (pg 371), IP.SUBNET (pg 375), and IP.GATEWAY (pg 372) are configured if using IP.MODE 1

Recovering communications with a drive on an un-reachable IP address

Sometimes a drive may be configured for an IP Address, and the drive needs to be taken off-line, and bench tested, or otherwise used outside of its saved IP Settings. If IP.MODE has been set to 1 (using software defined static IP), the drive will boot up on an IP Address that may be unreachable with the host computer's settings.

If the IP address prevents communication the IP settings can be reset to default by the following procedure:

- Set both rotary switches to 0
- Hold down button B1 (top-side of drive) for 5 seconds.

The display will flash 0.0.0.0 and then attempt to discover an address by DHCP. Without removing logic power from the drive, use Workbench to connect to the drive, reconfigure the IP address settings as desired, and store the values to non-volatile memory.

Related Topics

IP.ADDRESS (pg 371) | IP.GATEWAY (pg 372) | IP.SUBNET (pg 375) | IP.MODE

35.5 IP.SUBNET

General Information	
Туре	NV Parameter
Description	Gets/Sets the IP Subnet mask of the drive.
Units	N/A
Range	0.0.0.0 to 255.255.255.255
Default	0.0.0.0
Value	0.0.0
Data Type	IP Address
See Also	
Start Ver-	M_01-04-05-000
sion	

Description

This Parameter sets the IP Subnet mask of the drive. This parameter determines what IP addresses the drive will be allowed to communicate with.

By default, DHCP is active, and the drive will acquire an IP Address on its own. When the drive is in DHCP mode, IP.SUBNET will return 0.0.0.0.

Notes:

- When the drive is in DHCP, the actual IP Subnet mask will not be returned using this command. The value the user has stored will be returned.
- IP.SUBNET will only be used by the drive when IP.MODE = 1

If manually setting the IP.ADDRESS, the IP.SUBNET and IP.GATEWAYmust be set up. After the IP.RESET command is issued, the new IP settings will be active only if IP.MODE has been set to 1.

Recovering communications with a drive on an un-reachable IP address

Sometimes a drive may be configured for an IP Address, and the drive needs to be taken off-line, and bench tested, or otherwise used outside of its saved IP Settings. If IP.MODE has been set to 1 (using software defined static IP) the drive will boot up on an IP Address that may be unreachable with the host computer's settings.

If the IP address prevents communication the IP settings can be reset to default by the following procedure:

- Set both rotary switches to 0
- Hold down button B1 (top-side of drive) for 5 seconds.

The display will flash 0.0.0.0 and then attempt to discover an address by DHCP. Without removing logic power from the drive, use Workbench to connect to the drive, reconfigure the IP address settings as desired, and store the values to non-volatile memory.

Related Topics

IP.ADDRESS | IP.GATEWAY | IP.RESET | 35.3 IP.MODE

36 LOAD-Parameter

This section describes the LOAD parameters.

36.1 L	AD.INERTIA	378
--------	------------	-----

36.1 LOAD.INERTIA

General Inform	mation	
Туре	NV Parameter	
Description	Sets the load inertia.	
Units	kgcm ² for rotary motors	
	kg for linear motors	
Range	1 to 1,000,000 kgcm ² or	
	kg	
Default	0 kgcm² or kg	
Value		
Data Type	Float	
See Also	N/A	
Start Version	M_01-03-06-000	

Description

LOAD.INERTIA sets the load inertia.

Related Topics

Motor (pg 27)

37 MOTOR Parameters

This section describes the MOTOR parameters.

37.1 M	IOTOR.AUTOSET	380
37.2 M	IOTOR.BRAKE	381
37.3 M	IOTOR.BRAKEIMM	382
37.4 M	IOTOR.BRAKERLS	382
37.5 M	IOTOR.BRAKESTATE	383
37.6 M	IOTOR.CTF0	384
37.7 M	IOTOR.ICONT	.384
37.8 M	IOTOR.IDDATAVALID	385
37.9 M	IOTOR.IMID	386
37.10 I	MOTOR.IMTR	386
37.11 I	MOTOR.INERTIA	.388
37.12 I	MOTOR.IPEAK	388
37.13 I	MOTOR.KE	389
37.14 I	MOTOR.KT	389
37.15 I	MOTOR.LQLL	390
37.16 I	MOTOR.NAME	.391
37.17 I	MOTOR.PHASE	391
37.18 I	MOTOR.PITCH	392
37.19 I	MOTOR.POLES	.392
37.20 I	MOTOR.R	.393
37.21 I	MOTOR.RTYPE	.394
37.22 I	MOTOR.TBRAKEAPP	.394
37.23 I	MOTOR.TBRAKERLS	395
37.24 I	MOTOR.TBRAKETO	.396
37.25 I	MOTOR.TEMP	396
37.26 I	MOTOR.TEMPFAULT	397
37.27 I	MOTOR.TEMPWARN	.398
37.28 I	MOTOR.TYPE	.398
37.29 I	MOTOR.VMAX	400
37.30 I	MOTOR.VOLTMAX	.400
37.31 I	MOTOR.VOLTMIN	.401
37.32 I	MOTOR.VOLTRATED	402
37.33 I	MOTOR.VRATED	402

37.1 MOTOR.AUTOSET

General Information		
Туре	NV Parameter	
Description	Determines which drive parameters are calculated auto- matically.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Boolean	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3451h/0	M 01-00-00-000
CANopen	34511/0	M_01-00-00-000

Description

This parameter determines whether or not certain drive parameters (see lists below) are calculated automatically. When MOTOR.AUTOSET = 1 these parameters are automatically calculated from the motor ID data (read from memory-supporting feedback devices). Parameters loaded from motor memory are then read-only and cannot be modified as long as MOTOR.AUTOSET = 1. If MOTOR.AUTOSET = 0, parameters are not loaded from motor memory and must be configured by the user. Parameters which are not loaded from motor memory are always read-write.

Three conditions determine which parameters are calculated automatically by MOTOR.AUTOSET = 1. See the lists below to determine which parameters will automatically be configured from the motor ID data.

The following parameters may be configured automatically when MOTOR.AUTOSET = 1:

- MOTOR.BRAKE (pg 381)
- MOTOR.CTF0 (pg 384)
- MOTOR.ICONT (pg 384)
- MOTOR.INERTIA (pg 388)
- MOTOR.IPEAK (pg 388)
- MOTOR.KE (pg 389)
- MOTOR.KT (pg 389)
- MOTOR.LQLL (pg 390)
- MOTOR.NAME (pg 391)
- MOTOR.POLES (pg 392)
- MOTOR.R (pg 393)

If the motor's FB1.MEMVER > 0.01, AKD PDMM will also configure:

- MOTOR.PHASE (pg 391)
- MOTOR.TBRAKEAPP (pg 394)
- MOTOR.PHASE (pg 391)
- MOTOR.VRATED (pg 402)
- MOTOR.VOLTRATED (pg 402)

For firmware versions 01-09-00-000 and later, AKD PDMM will also configure:

- MOTOR.RTYPE (pg 394)
- MOTOR.TEMPFAULT (pg 397)

Related Topics

6.1 Motor

37.2 MOTOR.BRAKE

General Information		
Туре	NV Parameter	
Description	Sets the presence or absence of a motor	
Booonption	brake.	
Units	N/A	
Range	0 to 1	
Default	0	
Value	,	
Data Type	Boolean	
See Also	N/A	
Start Version	M_01-00-00-000	

AKD BASIC Information		
Data Type	Integer	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3587h/0	M_01-00-00-000
0, 1100011		

Description

The MOTOR.BRAKE parameter notifies the firmware whether a brake exists or not. It does not apply or release the brake. If a brake is found to be present, the firmware considers hardware indications regarding the brake circuits (such as open circuit or short circuit). If a brake does not exist, then the firmware ignores the hardware indications since they are irrelevant.

Value	Status
0	Motor brake does not exist.
1	Motor brake exists and brake hardware circuitry checks are enabled.

Enabling the MOTOR.BRAKE (value set to 1) when no motor brake exists creates a fault.

The motor brake is polled every 16 ms.

NOTE This parameter is automatically configured for Kollmorgen motors when MOTOR.AUTOSET=1.

Related Topics

6.1 Motor

37.3 MOTOR.BRAKEIMM

General Inform	nation
Туре	NV Parameter
Description	Brake Immediately: in the case of a drive disable, apply the brake in all situ-
Description	ations.
Units	N/A
Range	0 to 1
Default	0 (Inactive)
Value	
Data Type	Boolean
See Also	N/A
Start Version	M_01-05-11-000

Description

With the standard configuration, when the drive disables, the brake will not apply until velocity falls below CS.VTHRESH for CS.TO milliseconds. However, in some machines (such as a vertical axis) the brake should be applied immediately whenever the drive disables.

To ensure that the brake is applied immediately after any disable (due to fault, disable command, etc), set MOTOR.BRAKEIMM = 1.

Related Topics

Motor (pg 27) | CS.VTHRESH (pg 221) | CS.TO (pg 220) | MOTOR.TBRAKETO (pg 396) | DRV.DISTO (pg 259)

37.4 MOTOR.BRAKERLS

General Information		
Туре	Command	
Description	Allows a user to release or apply the motor brake.	
Units	N/A	
Range	0 to 2	

General Information		
Default Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	2450b/0	M 01 00 00 000
CANopen	3450h/0	M_01-00-00-000

This command allows a user to release or apply the motor brake.

- 0 = Drive controls the brake.
- 1 = Brake is released.
- 2 = Brake is applied.
 - **NOTE** A digital input mode is also used for the same purpose. The two mechanisms are independent.
- **NOTE** The CANopen-object 0x345A sub 1/2 can be used to control the brake state. See <u>CANopen manual</u> on kollmorgen.com. (Functionality starts with firmware 1.7.4.0)

Related Topics

Motor (pg 27)

37.5 MOTOR.BRAKESTATE

General Information		
Туре	R/O Parameter	
Description	Reads the actual status of the motor	
	brake.	
Units	N/A	
Range	Brake released or not present.	
Trange	Brake applied.	
Default	Brake applied or not present.	
Value		
Data Type	String	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

This parameter reads the actual status of the motor brake and can only show two states:

1 = Brake released or not present

2 = Brake applied

Related Topics

Motor (pg 27)

37.6 MOTOR.CTF0

General Information		
Туре	NV Parameter	
Description	Sets the thermal constant of the motor coil.	
Units	mHz	
Range	0.265 to 16,000 mHz	
Default Value	10 mHz	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3454h/0	M 01-00-00-000
CANopen	3454170	W_01-00-00-000

Description

This parameter is used to configure the thermal constant of the motor coil, which is the break frequency of a single-pole low-pass filter model of the thermal dynamics of the motor coil.

This parameter, together with MOTOR.IPEAK (pg 388) and MOTOR.ICONT (pg 384), determine the motor foldback parameters IL.MFOLDD (pg 363), IL.MFOLDT (pg 364), and IL.MFOLDR (pg 364).

Calculating MOTOR.CTF0

Given a motor coil/winding thermal time constant T in seconds, then:

MOTOR.CTF0 = $1/(2\pi T)$

NOTE This parameter is automatically configured for Kollmorgen motors when MOTOR.AUTOSET=1.

Related Topics

6.1 Motor

37.7 MOTOR.ICONT

General Information		
Туре	NV Parameter	
Description	Sets the motor continuous cur-	
Description	rent.	

General Information		
Units	A	
Range	0.1 to 500 A	
Default Value	1.0 A	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-000	

AKD BASIC InformationTypeR/W

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	358Eh/0	M 01 00 00 000
CANopen	300E11/U	M_01-00-00-000

Description

This parameter is used to configure the motor continuous current.

NOTE

This parameter is automatically configured for Kollmorgen motors when MOTOR.AUTOSET=1.

Related Topics

6.1 Motor

37.8 MOTOR.IDDATAVALID

General Inform	neral Information		
Туре	R/O Parameter		
Description	Reports the status of the motor memory.		
Units	N/A		
Range	N/A		
Default Value	0		
Data Type	Integer		
See Also	N/A		
Start Version	M_01-02-00-000		

Description

MOTOR.IDDATAVALID reports the status of the motor memory status.

The valid values for this keyword are the following:

Value	Description		
0	Error in identification		
1	Success in identification		
2	Identification in process Identification not started yet Success recognizing feedback, but failed to varify OEM data integrity		
3			
4			

Related Topics

Motor (pg 27)

37.9 MOTOR.IMID

General Information			
Туре	R/W		
Description	The direct-axis current set point used for induction machine closed-loop con- trol.		
Units	Arms		
Range	0 to DRIVE.IPEAK		
Default Value	0		
Data Type	Float		
Start Version	M_01-08-00-000		

Description

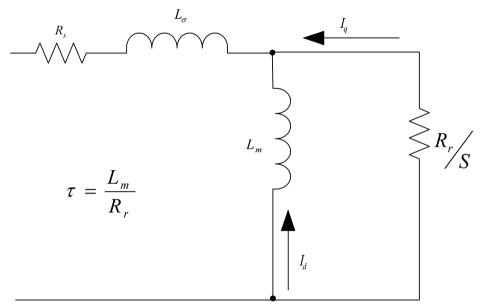
The value of IL.IMID can be estimated using the motor name plate information.

The following rule should generally be used:

$$I_{d,rms} \cong I_R * \sqrt{1 - (\cos \varphi)^2 * 0.8}$$

In which I_d is the value for IL.IMID, the preset rotor flux building current, I_r is the name plate phase current, $cos\phi$ is the name plate power factor at rated and operation, and **0.8** is an empirical factor (accounts for the angle error due to voltage drop on the leakage induction).

Related Topics


Motor (pg 27)

37.10 MOTOR.IMTR

General Information		
Туре	R/W	
Description	Rotor time constant.	

General Information			
Units	Ms		
Range	1 to 16,000		
Default			
Value	100		
Data Type	Integer		
Start Version	M_01-08-00-000		

The rotor time constant is calculated as the ratio between rotor magnetizing inductance L_m and rotor resistance R_r from the following equivalent circuit of an induction machine.

Alternatively, the rotor time constant can be estimated from the rated current, magnetizing current (MOTOR.IMID (pg 386)) and rated slip frequency as follows:

$$\tau = \frac{\sqrt{I_{s,rms}^2 - I_{d,rms}^2}}{I_{d,rms} * \omega_{slip}}$$

where I is the rated current, I is the rated magnetizing current, and $\omega_{s,rms}$ is the rated slip frequency in rad/s.

NOTE τ is in seconds for the above formulas. It needs to converted to ms for the MOTOR.IMTR setting: MOTOR.IMTR(ms) = τ*1000

Related Topics

Motor (pg 27)

37.11 MOTOR.INERTIA

General Information			
Туре	NV Parameter		
Description	Sets the motor inertia.		
Units	kgcm ² for rotary motors		
UTIILS	kg for linear motors		
Range	1 to 200,000 kgcm ² or		
Tange	kg		
Default	100 kgcm² or kg		
Value			
Data Type	Float		
See Also	N/A		
Start Version	M_01-00-00-000		
Fieldhue	Indax/S		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	35ABh/0	M 01 00 00 000
CANopen	35ABH/0	M_01-00-00-000

Description

This parameter sets the motor inertia.

NOTE This parameter is automatically configured for Kollmorgen motors when MOTOR.AUTOSET=1.

Related Topics

6.1 Motor

37.12 MOTOR.IPEAK

				-
General Infor	mation			
Туре	NV Parameter			
Description	Sets the motor	peak current.		
Units	mA			
Range	0.200 to 1,000 A	0.200 to 1,000 A		
Default	2.000 A			
Value				
Data Type	Float			
See Also		63), IL.LIMITN (pę	3	
066 1130	362)	?)		
Start Version	M_01-00-000			
Fieldbus		Index/Subindex	Obje	ct Start Version
EtherCAT CC	E and 358Fh/0 M		MO	1-00-00-000
CANopop		55011/0	101_01-00-00-000	

CANopen

This parameter configures the drive for the motor's peak, instantaneous-rated current. MOTOR.IPEAK is used to limit clamp the magnitude of the torque producing q-component current command (IL.CMD (pg 349)).

NOTE

This parameter is automatically configured for Kollmorgen motors when MOTOR.AUTOSET=1.

Related Topics

6.1 Motor

37.13 MOTOR.KE

General Information		
Туре	NV Parameter	
Description	Sets the motor back EMF con- stant.	
Units	Vpeak/krpm for Rotary Motors	
UTIILS	Vpeak/m/s for Linear Motors	
Range	0.0 to 100,000	
Default	0	
Value	0	
Data Type	Float	
See Also	N/A	
Start Version M_01-03-06-000		

Description

MOTOR.KE defines the back EMF constant for the motor. The back EMF constant defines how much voltage is generated at the motors coils. The relationship between MOTOR.KE and speed is described by the following equation:

```
Coil Voltage = MOTOR.KE * VL.FB
```

Where VL.FB is in units of krpm for rotary motors and in units of m/s for linear motors

NOTE This parameter is automatically configured for Kollmorgen motors when MOTOR.AUTOSET=1.

Related Topics

Motor (pg 27)

37.14 MOTOR.KT

General Information	
Туре	NV Parameter

General Inform	mation			
Description	Sets the torque constant of the motor.			
Units	Nm/A			
Range	0.001 Nm/A to 1,000,000.000 Nm/A for rotary motors. 0.001 Nm/A to 1,000,000.000 N/A for linear motors.			
Default Value	0.1 Nm/A Float N/A M_01-00-000			
Data Type				
See Also				
Start Version				
Fieldbus	Index/Subindex Object Start Versio			

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3593h/0	M_01-00-00-000
CANopen		

This parameter is the torque constant of the motor in Nm/A. The value can be online checked according to the following equation:

Kt = 60 * $\sqrt{3}$ * Ui/(2 * π * n)

Where:

Ui = induced voltage of the motor

n = actual rotor velocity

NOTE This parameter is automatically configured for Kollmorgen motors when MOTOR.AUTOSET=1.

Related Topics

6.1 Motor

37.15 MOTOR.LQLL

General Information		
Туре	NV Parameter	
Description	Sets the line-to-line motor	
	Lq.	
Units	mH	
Range	1 to 2 ³² H	
Default	17.000 H	
Value	17.00011	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3455h/0	M 01-00-00-000
CANopen	3433170	W_01-00-00-000

This parameter is used to configure the motor line-to-line inductance.

NOTE This parameter is automatically configured for Kollmorgen motors when MOTOR.AUTOSET=1.

Related Topics

6.1 Motor

37.16 MOTOR.NAME

General Information		
Туре	NV Parameter	
Description	Sets the motor	
	name.	
Units	N/A	
Range	11 chars	
Default	N/A	
Value	N/A	
Data Type	String	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

This parameter is used to set the motor name.

NOTE This parameter is automatically configured for Kollmorgen motors when MOTOR.AUTOSET=1.

Related Topics

Motor (pg 27)

37.17 MOTOR.PHASE

General Information		
Туре	NV Parameter	
Description	Sets the motor	
	phase.	
Units	Electrical degrees	
Range	0 to 360°	

General Infor	mation
Default	0°
Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	359Ch/0	M 01 00 00 000
CANopen	22901/0	M_01-00-00-000

This parameter sets the motor phase.

NOTE

If MOTOR.AUTOSET = 1 and FB1.MEMVER > 0.01, this parameter will be automatically configured for Kollmorgen motors.

Related Topics

6.1 Motor

37.18 MOTOR.PITCH

General Information		
Туре	NV Parameter	
Description	Sets the motor pitch.	
Units	μm	
Range	1,000 to 1,000,000	
	μm	
Default	1.000 µm	
Value	1.000 μπ	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

This parameter defines the pole-to-pair pitch for the linear motor in micrometers.

Related Topics

Motor (pg 27)

37.19 MOTOR.POLES

General Inform	mation
Туре	NV Parameter

392

General Information		
Description	Sets the number of motor poles.	
Units	N/A	
Range	0 to 128	
Default Value	6	
Data Type	Integer	
See Also	FB1.POLES (pg 314)	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	359Dh/0	M 01-00-00-000
CANopen	35901/0	W_01-00-00-000

MOTOR.POLES sets the number of motor poles. This command is used for commutation control and represents the number of individual magnetic poles of the motor (not pole pairs). The division value of motor poles (MOTOR.POLES) and feedback poles (FB1.POLES) must be an integer when setting drive to enable, otherwise a fault is issued.

NOTE This parameter is automatically configured for Kollmorgen motors when MOTOR.AUTOSET=1.

Related Topics

6.1 Motor

37.20 MOTOR.R

General Information			
Туре	NV Parameter		
Description	Sets the stator winding resistance phase-phase in ohms.		
Units	Ω		
Range	0.001 to 650 Ω		
Default Value	10 Ω		
Data Type	Float		
See Also	N/A		
Start Version	M_01-00-000		
Fieldbus		Indox/Subindox	Object Start Version
EtherCAT CO CANopen	E and	3456h/0	M_01-00-00-000

MOTOR.R sets the stator winding resistance phase-to-phase in ohms.

NOTE This parameter is automatically configured for Kollmorgen motors when MOTOR.AUTOSET=1.

Related Topics

6.1 Motor

37.21 MOTOR.RTYPE

General Information		
Туре	NV Parameter	
Description	Defines the type of thermal resistor inside the	
	motor.	
Units	N/A	
Range	0 to 1	
Default	0	
Value	0	
Data Type	Boolean	
See Also	N/A	
Start Version	M_01-00-000	

Description

This parameter defines the type of thermal resistor used inside of the motor to measures motor temperature.

0 = PTC

1 = NTC

NOTE For firmware versions 01-09-00-000 and later, this parameter is automatically configured for Kollmorgen motors when MOTOR.AUTOSET = 1.

Related Topics

Motor (pg 27)

37.22 MOTOR.TBRAKEAPP

General Information		
Туре	NV Parameter	
Description	The delay time used for applying the motor brake.	
Units	ms	
Range	0 to 1,000 ms	

General Information				
Default				
Value	75 ms			
Data Type	Integer			
See Also	N/A			
Start Version	M_01-00-000			
Fieldbus		Index/Subindex	Object Start Vers	ion
	NE and	mack oubmack		
EtherCAT COE and CANopen		366Eh/0	M 01-00-00-000	
		00001100	M_01 00 00-000	

This parameter is used to configure the mechanical delay when applying the motor brake.

MOTOR.TBRAKEAPP is a time delay that is applied when a brake exists and the drive is disabled at the end of a controlled stop. This delay lasts from the time that the brake is commanded to apply until the time that the drive is disabled.

This feature allows you to disable the drive and apply the brake on a vertical application without the load falling. Without this time delay, if you immediately disable the drive, then the load falls during the time needed for the brake to mechanically apply.

NOTE If MOTOR.AUTOSET = 1 and FB1.MEMVER > 0.01, this parameter will be automatically configured for Kollmorgen motors.

Related Topics

6.1 Motor

37.23 MOTOR.TBRAKERLS

General Information		
Туре	NV Parameter	
Description	The delay time used for releasing the motor brake.	
Units	ms	
Range	0 to 1,000 ms	
Default Value	75 ms	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and		M 01 00 00 000
CANopen	366Fh/0	M_01-00-00-000

Description

This parameter is used to configure the mechanical delay when releasing the motor brake. MOTOR.TBRAKERLS is a time delay that is applied when a brake exists and the drive is enabled. When the drive is enabled, the brake is commanded to release and, during the MOTOR.TBRAKERLS period of time, the drive does not accept a motion command. This delay allows the brake to fully release before the drive begins a new motion.

NOTE If MOTOR.AUTOSET = 1 and FB1.MEMVER > 0.01, this parameter will be automatically configured for Kollmorgen motors.

Related Topics

6.1 Motor

37.24 MOTOR.TBRAKETO

General Information		
Туре	NV Parameter	
Description	Brake apply timeout for vertical axis.	
Units	Milliseconds	
Range	-1 to 30,000	
Default	-1 (function disabled)	
Value		
Data Type	Integer	
See Also	CS.VTHRESH (pg 221), CS.TO (pg 220), DRV.DISTO (pg 259)	
Start Version	01-05-07-000	

Description

When a drive is disabled (due to user command, digital input, or fault), the brake will normally not be applied until velocity has fallen below CS.VTHRESH (pg 221). In some instances, such as a vertical axis, it may desirable to apply the brake regardless of velocity.

MOTOR.TBRAKETO sets the maximum time allowed to pass between drive disable and application of the motor brake. After this time, the brake will be applied even if velocity is higher than CS.VTHRESH (pg 221).

To disable the timer, set the value to -1.

NOTE Prior to version 01-05-07-000, this timeout was only applied when the Hardware Enable was deactivated and the default was 30,000. From 01-05-07-000 on this timeout is applied in all conditions and the default is -1.

37.25 MOTOR.TEMP

General Information	
Туре	R/O Parameter

General Inform	nation
Description	Reads the motor temperature represented as the resistance of the motor PTC or
Description	NTC.
Units	Ω
Range	0 to 2 ³² Ω
Default	N/A
Value	N/A
Data Type	Integer
See Also	N/A
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3612h/0	M_01-00-00-000
CANopen		-

This parameter returns the motor temperature, which is represented as the resistance of the motor's PTC or NTC.

Related Topics

Motor (pg 27) | MOTOR.RTYPE (pg 394)

37.26 MOTOR.TEMPFAULT

General Information				
Туре	NV Parameter			
Description	Sets the motor temperature fault			
Description	level.			
Units	Ω			
Range	0 to 2,000,000,000 Ω			
Default	0Ω = switched off			
Value				
Data Type	Integer			
See Also	MOTOR.TEMP (pg 396)			
Start Version	M_01-00-000			

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3586h/0	M 01-00-00-000
CANopen	33001/0	WI_01-00-00-000

Description

This parameter is used to configure the motor temperature fault level as a resistance threshold of the motor thermal sensor.

A zero value prevents any fault from being issued.

NOTE For firmware versions 01-09-00-000 and later, this parameter is automatically configured for Kollmorgen motors when MOTOR.AUTOSET = 1.

Related Topics

6.1 Motor

37.27 MOTOR.TEMPWARN

General Information			
Туре	NV Parameter		
Description	Sets the motor temperature warning level.		
Units	Ω		
Range	0 to 2,000,000,000 Ω		
Default Value	0Ω = switched off		
Data Type	Integer		
See Also	MOTOR.TEMP (pg 396)		
Start Version	M_01-00-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3453h/0	M 01-00-00-000
CANopen	34531/0	W_01-00-00-000

Description

This parameter is used to configure the motor temperature warning level as a resistance threshold of the motor PTC.

A zero value prevents any warning from being created.

Related Topics

6.1 Motor

37.28 MOTOR.TYPE

General Information			
Туре	NV Parameter		
Description	Sets the motor		
Description	type.		
Units	N/A		
Range	0, 1, 2 ,4, 8		
Default	0		
Value	0		
Data Type	Integer		

General Information		
See Also N/A		
Start Version	M_01-00-00-000	

MOTOR.TYPE sets the drive control algorithms to different motor types as follows:

- 0 = Rotary motor
- 1 = Linear motor
- 2 = Induction Motor V/f Open Loop Control
- 4 = Induction Motor Closed Loop Control
- 8 = Rotary brush motor

The following table shows which MOTOR parameters must be configured for either permanent magnet, induction motor v/f open loop, or induction motor closed loop motor types.

Keyword	Permanent Magnet	Induction Motor v/f Open Loop	Induction Motor Closed Loop
MOTOR.NAME (pg 391)	Yes	Yes	Yes
MOTOR.TYPE	Yes	Yes	Yes
MOTOR.AUTOSET (pg 380)	Yes	No	Yes
MOTOR.IPEAK (pg 388)	Yes	Yes	Yes
MOTOR.ICONT (pg 384)	Yes	Yes	Yes
MOTOR.INERTIA (pg 388)	Yes	Yes	Yes
MOTOR.KT (pg 389)	Yes	No	No
MOTOR.LQLL (pg 390)	Yes	No	Yes
MOTOR.POLES (pg 392)	Yes	Yes	Yes
MOTOR.VMAX (pg 400)	Yes	Yes	Yes
MOTOR.R (pg 393)	Yes	Yes	Yes
MOTOR.VOLTMAX (pg 400)	Yes	Yes	Yes
MOTOR.PHASE (pg 391)	Yes	No	No
MOTOR.CTF0 (pg 384)	Yes	Yes	Yes
MOTOR.KE (pg 389)	Yes	No	No
MOTOR.IMTR (pg 386) MOTOR.IMTR	No	No	Yes
MOTOR.IMID (pg 386) MOTOR.IMID	No	No	Yes
MOTOR.VOLTRATED (pg 402)	No	Yes	No

Keyword	Permanent Magnet	Induction Motor v/f Open Loop	Induction Motor Closed Loop
MOTOR.VRATED (pg 402)	No	Yes	No
MOTOR.VOLTMIN (pg 401)	No	Yes	No

Related Topics

Motor (pg 27)

37.29 MOTOR.VMAX

General Information			
Туре	NV Parameter		
Description	Sets the maximum motor speed.		
Units	rpm		
Range	100 to 40,000 rpm		
Default Value	3,000 rpm		
Data Type	Integer		
See Also	N/A		
Start Version	M_01-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	35A3h/0	M 01 00 00 000
CANopen	35A3H/0	M_01-00-00-000

Description

This parameter is used to configure the maximum speed of the motor.

Related Topics

6.1 Motor

37.30 MOTOR.VOLTMAX

General Information		
Туре	NV Parameter	
Description	Sets the motor maximum	
Description	voltage.	
Units	Vrms	
Range	110 to 900 Vrms	

General Information			
Default			
Value	230 Vrms		
Data Type	Integer		
See Also	N/A		1
Start Version	M_01-00-00-000		
Fieldbus Index/Subindex Object Start Version			
	EtherCAT COE and 3452h/0		M 01-00-00-000
0.4.1.		343211/0	IVI_01-00-00-000

CANopen

This parameter sets the maximum permissible motor voltage. For instance, if a motor that is rated for a 400 V supply is connected to the drive, then the MOTOR.VOLTMAX setting is 400. This value also sets regen resistor and over voltage thresholds in the drive to acceptable values for the motor so that the motor windings are not damaged.

Related Topics

6.1 Motor

37.31 MOTOR.VOLTMIN

General Inform	mation
Туре	NV Parameter
Description	Sets the minimum voltage for V/f control.
Units	%
Range	0 to 100%
Default Value	2%
Data Type	U16
See Also	MOTOR.VRATED (pg 402), MOTOR.VOLTRATED (pg 402)
Start Version	
Fieldbus	Index/Subindex Object Start Version

i leiubus	muez/Submuez	Object Start Version
EtherCAT COE and	3457h/3	M 01-00-00-000
CANopen	34371/3	M_01-00-00-000

Description

This parameter configures the drive for the induction motor's minimum voltage at standstill. It is given as a percentage (%) of the motor's rated voltage. MOTOR.VOLTMIN is used to calculate the constant volts per Hertz characteristics of the drive and motor and should be set to a value that generates a current of about 40% of the rated current at standstill.

Related Topics

6.1 Motor

37.32 MOTOR.VOLTRATED

General Information			
Туре	NV Parameter		
Description	Sets the motor	Sets the motor rated voltage.	
Units	V		
Range	50 to 1,000 V		
Default	230 V		
Value	230 V		
Data Type	U16		
See Also	MOTOR.VRAT	ED (pg 402), MOT	OR.VOLTMIN (pg
566 A150	401)		
Start Version	M_01-03-00-000		
Fieldbus Index/Subindex Object Start Version			
Fieldbus		index/Subindex	Object Start version
EtherCAT CC)E and	3457h/2	M 01-03-00-000
CANopen	CANopen		0. 00 000

Description

This parameter configures the drive for the induction motor's rated voltage as indicated on the nameplate.

MOTOR.VOLTRATED is used to calculate the constant Volts per Hertz characteristics of the drive and motor.

NOTE If MOTOR.AUTOSET = 1 and FB1.MEMVER > 0.01, this parameter will be automatically configured for Kollmorgen motors.

Related Topics

Motor (pg 27)

37.33 MOTOR.VRATED

General Information		
Туре	NV Parameter	
Description	Sets the motor rated velocity (not maximum velocity)	
	Depends on or	
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s	
	Linear: counts/s, mm/s, µm/s, custom units/s	

General Inform	mation
	Rotary:
	0.000 to 15,000.000 rpm
	0.000 to 250.000 rps
	0.000 to 90,000.000 deg/s
	0.000 to 1,250.000 custom units/s
Range	0.000 to 1,570.796 rad/s
	Linear:
	0.000 to 1,073,741,824,000.000 counts/s
	0.000 to 8,000.000 mm/s
	0.000 to 8,000,000.000 µm/s
	0.000 to 1,250.000 custom units/s
Default	0 rpm
Value	
Data Type	U16
See Also	MOTOR.VOLTRATED (pg 402), MOTOR.VOLTMIN (pg
2007 100	401)
Start Version	M_01-03-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3457h/1	M_01-03-00-000
CANopen		

This parameter configures the drive for the rated velocity of the induction motor as indicated on the nameplate. MOTOR.VRATED is used to calculate the constant volts per Hertz characteristics of the drive and motor.

NOTE

If MOTOR.AUTOSET = 1 and FB1.MEMVER > 0.01, this parameter will be automatically configured for Kollmorgen motors.

Related Topics

Motor (pg 27)

38 PL Parameters

This section describes the PL parameters.

38.1 PL.CMD	
38.2 PL.ERR	
38.3 PL.ERRFTHRESH	406
38.4 PL.ERRMODE	
38.5 PL.ERRWTHRESH	409
38.6 PL.FB	410
38.7 PL.FBSOURCE	411
38.8 PL.FILTERTIME	411
38.9 PL.INTINMAX	
38.10 PL.INTOUTMAX	414
38.11 PL.KI	
38.12 PL.KP	

38.1 PL.CMD

General Inform	nation
Туре	R/O Parameter
Description	Reads the position command directly from the entry to the position
Description	loop.
	Depends on or
Units	Rotary: counts, rad, deg, (custom units), 16-bit counts
	Linear: counts, mm, µm, (custom units), 16-bit counts
Range	N/A
Default	N/A
Value	
Data Type	Float
See Also	PL.FB (pg 410)
Start Version	M_01-00-000

AKD BASIC Information
Data Type Integer

Description

PL.CMD reads the position command as it is received in the position loop entry.

Related Topics

PL.ERR (pg 405) | PL.ERRFTHRESH (pg 406) | PL.ERRMODE (pg 408) | PL.ERRWTHRESH (pg 409)

1 Position Loop

38.2 PL.ERR

General Inform	mation
Туре	R/O Parameter
Description	Reads the position error present when the drive is controlling the position
Description	loop.
Units	counts, rad, deg, (custom units)
Range	N/A
Default	N/A
Value	
Data Type	Float
See Also	PL.FB (pg 410)
Start Version	M_01-00-000
AKD BAS	SIC Information

Data Type	Integer

Fieldbus	Index/Subindex	Object Start Version	
EtherCAT COE and	35C5h/0	M 01 00 00 000	
CANopen	60F4h/0	M_01-00-00-000	

PL.ERR reads the position error present when the drive is controlling the position loop. PL.ERR is the difference between the actual position of the motor shaft (PL.FB (pg 410)) and the commanded position of the drive (PL.CMD (pg 405)). If the drive is not in the position operating mode (DRV.OPMODE (pg 282) = 2), then the PL.ERR value is not generated by the drive and this parameter is read as 0.

AKD BASIC Notes

NOTE When you enable the position error interrupt (by setting INTR.PL.ERR=1), the Position Error fault is disabled. In situations where it would have occurred, a position error interrupt is generated instead.

Related Topics

PL.ERRFTHRESH (pg 406) | PL.ERRMODE (pg 408) | PL.ERRWTHRESH (pg 409)

1 Position Loop

38.3 PL.ERRFTHRESH

General Infor	mation
Туре	NV Parameter
Description	Sets the maximum position error.
	Depends on or
Units	Rotary: counts, rad, deg, (custom units), 16-bit counts
	Linear: counts, mm, μ m, (custom units), 16-bit counts
	Rotary:
	0.000 to 5,123,372,000,000,005.000 counts
	0.000 to 7,495,067.136 rad
	0.000 to 429,436,076.032 deg
	0.000 to 5,964,389.888 (custom units)
	0.000 to 78,176,452,636.718 16-bit counts
Range	Linear:
	0.000 to 5,123,372,000,000,005.000 counts
	0.000 to 1,192,877.952*MOTOR.PITCH (pg 392) mm
	0.000 to 1,192,878,014.464*MOTOR.PITCH (pg 392)
	μm
	0.000 to 5,964,389.888 (custom units)
	0.000 to 78,176,452,636.718 16-bit counts

General Inform	mation
	Rotary:
	42,949,672,960.000 counts
	62.832 rad
	3,600.000 deg
	50.000 (custom units)
Default	655,360.000 16-bit counts
Value	Linear:
	42,949,672,960.000 counts
	10.000*MOTOR.PITCHMOTOR.PITCH (pg 392)mm
	10,000.000*MOTOR.PITCH μm
	50.000 (custom units)
	655,360.000 16-bit counts
Data Type	Float
See Also	PL.ERR
Start Version	M_01-00-000

AKD BASIC Information
Data Type Integer

Fieldbus	Index/Subindex	Object Start Version	
EtherCAT COE and	35C7h/0	M_01-00-00-000	
CANopen	6065h/0		

Description

This parameter sets the maximum position error. If the position error PL.ERR (pg 405) is larger than PL.ERRFTHRESH the drive generates a fault. If PL.ERRFTHRESH is set to 0, the maximum position error is ignored.

Example

Set position rotary units to 2 (degrees). Setting PL.ERRFTHRESH to 1000 states that is the position error is larger than 1000 degrees, the drive will generate a fault.

UNIT.PROTARY 2

PL.ERRFTHRESH 1000

Related Topics

PL.ERR (pg 405) | PL.ERRMODE (pg 408) | PL.ERRWTHRESH (pg 409)

1 Position Loop

38.4 PL.ERRMODE

General Inform	mation
Туре	NV Parameter
Description	Sets the type of following error warning and fault usage.
1 luite	0- Standard following error
Units	1-Enhanced following error
Range	0 to 1
Default	0
Value	•
Data Type	Boolean
See Also	PL.ERR (pg 405), PL.ERRFTHRESH (pg 406), PL.ERRWTHRESH (pg
See Also	409)
Start Version	M_01-02-09-000

AKD BASIC Information
Data Type Integer

Description

PL.ERRMODE sets the type of following error warning and fault usage.

Mode 0 - following error magnitude fault

In Mode 0, the values of PL.ERRFTHRESH and PL.ERRWTHRESH are compared against the value of PL.ERR. If the absolute value of PL.ERR is larger than PL.ERRWTHRESH, then a warning is generated. If the absolute value of PL.ERR is larger than PL.ERRFTHRESH, then a fault is generated.

Mode 1 - deviation from predicted trajectory fault

In Mode 1, the values of PL.ERRFTHRESH and PL.ERRWTHRESH are compared against the following value:

<error> = abs(PL.ERR - [(VL.CMD - 1*VL.FF) / PL.KP])

If the absolute value of <error> is larger than PL.ERRWTHRESH for a consecutive period of 100 ms, then a warning is generated. If the absolute value of <error> is larger than PL.ERRFTHRESH for a consecutive period of 100 ms, then a fault is generated.

In mode 1, if PL.KI is not 0 then the following error prediction mechanism is turned off. When the drive is disabled, the following error limit tests are turned off and the warnings are cleared. A value of 0 in PL.ERRFTHRESH or PL.ERRWTHRESH disables the respective functionality.

Example

Assuming

PL.ERRMODE = 0, PL.ERRFTHRESH=1.2, PL.ERRWTHRESH=1, then PL.ERR reads 1.1.

In this case the warning is generated, but the fault is not.

Assuming PL.ERRMODE = 0, PL.ERRFTHRESH=1.2, PL.ERRWTHRESH=1, then PL.ERR reads 1.3.

In this case the warning is generated, as well as the fault.

Related Topics

PL.ERR (pg 405) | PL.ERRFTHRESH (pg 406) | PL.ERRWTHRESH (pg 409)

1 Position Loop

38.5 PL.ERRWTHRESH

General Inform	mation
Туре	NV Parameter
Description	Sets the position error warning level.
	Depends on or
Units	Rotary: counts, rad, deg, (custom units), 16-bit counts
	Linear: counts, mm, µm, (custom units), 16-bit counts
	Rotary:
	0.000 to 5,123,372,000,000,005.000 counts
	0.000 to 7,495,067.136 rad
	0.000 to 429,436,076.032 deg
	0.000 to 5,964,389.888 (custom units)
	0.000 to 78,176,452,636.718 16-bit counts
Range	Linear:
	0.000 to 5,123,372,000,000,005.000 counts
	0.000 to 1,192,877.952*MOTOR.PITCH (pg 392) mm
	0.000 to 1,192,878,014.464*MOTOR.PITCH (pg 392) μm
	0.000 to 5,964,389.888 (custom units)
	0.000 to 78,176,452,636.718 16-bit counts
Default	0.000 dez
Value	0.000 deg
Data Type	Float
See Also	PL.ERR (pg 405)
Start Version	M_01-00-000

AKD BASIC Information
Data Type Integer

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3483h/0	M 01-00-00-000
CANopen	3403170	W_01-00-00-000

Description

If this value is not equal 0 and the position error PL.ERR (pg 405) is larger than this value, the drive will generate a warning.

If PL.ERRWTHRESH is set to 0 the warning is not issued.

Example

Set position rotary units to 2 degrees. If you set PL.ERRWTHRESH to 100 and the position error is larger than 100 degrees, then the drive will generate a warning.

UNIT.PROTARY 2

PL.ERRWTHRESH 100

Related Topics

PL.ERR (pg 405) | PL.ERRFTHRESH (pg 406) | PL.ERRMODE (pg 408)

1 Position Loop

General Information		
Туре	R/O Parameter	
Description	Reads the position feedback value.	
	Depends on UNIT.PLINEAR (pg 1) or UNIT.PROTARY (pg 1)	
Units	Rotary: counts, rad, deg, (custom units), 16-bit counts	
	Linear: counts, mm, μ m, (custom units), 16-bit counts	
Range	N/A	
Default Value	N/A	
Data Type	Float	
See Also	FB1.OFFSET	
Start Version	M_01-00-000	

AKD BAS	SIC Information	l		
Data Type	Integer			
Fieldbus		Index/Sub	oindex	Object Start Version
EtherCAT CO	E and	6064h/0		M 01 00 00 000
CANopen		000411/0		M_01-00-00-000

Description

PL.FB returns the position feedback value.

Note that this value is not the pure feedback value read from the feedback device, but also includes the value of the FB1.OFFSET and an internal offset set automatically by the FW when a homing switch is actuated.

AKD BASIC Note

Note that this value is not the pure feedback value read from the feedback device, but also includes the value of the FB1.OFFSET and an internal offset set by the user. If a new value is written to MOVE.POSCOMMAND then PL.FB will be automatically changed such that PL.ERROR (the difference between them) is unchanged.

AKD BASIC Example

PrintPL.FB, MOVE.POSCOMMANDMOVE.POSCOMMAND0PrintPL.FB, MOVE.POSCOMMAND

Related Topics

PL.ERR (pg 405) | PL.ERRFTHRESH (pg 406) | PL.ERRMODE (pg 408) | PL.ERRWTHRESH (pg 409)

1 Position Loop

38.7 PL.FBSOURCE

General Information		
Туре	NV Parameter	
Description	Sets the feedback source for the position	
	loop.	
Units	N/A	
Range	Range will differ depending on drive model. 0 to 1 (for AKD PDMM-x-xxxxx-NAxx-xxxx) 0 to 2 (for AKD PDMM-x-xxxxx-NBxx-xxxx)	
Default Value	0	
Data Type	Integer	
Start Version	M_01-00-000	

Description

This parameter determines the feedback source that the position loop uses. A value of 0 for this parameter selects the primary feedback, a value of 1 selects the secondary feedback. If you use the secondary feedback as the source for the position loop, then FB2.MODE mode should be set as 0 (A/B signals). A/B signals are the only supported feedback type as secondary feedback into the position loop. Other settings for FB2.MODE are intended as pulse inputs or a gearing command when PL.FBSOURCE remains 0.

0	Primary Feedback connected to X10.
1	Secondary Feedback (DRV.HANDWHEEL) connected to X7 or X9.
2	Tertiary Feedback connected to X9 (only supported with AKD PDMM-x-xxxx- NBxx-xxxx).

Related Topics

PL.ERR (pg 405) | PL.ERRFTHRESH (pg 406) | PL.ERRMODE (pg 408) | PL.ERRWTHRESH (pg 409)

1 Position Loop

38.8 PL.FILTERTIME

General Information		
Туре	R/W Parameter	

General Information			
Description	Sets the position command filter period.		
Units	Milliseconds		
Range	0, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512		
Default Value	0		
Data Type	Float		
Start Version	M_01-08-01-000		

PL.FILTERTIME sets the period of a "boxcar" moving average filter on the position command. When PL.FILTERTIME is greater than zero, the filter is active.

The moving average filter is applied to all Command Source types, but only active when the AKD PDMM is in Position mode.

This feature is typically used for smoothing abrupt changes in position command, or filtering coarse command steps from low resolution controllers, or electronic gearing.

NOTE When the filter is on (PL.FILTERTIME > 0), total motion commanded will be delayed by the period the filter is set to.

38.9 PL.INTINMAX

General Infor	General Information		
Туре	NV Parameter		
Description	Limits the input of the position loop integrator by setting the input sat- uration.		
Units	Depends on or Rotary: counts, rad, deg, (custom units), 16-bit counts Linear: counts, mm, μm, (custom units), 16-bit counts		

General Inform	mation
	Rotary:
	0.000 to 18,446,744,073,709.000 counts
	0.000 to 26,986.052 rad
	0.000 to 1,546,188.288 deg
	0.000 to 21,474.836 (custom units)
Range	0.000 to 281,474,976.710 16-bit counts
Trange	Linear:
	0.000 to 18,446,744,073,709.000 counts
	0.000 to 4,294.968*MOTOR.PITCH (pg 392) mm
	0.000 to 4,294,967.296*MOTOR.PITCH (pg 392) μm
	0.000 to 21,474.836 (custom units)
	0.000 to 281,474,976.710 16-bit counts
	Rotary:
	3,999,989,760.000 counts
	5.852 rad
	335.275 deg
	4.657 (custom units)
Default	61,035.000 16-bit counts
Value	Linear:
	3,999,989,760.000 counts
	0MOTOR.PITCH (pg 392) mm
	9MOTOR.PITCH (pg 392) µm
	4.657 (custom units)
	61,035.000 16-bit counts
Data Type	Float
See Also	PL.FB
Start Version	M_01-00-000
Fieldbus	Index/Subindex Object Start Version

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3481h/1	M 01-00-00-000
CANopen	34011/1	W_01-00-00-000

PL.INTINMAX limits the input of the position loop integrator by setting the input saturation. When used in concert with PL.INSATOUT, this variable allows you to make the position loop integrator effective near the target position. Far from the target position, however, the integrator is not dominant in the loop dynamics.

Related Topics

PL.ERR (pg 405) | PL.ERRFTHRESH (pg 406) | PL.ERRMODE (pg 408) | PL.ERRWTHRESH (pg 409)

1 Position Loop

38.10 PL.INTOUTMAX

Type NV Parameter Description Limits the output of the position loop integrator by setting the output saturation. Units Depends on or Units Rotary: counts, rad, deg. (custom units), 16-bit counts Linear: counts, mm, µm, (custom units), 16-bit counts Linear: counts, mm, µm, (custom units), 16-bit counts Rate Rotary: 0.000 to 18,446,744,073,709.000 counts 0.000 to 26,986.052 rad 0.000 to 1,546,188.288 deg 0.000 to 21,474.836 (custom units) 0.000 to 21,474,836 (custom units) 0.000 to 281,474,976.710 counts16 bit Linear: 0.000 to 18,446,744,073,709.000 counts 0.000 to 18,446,744,073,709.000 counts 0.000 to 4,294,967.296*MOTOR.PITCH (pg 392) mm 0.000 to 14,294,967.296*MOTOR.PITCH µm 0.000 to 21,474.836 (custom units) 0.000 to 21,474,976.710 16-bit counts Rotary: 3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) Default 61,035.000 16-bit counts Value Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) µm 4.657 (cu	General Inform	nation		
Description uration. Units Depends on or Units Rotary: counts, rad, deg. (custom units), 16-bit counts Linear: counts, mm, μm, (custom units), 16-bit counts Reary: 0.000 to 18,446,744,073,709.000 counts 0.000 to 26,986.052 rad 0.000 to 21,474.836 (custom units) 0.000 to 21,474.836 (custom units) 0.000 to 281,474,976.710 counts 16 bit Linear: 0.000 to 18,446,744,073,709.000 counts 0.000 to 281,474,976.710 counts 16 bit Linear: 0.000 to 18,446,744,073,709.000 counts 0.000 to 4,294,968*MOTOR.PITCH (pg 392) mm 0.000 to 4,294,967.296*MOTOR.PITCH μm 0.000 to 21,474.836 (custom units) 0.000 to 281,474,976.710 16-bit counts Rotary: 3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) Default 61,035.000 16-bit counts Value Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) pm 4.657 (custom units) 61,035.000 16-bit counts Data Type Float	Туре	NV Parameter		
Units Rotary: counts, rad, deg, (custom units), 16-bit counts Linear: counts, mm, μm, (custom units), 16-bit counts Rotary: 0.000 to 18,446,744,073,709.000 counts 0.000 to 26,986.052 rad 0.000 to 1,546,188.288 deg 0.000 to 21,474.836 (custom units) 0.000 to 21,474.836 (custom units) 0.000 to 21,474,976.710 counts16 bit Linear: 0.000 to 18,446,744,073,709.000 counts 0.000 to 21,474,976.710 counts16 bit Linear: 0.000 to 18,446,744,073,709.000 counts 0.000 to 18,446,744,073,709.000 counts 0.000 to 21,474.836 (custom units) 0.000 to 24,949.67.296*MOTOR.PITCH (pg 392) mm 0.000 to 21,474.836 (custom units) 0.000 to 21,474.936 (custom units) 0.000 to 21,474.936 (custom units) 0.000 to 281,474,976.710 16-bit counts Sa52 rad 335.275 deg 4.657 (custom units) 61,035.000 16-bit counts Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts <td>Description</td> <td colspan="3"></td>	Description			
Linear: counts, mm, μm, (custom units), 16-bit counts Rotary: 0.000 to 18,446,744,073,709.000 counts 0.000 to 26,986.052 rad 0.000 to 26,986.052 rad 0.000 to 1,546,188.288 deg 0.000 to 21,474.836 (custom units) 0.000 to 281,474,976.710 counts 16 bit Linear: 0.000 to 18,446,744,073,709.000 counts 0.000 to 281,474,976.710 counts 16 bit Linear: 0.000 to 18,446,744,073,709.000 counts 0.000 to 18,446,744,073,709.000 counts 0.000 to 4,294,968*MOTOR.PITCH (pg 392) mm 0.000 to 21,474.836 (custom units) 0.000 to 21,474.836 (custom units) 0.000 to 281,474,976.710 16-bit counts Rotary: 3.999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) Default 61,035.000 16-bit counts Value Linear: 3.999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts 0MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts Data Type Float		Depends on or		
Rotary: 0.000 to 18,446,744,073,709.000 counts 0.000 to 26,986.052 rad 0.000 to 21,474.836 (custom units) 0.000 to 21,474.836 (custom units) 0.000 to 281,474,976.710 counts 16 bit Linear: 0.000 to 4,294.967.709.000 counts 0.000 to 4,294.967.296*MOTOR.PITCH (pg 392) mm 0.000 to 21,474.836 (custom units) 0.000 to 4,294.967.296*MOTOR.PITCH μm 0.000 to 21,474.836 (custom units) 0.103.5.000 16-bit counts Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) µm 4.657 (custom units) 01,03	Units	Rotary: counts, rad, deg, (custom units), 16-bit counts		
0.000 to 18,446,744,073,709.000 counts 0.000 to 26,986.052 rad 0.000 to 1,546,188.288 deg 0.000 to 21,474.836 (custom units) 0.000 to 21,474.836 (custom units) 0.000 to 281,474,976.710 counts 16 bit Linear: 0.000 to 4,294.968*MOTOR.PITCH (pg 392) mm 0.000 to 21,474.836 (custom units) 0.000 to 4,294.967.296*MOTOR.PITCH μm 0.000 to 281,474,976.710 16-bit counts 5.852 rad 335.275 deg 4.657 (custom units) 61,035.000 16-bit counts Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts 0MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts Data Type Float		Linear: counts, mm, µm, (custom units), 16-bit counts		
0.000 to 26,986.052 rad 0.000 to 1,546,188.288 deg 0.000 to 21,474.836 (custom units) 0.000 to 281,474,976.710 counts 16 bit Linear: 0.000 to 4,294,968*MOTOR.PITCH (pg 392) mm 0.000 to 4,294,967.296*MOTOR.PITCH μm 0.000 to 281,474,976.710 16-bit counts 0.000 to 21,474.836 (custom units) 0.000 to 21,474.976.710 16-bit counts Rotary: 3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) Default Value Linear: 3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) Default Value Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts Data Type Float		Rotary:		
0.000 to 1,546,188.288 deg 0.000 to 21,474.836 (custom units) 0.000 to 281,474,976.710 counts16 bit Linear: 0.000 to 18,446,744,073,709.000 counts 0.000 to 4,294.968*MOTOR.PITCH (pg 392) mm 0.000 to 21,474.836 (custom units) 0.000 to 24,294.968*MOTOR.PITCH (pg 392) mm 0.000 to 4,294.967.296*MOTOR.PITCH μm 0.000 to 21,474.836 (custom units) 0.000 to 21,474.836 (custom units) 0.000 to 21,474.976.710 16-bit counts Rotary: 3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) 0.1035.000 16-bit counts Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts 0MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts Data Type		0.000 to 18,446,744,073,709.000 counts		
Range 0.000 to 21,474.836 (custom units) 0.000 to 281,474,976.710 counts 16 bit Linear: 0.000 to 18,446,744,073,709.000 counts 0.000 to 18,446,744,073,709.000 counts 0.000 to 4,294.968*MOTOR.PITCH (pg 392) mm 0.000 to 2,1,474.836 (custom units) 0.000 to 2,1,474.976.710 16-bit counts Rotary: 3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) 0.1035.000 16-bit counts Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts United in the bit counts 0MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts Data Type		0.000 to 26,986.052 rad		
Range 0.000 to 281,474,976.710 counts 16 bit Linear: 0.000 to 18,446,744,073,709.000 counts 0.000 to 18,446,744,073,709.000 counts 0.000 to 4,294.968*MOTOR.PITCH (pg 392) mm 0.000 to 2,94,967.296*MOTOR.PITCH µm 0.000 to 2,1474.836 (custom units) 0.000 to 281,474,976.710 16-bit counts 0.000 to 281,474,976.710 16-bit counts 0.000 to 281,474,976.710 16-bit counts 3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) 61,035.000 16-bit counts Linear: 3,999,989,760.000 counts 3,999,989,760.000 counts 61,035.000 16-bit counts Value Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts 0MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts Data Type Float		0.000 to 1,546,188.288 deg		
Range Linear: 0.000 to 18,446,744,073,709.000 counts 0.000 to 4,294.968*MOTOR.PITCH (pg 392) mm 0.000 to 4,294,967.296*MOTOR.PITCH μm 0.000 to 21,474.836 (custom units) 0.000 to 21,474.836 (custom units) 0.000 to 281,474,976.710 16-bit counts Rotary: 3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) Default 61,035.000 16-bit counts Linear: 3,999,989,760.000 counts 0.00TOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) μm 4.657 (custom units) 61,035.000 16-bit counts Data Type Float		0.000 to 21,474.836 (custom units)		
Linear: 0.000 to 18,446,744,073,709.000 counts 0.000 to 4,294.968*MOTOR.PITCH (pg 392) mm 0.000 to 4,294,967.296*MOTOR.PITCH μm 0.000 to 21,474.836 (custom units) 0.000 to 281,474,976.710 16-bit counts Rotary: 3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) Default Value Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) μm 4.657 (custom units) 61,035.000 16-bit counts Data Type Float	Dense	0.000 to 281,474,976.710 counts 16 bit		
0.000 to 4,294.968*MOTOR.PITCH (pg 392) mm 0.000 to 4,294,967.296*MOTOR.PITCH μm 0.000 to 21,474.836 (custom units) 0.000 to 281,474,976.710 16-bit counts Rotary: 3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) 61,035.000 16-bit counts Linear: 3,999,989,760.000 counts 61,035.000 16-bit counts United Hammann MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) μm 4.657 (custom units) 61,035.000 16-bit counts Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) μm 4.657 (custom units) 61,035.000 16-bit counts Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) μm 4.657 (custom units) 61,035.000 16-bit counts Data Type Float	Range	Linear:		
0.000 to 4,294,967.296*MOTOR.PITCH μm 0.000 to 21,474.836 (custom units) 0.000 to 281,474,976.710 16-bit counts Rotary: 3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) 61,035.000 16-bit counts Linear: 3,999,989,760.000 counts 0.000 to 281,474,976.710 16-bit counts Default 61,035.000 16-bit counts Unrear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) μm 4.657 (custom units) 61,035.000 16-bit counts Data Type Float		0.000 to 18,446,744,073,709.000 counts		
0.000 to 21,474.836 (custom units) 0.000 to 281,474,976.710 16-bit counts Rotary: 3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) Default 61,035.000 16-bit counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) μm 4.657 (custom units) 61,035.000 16-bit counts 0MOTOR.PITCH (pg 392) μm 4.657 (custom units) 61,035.000 16-bit counts 0MOTOR.PITCH (pg 392) μm 4.657 (custom units) 61,035.000 16-bit counts 0MOTOR.PITCH (pg 392) μm 4.657 (custom units) 61,035.000 16-bit counts		0.000 to 4,294.968*MOTOR.PITCH (pg 392) mm		
0.000 to 281,474,976.710 16-bit counts Rotary: 3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) 0efault 61,035.000 16-bit counts Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) μm 4.657 (custom units) 61,035.000 16-bit counts 0MOTOR.PITCH (pg 392) μm 4.657 (custom units) 61,035.000 16-bit counts Data Type		0.000 to 4,294,967.296*MOTOR.PITCH μm		
Rotary: 3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) Default 61,035.000 16-bit counts Value Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts Data Type		0.000 to 21,474.836 (custom units)		
3,999,989,760.000 counts 5.852 rad 335.275 deg 4.657 (custom units) Default 61,035.000 16-bit counts Linear: 3,999,989,760.000 counts OMOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts Data Type		0.000 to 281,474,976.710 16-bit counts		
5.852 rad 335.275 deg 4.657 (custom units) Default 61,035.000 16-bit counts Value Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts Data Type		Rotary:		
335.275 deg 4.657 (custom units) Default 61,035.000 16-bit counts Value Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts Data Type		3,999,989,760.000 counts		
 A.657 (custom units) Default 61,035.000 16-bit counts Linear: 3,999,989,760.000 counts OMOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts Data Type Float 		5.852 rad		
Default61,035.000 16-bit countsValueLinear:3,999,989,760.000 counts0MOTOR.PITCH (pg 392) mm9MOTOR.PITCH (pg 392) µm4.657 (custom units)61,035.000 16-bit countsData TypeFloat		335.275 deg		
Value Linear: 3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) µm 9MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts Data Type Float		4.657 (custom units)		
3,999,989,760.000 counts 0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) μm 4.657 (custom units) 61,035.000 16-bit counts Data Type Float	Default	61,035.000 16-bit counts		
0MOTOR.PITCH (pg 392) mm 9MOTOR.PITCH (pg 392) μm 4.657 (custom units) 61,035.000 16-bit counts Data Type Float	Value	Linear:		
9MOTOR.PITCH (pg 392) µm 4.657 (custom units) 61,035.000 16-bit counts Data Type Float		3,999,989,760.000 counts		
4.657 (custom units) 61,035.000 16-bit countsData TypeFloat		0MOTOR.PITCH (pg 392) mm		
61,035.000 16-bit counts Data Type Float		9MOTOR.PITCH (pg 392) µm		
Data Type Float		4.657 (custom units)		
		61,035.000 16-bit counts		
	Data Type	Float		
	See Also	PL.INTINMAX		
Start Version M_01-00-000	Start Version	M_01-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3481h/2	M 01-00-00-000
CANopen	34011/2	W_01-00-00-000

PL.INTOUTMAX limits the output of the position loop integrator by setting the output saturation.

When used in concert with PL.INTINMAX, this variable allows you to make the position loop integrator effective near the target position. Far from the target position, however, the integrator is not dominant in the loop dynamics.

Related Topics

PL.ERR (pg 405) | PL.ERRFTHRESH (pg 406) | PL.ERRMODE (pg 408) | PL.ERRWTHRESH (pg 409)

1 Position Loop

38.11 PL.KI

General Information			
Туре	NV Parameter		
Description	Sets the integral gain of the position		
Description	loop.		
Units	Hz		
Range	0 to 250 Hz		
Default	0 Hz		
Value			
Data Type	Float		
See Also	PL.KP, PL.KD		
Start Version	M_01-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3480h/0	M 01-00-00-000
CANopen	34001/0	W_01-00-00-000

Description

PL.KI sets the integral gain of the position regulator PID loop.

Related Topics

PL.ERR (pg 405) | PL.ERRFTHRESH (pg 406) | PL.ERRMODE (pg 408) | PL.ERRWTHRESH (pg 409)

1 Position Loop

38.12 PL.KP

General Information	
Туре	NV Parameter

General Information			
Description	Sets the proportional gain of the position regulator PID		
Description	loop.		
Units	(rev/s)/rev		
Range	0 to 2,147,483.008 (rev/s)/rev		
Default	100 rps/rev		
Value			
Data Type	Float		
See Also	PL.KI (pg 415),		
Start Version	M_01-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	2542b/0	M 01 00 00 000
CANopen	3542h/0	M_01-00-00-000

PL.KP sets the proportional gain of the position regulator PID loop.

Related Topics

PL.ERR (pg 405) | PL.ERRFTHRESH (pg 406) | PL.ERRMODE (pg 408) | PL.ERRWTHRESH (pg 409)

1 Position Loop

39 REC Parameters

This section describes the REC parameters.

39.1 REC.ACTIVE
39.2 REC.CH1 to REC.CH6418
39.3 REC.DONE
39.4 REC.GAP
39.5 REC.NUMPOINTS
39.6 REC.OFF
39.7 REC.RECPRMLIST
39.8 REC.RETRIEVE
39.9 REC.RETRIEVEDATA
39.10 REC.RETRIEVEFRMT
39.11 REC.RETRIEVEHDR
39.12 REC.RETRIEVESIZE
39.13 REC.STOPTYPE
39.14 REC.TRIG
39.15 REC.TRIGPARAM
39.16 REC.TRIGPOS
39.17 REC.TRIGPRMLIST
39.18 REC.TRIGSLOPE
39.19 REC.TRIGTYPE
39.20 REC.TRIGVAL

39.1 REC.ACTIVE

General Information		
Туре	R/O Parameter	
Description	Indicates if data recording is in progress (act- ive).	
Units	N/A	
Range	0 to 1	
Default Value	N/A	
Data Type	Integer	
See Also	REC.DONE (pg 419), REC.OFF (pg 420)	
Start Version	M_01-00-000	

Description

REC.ACTIVE indicates whether or not data recording is in progress. Recording is in progress if the trigger was met and the recorder is recording all data.

Related Topics

Scope (pg 79)

39.2 REC.CH1 to REC.CH6

General Information	
Туре	R/W Parameter
Description	Sets recording channels 1 to
Description	6.
Units	N/A
Range	N/A
	CH1 = IL.FB
	CH2 = IL.CMD
Default	CH3 = VL.FB
Value	CH4 = Empty
	CH5 = Empty
	CH6 = Empty
Data Type	String
See Also	REC.TRIG (pg 426)
Start Version	M_01-00-000

Description

REC.CHx specifies the recording channels.

There are 3 options to set the recording channels values:

- Set 0, CLR, or CLEAR. This setting clears the recording channel.
- Set one of the recordable commands. The list of recordable commands can be obtain by executing REC.RECPRMLIST (pg 421).
- Set an internal value or variable of the drive (same as for DRV.MEMADDR (pg 277) input).

Related Topics

Scope (pg 79)

39.3 REC.DONE

General Information	
Туре	R/O Parameter
Description	Checks whether or not the recorder has finished record-
	ing.
Units	N/A
Range	0 to 1
Default	N/A
Value	
Data Type	Integer
See Also	REC.ACTIVE, REC.OFF
Start Version	M_01-00-000

Description

REC.DONE indicates that the recorder has finished recording. This value is reset to 0 when the recorder trigger is set. The drive also resets this value when the recording has finished or when REC.OFF is executed.

Related Topics

Scope (pg 79)

39.4 REC.GAP

General Information		
Туре	R/W Parameter	
Description	Specifies the gap between consecutive samples.	
Units	N/A	
Range	1 to 65,535	
Default	1	
Value		
Data Type	Integer	

General Information		
See Also	REC.TRIG (pg 426)	
Start Version	M_01-00-000	

REC.GAP specifies the gap between consecutive samples. The recording base rate is 16 kHz, thus a gap of 1 means that a sample is recorded every $62.5 \,\mu$ s.

Related Topics

Scope (pg 79)

39.5 REC.NUMPOINTS

General Information	
Туре	R/W Parameter
Description	Sets the number of points to record.
Units	N/A
Range	1 to 65,535
Default Value	1,000
Data Type	Integer
See Also	REC.TRIG (pg 426)
Start Version	M_01-00-00-000

Description

REC.NUMPOINTS specifies the number of points (samples) to record.

Related Topics

Scope (pg 79)

39.6 REC.OFF

General Information		
Туре	R/W Parameter	
Description	Turns the recorder OFF.	
Units	N/A	
Range	N/A	
Default	N/A	
Value		
Data Type	N/A	
See Also	REC.ACTIVE,	
000 A180	REC.DONE	
Start Version	M_01-00-00-000	

REC.OFF turns the recorder off. In order to set the recorder again, the recorder must first be armed and then a trigger set.

Related Topics

Scope (pg 79) REC.READY

39.7 REC.RECPRMLIST

General Information	
Туре	R/O Parameter
Description	Reads the list of recordable para- meters.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	REC.CH1 to REC.CH6 (pg 418)
Start Version	M_01-00-00-000

Description

This command returns the list of recordable parameters. You can use a recordable parameter as an input to any of the recording channels.

Note that an internal address or a registered variable can be used as input to any of the channels in addition to the list.

Related Topics

Scope (pg 79)

39.8 REC.RETRIEVE

General Information		
Туре	R/O Parameter	
Description	Transfers all the recorded data to the communication chan- nel.	
Units	N/A	
Range	N/A	
Default	N/A	
Value		
Data Type	String	

General Information	
See Also	N/A
Start Version	M_01-00-000

REC.RETRIEVE causes the drive to transfer all the recorded data to the communication channel.

Example

The following format is the retrieve reply format (for N samples, G sample gap, and M parameters, where M<=6):

```
Recording
<N>,<G>
<parameter name 1> ... <parameter name M>
Value11 ... Value1M
Value N1 ... ValueNM
```

Related Topics

Scope (pg 79)

39.9 REC.RETRIEVEDATA

General Information	
Туре	R/W Parameter
Description	Retrieves the recorded data without the header.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	REC.RETRIEVE, REC.RETRIEVEHDR, REC.RETRIEVESIZE
Start Version	M_01-00-000

Description

REC.RETRIEVEDATA retrieves a section of recorded data according to REC.RETRIEVESIZE from the received index; if no index is received, the drive retrieves the data from next section. An index is supplied to enable multiple retrieves and to give better control on the buffer in case of overflow. If no index or a negative value is present, then the index is ignored.

EWV¹ uses this parameter to retrieve the data continuously for real time recoding.

The size of the data returned by this command depends on the number set by REC.RETRIEVESIZE.

Use REC.RETRIEVE for complete recording information view.

Notes:

¹Embedded Workbench Views

- If REC.RETRIEVESIZE is larger than the buffer size, then it simply returns the whole buffer (no error).
- If the index is received, the data will be continuously returned starting from the given index (default starting index is 0).
- If the index is out of the bounds of the buffer, then it will be ignored.
- If recorder is active and REC.STOPTYPE==0, then this parameter returns an error.
- If REC.STOPTYPE==1, then this parameter returns the next section of data in the buffer (even if it reached the end of the buffer, it will return to the beginning of the buffer and add the data from index 0.)
- If REC.STOPTYPE==1 and the retrieve is too slow (gets overrun by the recorder), an overflow error message is returned instead of the retrieved data.
- If REC.STOPTYPE==0 and no index is received, continuously send the sections of data until the end of the buffer is reached. Then, return to the beginning of buffer and continue.
- A new REC.TRIG (pg 426) command automatically sets the index to 0.

Example

The following example retrieves data from index 100 in the size of 10 (hence places 100 to 109 in the buffer)

```
REC.NUMPOINTS 1000
REC.RETRIVESIZE 10
REC.TRIG
REC.RETRIEVEDATA 100
```

Related Topics

Scope (pg 79)

39.10 REC.RETRIEVEFRMT

General Infor	General Information	
Туре	R/W Parameter	
Description	Sets the format for recorded data output.	
Units	N/A	
Range	0 to 1; 0 = Standard format, 1 = Internal format (high speed)	
Default	1	
Value		
Data Type	Integer	
See Also	REC.RETRIEVE (pg 421), REC.RETRIEVEDATA (pg	
	422)	
Start Version	M_01-00-000	

Description

Recorded data is transferred to the communication channel in one of two formats: standard or internal high speed. The standard (slower) format cannot be used for continuous recording, but is more easily read. The high speed format allows continuous data recording (needed for autotuning). <u>EWV</u>¹ supports both formats.

Example

The following recorder data is in standard format:

```
10,1
IL.FB,VL.CMD,VL.FB
-0.086,0.000,2.661
0.000,0.000,3.605
0.029,0.000,-0.486
```

The following recorder data is in internal format:

```
10,1
IL.FB,VL.CMD,VL.FB
F3-0x56,F30x0,F30xA65
F30x0,F30x0,F30xE15
F30x1D,F30x0,F3-0x1E6
```

Related Topics

Scope (pg 79)

39.11 REC.RETRIEVEHDR

General Inform	General Information	
Туре	R/O Parameter	
Description	Retrieves the recorded header without the	
Description	data.	
Units	N/A	
Range	N/A	
Default	N/A	
Value		
Data Type	N/A	
See Also	REC.RETRIEVE, REC.RETRIEVEDATA	
Start Version	M_01-00-00-000	

Description

This command retrieves the recorded header without the data of the recording.

<u>EWV</u>² uses this parameter to retrieve the header once before continuously reading the data for RT recoding.

Use REC.RETRIEVE for complete recording information view.

Related Topics

¹Embedded Workbench Views

²Embedded Workbench Views

Scope (pg 79)

39.12 REC.RETRIEVESIZE

General Inform	General Information		
Туре	R/W Parameter		
Description	Sets the number of samples that REC.RETRIEVEDATA		
Description	returns.		
Units	recorder samples		
Range	0 to 65,535 recorder samples		
Default	1,000 recorder samples		
Value			
Data Type	Integer		
See Also	REC.RETRIEVEDATA (pg 422), REC.RETRIEVEHDR (pg		
	424)		
Start Version	M_01-00-000		

Description

This parameter sets the number of samples that REC.RETRIEVEDATA (pg 422) returns.

<u>EWV</u>¹ also uses this parameter to set the number of samples returned when retrieving the data continuously for RT recoding.

Use REC.RETRIEVE (pg 421) for the complete recording information view.

Related Topics

Scope (pg 79)

39.13 REC.STOPTYPE

General Information	
Туре	R/W Parameter
Description	Sets the recorder stop type.
Units	N/A
Range	0 or 1
Default	0
Value	0
Data Type	Integer
See Also	REC.RETRIEVEDATA,
	REC.RETRIEVESIZE
Start Version	M_01-00-000

Description

¹Embedded Workbench Views

This parameter sets the stop type for the recording.

0 = Recorder fills in the buffer once.

1 = Recorder runs, continuously filling the recording circular buffer.

To stop RT recording, execute REC.OFF.

Related Topics

Scope (pg 79)

39.14 REC.TRIG

General Information		
Туре	Command	
Description	Triggers the recorder.	
Units	N/A	
Range	N/A	
Default	N/A	
Value		
Data Type	N/A	
See Also	REC.RETRIEVE,	
	REC.OFF	
Start Version	M_01-00-00-000	

Description

REC.TRIG starts the trigger according to the trigger type defined by REC.TRIGTYPE.

REC.TRIG sets the value of REC.DONE to 0.

After calling REC.TRIG, the data that was recorded by previous recording is deleted and cannot be retrieved.

No REC parameters can be set after a call to REC.TRIG until the recorder has finished or until REC.OFF is executed.

Related Topics

Scope (pg 79)

39.15 REC.TRIGPARAM

General Information	
Туре	R/W Parameter
Description	Sets the parameter that triggers the
	recorder.
Units	N/A
Range	N/A

General Information	
Default	IL FB
Value	
Data Type	String
See Also	REC.TRIG
Start Version	M_01-00-00-000

REC.TRIGPARAM sets the parameter on which the recorder triggers.

This parameter is only used when REC.TRIGTYPE = 2.

Input values are:

- One of the set drive parameters list that can be set as a trigger. The available parameters for trigger are: PL.ERR (pg 405), PL.CMD, PL.FB, VL.CMD, VL.FB, IL.CMD, and IL.FB.
- 2. Internal value or variable of the drive (same as for DRV.MEMADDR input).

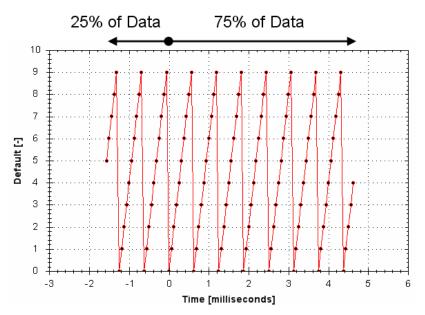
Related Topics

Scope (pg 79)

39.16 REC.TRIGPOS

General Information		
Туре	R/W Parameter	
Description	Sets the trigger position in the recording buffer.	
Units	%	
Range	1 to 100%	
Default	10%	
Value		
Data Type	Integer	
See Also	REC.TRIG (pg 426), REC.NUMPOINTS (pg	
000 4130	420)	
Start Version	M_01-00-000	

Description


REC.TRIGPOS sets the trigger position in the recording buffer. The recording buffer size is defined by REC.NUMPOINTS. The input value is a percentage of the buffer (that is, a value of 25 means saving 25% of the buffer data before the trigger occurs and 75% after it occurs). This parameter is only used when REC.TRIGTYPE = 2 or 3.

Trigger Position

Trigger position (REC.TRIGPOS) allows you to collect data that occurs before the trigger occurs. In some instances, you may want to see the conditions prior to the trigger. Trigger position lets you control how much signal is collected before the trigger condition occurred.

Trigger position is specified in units of percent (%). If you specify a trigger position of x%, then x% of the data is before 0 ms in the data time and 100-x% (the rest of the data) is at or greater than 0 ms. In the figure below, the trigger position is set to 25% (REC.TRIGPOS 25).

In the <u>EWV¹</u> scope, the 0 time point is clear. When collecting the data using REC.RETRIEVE or similar commands, the time is not returned, so some caution should be used when the trigger point is important to understand.

Related Topics

Scope (pg 79)

39.17 REC.TRIGPRMLIST

General Information		
Туре	R/O Parameter	
Description	Reads the list of possible trigger para- meters.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	N/A	
See Also	REC.TRIGPARAM	
Start Version	M_01-00-00-000	

Description

¹Embedded Workbench Views

This command returns the list of trigger parameters. Each one of those parameters can serve as the trigger parameter (input to REC.TRIGPARAM).

Note that an internal address or a registered variable can be used as input to REC.TRIGPARAM in addition to the list that this parameter returns.

Related Topics

Scope (pg 79)

39.18 REC.TRIGSLOPE

General Inform	General Information		
Туре	R/W Parameter		
Description	Sets the trigger slope.		
Units	0 = Negative		
Onits	1 = Positive		
Range	0 to 1		
Default	0		
Value	0		
Data Type	Integer		
See Also	REC.TRIG,		
000 /180	REC.NUMPOINTS		
Start Version	M_01-00-00-000		

Description

REC.TRIGSLOPE sets the recorder trigger slope. This parameter is only used when REC.TRIGTYPE = 2 or 3.

Related Topics

Scope (pg 79)

39.19 REC.TRIGTYPE

General Info	General Information	
Туре	R/W Parameter	
Description	Sets the trigger type.	
Units	0 = immediate	
	1 = command	
	2 = parameter	
	3 = boolean	
Range	0 to 2	
Default	0	
Value	х Халан ал	

General Information	
Data Type	Integer
See Also	REC.TRIG (pg 426), REC.TRIGPARAM, REC.TRIGVAL, REC.TRIGSLOPE REC.TRIGPOS
Start Ver- sion	M_01-00-000

REC.TRIGTYPE sets the type of trigger.

Input values are as follows:

Value	Description
0	Recording starts immediately
1	Recording starts on the next command executed through the TCP/IP. The trigger location in the buffer is set according to REC.TRIGPOS.
2	Recording starts per the values of REC.TRIGPARAM, REC.TRIGVAL, REC.TRIGSLOPE, and REC.TRIGPOS.
3	Recording starts when the value of REC.TRIGPARAM is 0 for REC.TRIGSLOPE = 0 or 1 for REC.TRIGSLOPE = 1

Related Topics

Scope (pg 79)

39.20 REC.TRIGVAL

General Information				
Туре	R/W Parameter			
Description	Sets the trigger value.			
Units	The units of the parameter are chosen according to the unit type.			
Range	0 to 2			
Default Value	0			
Data Type	Integer			
See Also	REC.TRIG (pg 426), REC.TRIGPARAM, REC.TRIGVAL, REC.TRIGSLOPE, REC.TRIGPOS			
Start Ver- sion	M_01-00-000			

Description

REC.TRIGVAL is the value that must be met by REC.TRIGPARAM for the trigger to occur. The units of this parameter are set according to the units of REC.TRIGPARAM.

Related Topics

Scope (pg 79)

40 **REGEN Parameters**

This section describes the REGEN parameters.

40.1	REGEN.POWER	432
40.2	REGEN.POWERFILTERED	432
40.3	REGEN.REXT	433
40.4	REGEN.TEXT	433
40.5	REGEN.TYPE	
40.6	REGEN.WATTEXT	

40.1 REGEN.POWER

General Information				
Туре	R/O parameter			
Description	Reads regen resistor's calculated power.			
Units	Watt			
Range	N/A			
Default Value	N/A			
Data Type	Integer			
See Also	N/A			
Start Version	M_01-00-00-000			

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3416h/0	M_01-00-00-000

Description

This parameter reads regen resistor's calculated power, which is determined as follows:

(V 2 / R) * DutyCycle

Related Topics

5.4 Regeneration

40.2 REGEN.POWERFILTERED

General Information				
Туре	R/O parameter			
Description	Returns a filtered version of REGEN.POWER.			
Units	Watt			
Range	0 to REGEN.WATTEXT			
Default	0			
Value				
Data Type	Integer			
Start Ver-	M 01-07-01-000			
sion	-			

Description

This parameter returns a filtered value of REGEN.POWER. A single order lowpass of 1/REGEN.TEXT Hz is applied to generate REGEN.POWERFILTERED.

If REGEN.POWERFILTERED exceeds the value of REGEN.WATTEXT, Fault 521 (Regen overpower) will be generated.

This keyword may be recorded in the scope screen for analysis.

Example

REGEN.TEXT = 10 (seconds) Lowpass Filter Frequence = 1/10 seconds = 0.1 Hz REGEN.POWERFILTERED = REGEN.POWER * 0.1Hz lowpass

Related Topics

REGEN.POWER (pg 432) | REGEN.TEXT (pg 433) | REGEN.WATTEXT (pg 435)

40.3 REGEN.REXT

General Information		
Туре	NV Parameter	
Description	Sets the external, user-defined regen resistor res-	
'	istance.	
Units	Ω	
Range	0 to 255 Ω	
Default	0Ω	
Value	• 11	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-000	
Fieldbus	Index/Subindex Object Start Version	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	25C2b/0	M 01-00-00-000
CANopen	35C2h/0	W_01-00-00-000

Description

REGEN.REXT sets the external user-defined regen resistor resistance. This variable is needed for the regen resistor temperature estimation algorithm.

Related Topics

5.4 Regeneration

40.4 REGEN.TEXT

General Information		
Туре	R/W Parameter	
Description	Sets the external regen resistor thermal protection time con- stant.	
Units	Seconds	
Range	0.1 to 1,200 Seconds	
Default Value	100 Seconds	

General Information				
Data Type	Float			
See Also	REGEN.WATT	EXT (pg 435), RE	GEN.REXT (pg 433)	
Start Version	M_01-00-000			
Fieldbus Inc		Index/Subindex	Object Start Version	
EtherCAT COE and		3415h/0	M 01-00-00-000	
CANopen		01101/0	WI_01-00-00-000	

REGEN.TEXT is the time-to-fault when input power steps from 0 to 150% of REGEN.WATTEXT. REGEN.TEXT sets the thermal time constant of the algorithm used to protect the regeneration resistor from overheating and failing. The drive's regen resistor protection algorithm continuously calculates the power dissipated in the resistor and processes that power value through a single pole low pass filter to model the regen resistor's thermal inertia. When the filtered regen power on the output of the filter (REGEN.POWERFILTERED) exceeds REGEN.WATTEXT, a fault occurs. REGEN.TEXT sets the time constant of this thermal inertial filter = (REGEN.TEXT/1.1).

REGEN.TEXT can often be found directly on power resistor data sheets. On the data sheet find the peak overload curve and then find the safe allowed time to be at 150% of the regen resistor's continuous power rating. Set REGEN.TEXT to this value in seconds. Another way regen resistor peak overload capability is often specified is by giving the energy rating in joules of the resistor. If you have the energy rating joule limit E then:

REGEN.TEXT = (1.1)*((E in joules)/REGEN.WATTEXT)

Example

The external regen resistor is rated for 250 W continuous, is 33 ohm, and has a joule rating of 500 joules. To use this resistor, the drive settings become:

REGEN.TYPE = -1 (External Regen) REGEN.REXT = 33 REGEN.WATTEXT = 250 REGEN.TEXT = (1.1)*(500 j)/(250 W) = 2.2 sec

Related Topics

5.4 Regeneration

40.5	REGEN	.TYPE
------	-------	-------

General Information	
Туре	NV Parameter
Function	Sets the regen resistor type.
WorkBench Location (Screen/Dialog	Power/Regen Resistor
Box)	Туре

General Information		
Units	N/A	
Range	-1 to 0	
Default Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3412h/0	M 01-00-00-000
CANopen	34121/0	WI_01-00-00-000

You can specify a user-defined external regen resistor, select an internal regen resistor, or choose from a list of predefined regen resistors. The values for REGEN.TYPE are shown below:

Туре	Description
1	External user-defined regen res-
-1	istor
0	Internal regen resistor

If you specify a user-defined regen resistor, then you must also define this resistor's resistance (REGEN.REXT), heatup time (REGEN.REXT), and power (REGEN.WATTEXT).

Related Topics

5.4 Regeneration

40.6 REGEN.WATTEXT

General Information		
Туре	R/W parameter	
Description	Sets the regen resistor's power fault level for an external regen res- istor.	
Units	W	
Range	0 to 62,000 W	
Default Value	1000 W	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3414h/0	M 01-00-00-000
CANopen	34141/0	M_01-00-00-000

Sets the regen resistor's power fault level for an external regen resistor (when REGEN.TYPE = -1). Above this fault level, the regen resistor's PWM will be 0 and a fault will be issued.

Related Topics

5.4 Regeneration

41 S3 Parameters

This section describes the $\operatorname{sercos}^{\mathbb{R}}$ III parameters.

41.1	S3.ADDRESS	
------	------------	--

41.1 S3.ADDRESS

General Information		
Туре	NV Parameter	
Description	Sets and reads the sercos [®] slave address.	
Units	N/A	
Range	0 to 511	
Default Value	1	
Data Type	Integer	
Start Version	M_01-09-03-000	

Description

Sets and reads the sercos $^{\mathbb{R}}$ slave address.

42 SD Commands

This section describes commands for SD Card functions.

42.1	SD.LOAD	440
42.2	SD.SAVE	440
42.3	SD.STATUS	441

42.1 SD.LOAD

General Information		
Туре	Command	
Description	Loads the drive state (BASIC program and NV parameters) from the SD card to the AKD PDMM (AKD PDMMs equipped with IO option card only).	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	N/A	
Start Ver- sion	M_01-06-03-000	

Description

SD.LOAD will load the drive state from the SD card (if one exists) to the AKD PDMM. The files loaded to the drive include the BASIC binary file (program.bin) and the NV parameter file (drive.akd). These files must have these exact names or the drive will not recognize them.

Note that this command can only be executed when the drive is in the idle state (i.e. a program is not running) and the drive is disabled.

If a computer is not connected to the drive, the SD.LOAD command can also be issued using the rotary switches S1 and S2.

To load the SD drive state onto the AKD PDMM:

- 1. Set S1 to position 1
- 2. Set S2 to position 0
- 3. Hold down the B1 button on the top of the drive for 5 seconds.

NOTE While the load operation is completing the LED display will flash **Sd**. If an error occurs, the letter E followed by three numbers will flash on the display. See for a description of SD Errors.

Related Topics

SD.SAVE (pg 440)

42.2 SD.SAVE

General Information		
Туре	Command	
Description	Saves the drive state (BASIC program and NV parameters) to the SD card (AKD PDMMs equipped with IO option card only).	
Units	N/A	
Range	N/A	

General Information		
Default	N/A	
Value		
Data Type	N/A	
Start Ver-	M 01-06-03-000	
sion	101-00-03-000	

SD.SAVE will copy the state of a BASIC drive to the SD card (if one exists). The state of the drive consists of the BASIC binary file and NV parameters. Before an SD.Save is performed, the drive will perform a DRV.NVLOAD and return all of the drive parameters to their NV state. The DRV.NVLOAD is necessary in order to capture the NV parameter states for the parameter file(drive.akd). The files saved to the SD card include the BASIC binary file (program.bin) and the NV parameter file (drive.akd). In order for a drive to recognize and load these files, they must be named program.bin and drive.akd.

NOTE

This command can only be executed when the drive is in the idle state (i.e. a program is not running) and the drive is disabled.

If a computer is not connected to the drive, the SD.SAVE command can also be issued using the rotary switches S1 and S2.

To save the drive state onto the SD card using rotary switches:

- 1. Set S1 to position 1
- 2. Set S2 to position 1
- 3. Hold down the B1 button on the top of the drive for 5 seconds.

NOTE While the load operation is completing the LED display will flash **Sd**. If an error occurs, the letter E followed by three numbers will flash on the display. See for a description of SD Errors.

Related Topics

SD.LOAD (pg 440)

42.3 SD.STATUS

General Information		
Туре	R/O	
Description	Reads the status of the SD card.	
Units	N/A	
Range	0 to 2	
Default Value	0	
Data Type	Integer	
Start Version	M_01-06-03-000	

This parameter reads the status of the SD card.

Status	Description
0	Ready – an SD card is inserted into the drive and you can read and write to it.
1	Read Only – an SD card is inserted into the drive and the write protection tab on the card pro- hibits writes.
2	Not Inserted – an SD card is not inserted into the drive.

Related Topics

SD.LOAD (pg 440) | SD.SAVE (pg 440)

43 SM Parameters

This section describes the SM parameters.

43.1	SM.I1	
43.2	SM.I2	
43.3	SM.MODE	445
43.4	SM.MOVE	447
43.5	SM.T1	447
43.6	SM.T2	448
43.7	SM.V1	
43.8	SM.V2	

43.1 SM.I1

General Info	ormation	
Туре	NV Parameter	
Description	Sets service motion current 1; active in opmode 0 (torque) only.	
Units	A	
Range	-Drive peak current to +Drive peak current	
Default Value	0.025 · Drive peak current	
Data Type	Float	
See Also	SM.ACCTYPE, SM.I2, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1, SM.V2, SM.VPM1, SM.VPM2	
Start Ver- sion	M_01-00-000	

Description

SM.I1 defines the current that is used in service motion modes 0 and 1 (see SM.MODE (pg 445)).

Related Topics

0.1 Service Motion

43.2 SM.I2

General Information		
Туре	NV Parameter	
Description	Sets service motion current 2; active in opmode 0 (torque) only.	
Units	A	
Range	-Drive peak current to +Drive peak current	
Default Value	0.025 · Drive peak current	
Data Type	Float	
See Also	SM.ACCTYPE, SM.I1, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1, SM.V2, SM.VPM1, SM.VPM2	
Start Ver- sion	M_01-00-000	

Description

SM.I2 defines the current that is used in service motion mode 1 (see SM.MODE (pg 445)).

Related Topics

0.1 Service Motion

43.3 SM.MODE

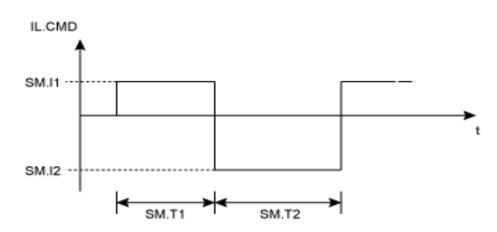
General Information		
Туре	NV Parameter	
Description	Sets the service motion mode.	
Units	N/A	
Range	0 to 2	
Default Value	0	
Data Type	Integer	
See Also	SM.11 (pg 444), SM.12 (pg 444), SM.MOVE (pg 447), SM.T1 (pg 447) SM.T2 (pg 448), SM.V1 (pg 448), SM.V2 (pg 450), DRV.ACC (pg 246)DRV.DEC (pg 253)	
Start Ver- sion	M_01-01-00-000	

Description

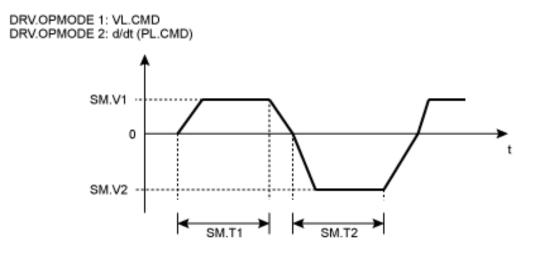
SM.MODE defines the mode of service motion for each loop. Two types of service motion are available :

- A constant motion in one direction (endless or for a certain amount of time).
- An alternating motion.

The possible modes for this parameter are described in the following table:


SM.MOD E	Description	Requirements
0	 Constant motion in closed current loop mode of operation. DRV.OPMODE 0: The drive generates a constant current command value (SM.I1) for a certain amount of time (if SM.T1>0) or endless (if SM.T1=0). The drive will not generate any ramps in this mode of operation. DRV.OPMODE 1 or 2: The drive generates a constant velocity command value (SM.V1) for a certain amount of time (if SM.T1>0) or endless (if SM.T1=0). The drive generates acceleration and deceleration ramps according to the DRV.ACC and DRV.DEC setting in this mode of operation. The service motion can be stopped by using the DRV.STOP command. 	DRV.OPMODE = 0,1, or 2 DRV.CMDSOUR- CE = 0

SM.MOD· E	Description	Requirements
1	 DRV.OPMODE 0: The drive generates a current command value (SM.11) for a certain amount of time (SM.T1). After- wards the drive generates a current command value (SM.12) for another certain amount of time (SM.T2). This sequence is repeated as long as a DRV.STOP command occurs. The drive will not generate any ramps in this mode of operation. DRV.OPMODE 1 or 2: The drive generates a velocity command value (SM.V1) for a certain amount of time (SM.T1). After- wards the drive generates a velocity command value (SM.V2) for another certain amount of time (SM.T2). This sequence is repeated as long as a DRV.STOP command occurs. The drive will gen- erate an acceleration and deceleration ramps according to the DRV.ACC and DRV.DEC setting in this mode of operation. 	DRV.OPMODE = 0, 1, or 2 DRV.CMDSOUR- CE = 0
2	This mode executes the same service motion as mode 0. However, the motion is described by SM.I2, SM.T2 and SM.V2. This enables a change on the fly and is mostly used under fieldbus control.	DRV.OPMODE = 0, 1, or 2 DRV.CMDSOUR- CE = 0


Ramps

The drive uses DRV.ACC and DRV.DEC for the ramps in DRV.OPMODE 1 (closed velocity) and 2 (closed position). The drive does not generate any ramps in service motion mode 0 and 1.

Service Motion for DRV.OPMODE 0 and SM.MODE 1

Service motion for DRV.OPMODE 1 or 2 and SM.MODE 1

The deceleration process from SM.V1 or SM.V2 to 0 is not included in SM.T1 and SM.T2, respectively. SM.T1 and SM.T2 start as soon as the command value has reached the velocity 0.

Related Topics

0.1 Service Motion

43.4 SM.MOVE

General Information		
Туре	Command	
Description	Starts the service motion.	
Units	N/A	
Range	N/A	
Default	N/A	
Value		
Data Type	N/A	
See Also	SM.MODE	
Start Version	M_01-00-00-000	

Description

This command starts the service motion that has been selected by the SM.MODE parameter.

Related Topics

0.1 Service Motion

43.5 SM.T1

General Information	
Туре	NV Parameter

General Information		
Description	Sets the service motion time 1.	
Units	ms	
Range	0 to 65,535 ms	
Default	500 ms	
Value	300 ms	
Data Type	Integer	
See Also	SM.I1, SM.I2, SM.MODE, SM.MOVE, SM.T2, SM.V1, SM.V2, SM.VPM1, SM.VPM2	
Start Version	M_01-00-000	

SM.T1 defines the time of the service motion that is used in all service motion modes (see SM.MODE). For an alternating service motion mode, SM.T1 may not be set to 0.

Related Topics

0.1 Service Motion

43.6 SM.T2

General Infor	General Information		
Туре	NV Parameter		
Description	Sets the service motion time 2.		
Units	ms		
Range	0 to 65,535 ms		
Default	500 ms		
Value			
Data Type	Integer		
See Also	SM.I1, SM.I2, SM.MODE, SM.MOVE, SM.T1, SM.V1, SM.V2, SM.VPM1, SM.VPM2		
Start Version	M_01-00-000		

Description

SM.T2 defines the time of the service motion that is used in service motion modes 1, 3, and 5 (see SM.MODE).

Related Topics

0.1 Service Motion

43.7 SM.V1

General Information		
Type NV Parameter		
Description	Sets service motion velocity 1; active in opmode 1 (velocity) and 2 (position).	

General Information		
	Depends on or	
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s	
	Linear: Counts/s, mm/s, µm/s, custom units/s	
	Rotary:	
	-15,000.000 to 15,000.000 rpm	
	-250.000 to 250.000 rps	
	-90,000.000 to 90,000.000 deg/s	
	-1,250.000 to 1,250.000 custom units/s	
Range	-1,570.796 to 1,570.796 rad/s	
i tungo	Linear:	
	-1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s	
	-250.000*MOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s	
	-250,000.000*MOTOR.PITCH (pg 392) to 250,000.000*MOTOR.PITCH (pg 392)	
	μm/s	
	-1,250.000 to 1,250.000 custom units/s	
	Rotary:	
	60.000 rpm	
	1.000 rps	
	359.999 deg/s	
Default	5.000 custom units/s	
Value	6.283 rad/s	
	Linear:	
	0.001 Counts/s	
	1.000*MOTOR.PITCH (pg 392) mm/s	
	999.998*MOTOR.PITCH (pg 392) µm/sec	
	5.000 custom units/s	
Data Type	Float	
See Also	SM.I1, SM.I2, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V2	
Start Version M_01-00-000		

SM.V1 defines the velocity that is used in service motion modes 0 and 1 (see SM.MODE (pg 445)) in the closed velocity and position mode of operation.

Related Topics

0.1 Service Motion

43.8 SM.V2

TypeNV ParameterDescriptionSets service motion velocity 2; active in opmode 1 (velocity) and 2 (position).UnitsDepends on orUnitsRotary: rpm, rps, deg/s, custom units/s, rad/sLinear: counts/s, mm/s, µm/s, custom units/sRatary:-15,000.000 to 15,000.000 rpm-250.000 to 250.000 rps-90,000.000 to 90,000 custom units/s-1,250.000 to 1,250.000 custom units/s-1,570.796 to 1,570.796 rad/sLinear:-1,073.741.824,000.000 to 1,073,741,824,000.000 counts/s-250.000*MOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s-250.000 to 1,250.000 custom units/s-1,070.796 to 1,570.796 rad/sLinear:-1,073,741.824,000.000 to 1,073,741,824,000.000 counts/s-250.000 mOTOR.PITCH (pg 392) to 250,000*MOTOR.PITCH (pg 392) mm/s-250.000 to 1,250.000 custom units/s-250.000 to 1,250.000 custom units/s-1,070 mp-359.999 deg/s-5.000 custom units/s-5.000 custom units/s-6.000 rpm-1.000 rps-359.999 deg/s-5.000 custom units/s-5.000 custom units/s-6.283 rad/sLinear:-0.011 counts/s-1.00*MOTOR.PITCH (pg 392) µm/sec-5.000 custom units/s-999.998*MOTOR.PITCH (pg 392) µm/sec-5.000 custom units/s-1.00*MOTOR.PITCH (pg 392) µm/sec-5.000 custom units/s-1.00*MOTOR.PITCH (pg 392) µm/sec-5.000 custom units/s-1.00*MOTOR.PITCH (pg 392) µm/sec-5.000 custom units/s-1.00	General Information			
Depends on or Units Rotary: rpm, rps, deg/s, custom units/s, rad/s Linear: counts/s, mm/s, µm/s, custom units/s Rotary:	Туре	NV Parameter		
UnitsRotary: rpm, rps, deg/s, custom units/s, rad/s Linear: counts/s, mm/s, µm/s, custom units/sRotary:-15,000.000 to 15,000.000 rpm-250.000 to 250.000 rps-90,000.000 to 90,000.000 deg/s-1,570.796 to 1,570.796 to 1,570.796 rad/s Linear:-1,570.796 to 1,570.796 to 1,073,741,824,000.000 counts/s-250.000*MOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s-250.000 to 1,250.000 custom units/s-1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s-250.000*MOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s-250.000 to 1,250.000 custom units/s-1,250.000 to 1,250.000 custom units/s-1,250.000 to 1,250.000 custom units/s-1,250.000 to 1,250.000 custom units/s-1,250.000 to 1,250.000 custom units/s-1,000 rpm-1,000 rpm-1,000 rps-359.999 deg/s-5.000 custom units/s-5.000 custom units/s-6.283 rad/s Linear:-0.001 counts/s-1.00*MOTOR.PITCH (pg 392) mm/s-99.998*MOTOR.PITCH (pg 392) mm/s-99.998*MOTOR.PITCH (pg 392) mm/sec-5.000 custom units/s-1.00*MOTOR.PITCH (pg 392) mm/sec-5.000 custom units/s	Description	Sets service motion velocity 2; active in opmode 1 (velocity) and 2 (position).		
Linear: counts/s, mm/s, µm/s, custom units/s Rotary: -15,000.000 to 15,000.000 rpm -250.000 to 250.000 rps -90,000.000 to 1,250.000 custom units/s -1,250.000 to 1,250.000 custom units/s -1,570.796 to 1,570.796 rad/s Linear: -1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s -250.000*MOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s -250.000 to 1,250.000 custom units/s -1,550.000 to 1,250.000 custom units/s -250.000 mOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s -250.000 to 1,250.000 custom units/s -1,250.000 to 1,250.000 custom units/s -1,50.000 to 1,250.000 custom units/s -1,250.000 to 1,250.000 custom units/s -1,000 rpm -1.000 rps -359.999 deg/s -5.000 custom units/s -6,283 rad/s Linear: -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) mm/s -999.98*MOTOR.PITCH (pg 392) mm/s -999.98*MOTOR.PITCH (pg 392) mm/s -999.98*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s Data Type Float		Depends on or		
Rotary: -15,000.000 to 15,000.000 pm -250.000 to 250.000 ps -90,000.000 to 90,000.000 deg/s -1,250.000 to 1,250.000 custom units/s -1,250.000 to 1,570.796 rad/s Linear: -1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s -250,000*MOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s -250,000.000*MOTOR.PITCH (pg 392) to 250,000.000*MOTOR.PITCH (pg 392) µm/s -1,250.000 to 1,250.000 custom units/s -250,000 to 1,250.000 custom units/s -250,000 to 1,250.000 custom units/s -250,000 to 1,250.000 custom units/s -1,250.000 to 1,250.000 custom units/s -1,250.000 to 1,250.000 custom units/s -250,000 to 1,250.000 custom units/s -1,250.000 to 1,250.000 custom units/s -1,250.000 to 1,250.000 custom units/s -1,250.000 to 1,250.000 custom units/s -250,000 custom units/s -359.999 deg/s -5.000 custom units/s -5.000 custom units/s -1.000*MOTOR.PITCH (pg 392) mm/s -999.998*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s -999.998*MOTOR.PITCH (pg 392) µm/sec -5.000 custom uni	Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s		
Instrume Instrume Instre Instrum <td></td> <td>Linear: counts/s, mm/s, µm/s, custom units/s</td>		Linear: counts/s, mm/s, µm/s, custom units/s		
-250.000 to 250.000 ps -90,000.000 to 90,000.000 deg/s -1,250.000 to 1,250.000 custom units/s -1,570.796 to 1,570.796 rad/s Linear: -1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s -250.000*MOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s -250.000*MOTOR.PITCH (pg 392) to 250,000.000*MOTOR.PITCH (pg 392) µm/s -1,250.000 to 1,250.000 custom units/s -1,000 rpm -1.000 rps -359.999 deg/s -50.000 custom units/s -50.000 custom units/s -6.283 rad/s Linear: -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) µm/sec -399.998*MOTOR.PITCH (pg 392) µm/sec -5000 custom units/s -999.998*MOTOR.PITCH (pg 392) µm/sec		Rotary:		
-90,000.000 to 90,000.000 deg/s -1,250.000 to 1,250.000 custom units/s -1,570.796 to 1,570.796 rad/s Linear: -1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s -250.000*MOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s -250,000.000*MOTOR.PITCH (pg 392) to 250,000.000*MOTOR.PITCH (pg 392) µm/s -1,250.000 to 1,250.000 custom units/s -1,000 rps -359.999 deg/s -5.000 custom units/s -5.000 custom units/s -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) µm/sec -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) µm/sec -999.998*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s -5.000 custom units/s -1.000*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s -1.000*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s -5.000 custom units/s -5.000 custo		-15,000.000 to 15,000.000 rpm		
Range -1,250.000 to 1,250.000 custom units/s -1,570.796 to 1,570.796 rad/s Linear: -1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s -250.000*MOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s -250,000.000*MOTOR.PITCH (pg 392) to 250,000.000*MOTOR.PITCH (pg 392) µm/s -1,250.000 to 1,250.000 custom units/s -1,000 rps -359.999 deg/s -5.000 custom units/s -5.000 custom units/s -0.001 counts/s -1.000 rps -359.999 deg/s -5.000 custom units/s -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) mm/s -99.998*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s -999.998*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s -1.000*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s -5.000		-250.000 to 250.000 rps		
Range -1,570.796 to 1,570.796 rad/s Linear: -1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s -250.000*MOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s -250,000.000*MOTOR.PITCH (pg 392) to 250,000.000*MOTOR.PITCH (pg 392) mm/s -250,000.000*MOTOR.PITCH (pg 392) to 250,000.000*MOTOR.PITCH (pg 392) mm/s -250,000.000*MOTOR.PITCH (pg 392) to 250,000.000*MOTOR.PITCH (pg 392) mm/s -1,250.000 to 1,250.000 custom units/s -1,250.000 to 1,250.000 custom units/s -1,000 rpm -1,000 rpm -1,000 rps -359.999 deg/s -5,000 custom units/s -5,000 custom units/s -6,283 rad/s -1,000*MOTOR.PITCH (pg 392) mm/s -1,000*MOTOR.PITCH (pg 392) µm/sec -1,000*MOTOR.PITCH (pg 392) µm/sec -1,000*MOTOR.PITCH (pg 392) µm/sec -5,000 custom units/s -1,000 custom units/s -1,000*MOTOR.PITCH (pg 392) µm/sec -1,000 custom units/s -1,000*MOTOR.PITCH (pg 392) µm/sec -1,000 custom units/s -1,000*MOTOR.PITCH (pg 392) µm/sec -1,000 custom units/s -1,00		-90,000.000 to 90,000.000 deg/s		
Range Linear: -1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s -250.000*MOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s -250,000.00*MOTOR.PITCH (pg 392) to 250,000.000*MOTOR.PITCH (pg 392) µm/s -1,250.000 to 1,250.000 custom units/s Rotary: -60.000 rpm -1.000 rps -359.999 deg/s -5.000 custom units/s -6.283 rad/s Linear: -0.001 counts/s -1.00*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s -5.000 custom units/s -5.000 custom units/s -6.283 rad/s Linear: -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s Data Type Float See Also SM.11, SM.12, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1		-1,250.000 to 1,250.000 custom units/s		
Linear: -1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s -250,000*MOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s -250,000.000*MOTOR.PITCH (pg 392) to 250,000.000*MOTOR.PITCH (pg 392) µm/s -1,250.000 to 1,250.000 custom units/s Rotary: -60.000 pm -1.000 rps -359.999 deg/s -5.000 custom units/s -5.000 custom units/s -6.283 rad/s Linear: -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) mm/s -999.998*MOTOR.PITCH (pg 392) mm/s -5.000 custom units/s -5.000 custom units/s -5.000 custom units/s -5.000 custom units/s -5.000 custom units/s -1.000*MOTOR.PITCH (pg 392) mm/s -5.000 custom units/s -5.000 custom	Pango	-1,570.796 to 1,570.796 rad/s		
-250.000*MOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s -250,000.000*MOTOR.PITCH (pg 392) to 250,000.000*MOTOR.PITCH (pg 392) µm/s -1,250.000 to 1,250.000 custom units/s Rotary: -60.000 rpm -1.000 rps -359.999 deg/s -5.000 custom units/s -5.000 custom units/s -6.283 rad/s Linear: -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) mm/s -999.998*MOTOR.PITCH (pg 392) mm/sec -5.000 custom units/s -1.000*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s -1.000*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s -1.000*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s	Range	Linear:		
-250,000.000*MOTOR.PITCH (pg 392) to 250,000.000*MOTOR.PITCH (pg 392) μm/s -1,250.000 to 1,250.000 custom units/s Rotary: -60.000 rpm -1.000 rps -359.999 deg/s -5.000 custom units/s -6.283 rad/s Linear: -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) mm/s -999.998*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s Solid custom units/s		-1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s		
μm/s -1,250.000 to 1,250.000 custom units/s Rotary: -60.000 rpm -1.000 rps -359.999 deg/s -5.000 custom units/s -6.283 rad/s Linear: -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) mm/s -999.998*MOTOR.PITCH (pg 392) μm/sec -5.000 custom units/s Sood custom units/s		-250.000*MOTOR.PITCH (pg 392) to 250.000*MOTOR.PITCH (pg 392) mm/s		
·1,250.000 to 1,250.000 custom units/s ·1,250.000 to 1,250.000 custom units/s ·60.000 rpm ·1.000 rps ·359.999 deg/s ·5.000 custom units/s ·6.283 rad/s Linear: ·0.001 counts/s ·1.000*MOTOR.PITCH (pg 392) mm/s ·999.998*MOTOR.PITCH (pg 392) µm/sec ·5.000 custom units/s ·0.001 counts/s ·1.000 custom units/s ·1.000 *MOTOR.PITCH (pg 392) µm/sec ·5.000 custom units/s		-250,000.000*MOTOR.PITCH (pg 392) to 250,000.000*MOTOR.PITCH (pg 392)		
Pefault -60.000 rpm -1.000 rps -359.999 deg/s -5.000 custom units/s -5.000 custom units/s -6.283 rad/s Linear: -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) mm/s -999.998*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s Data Type Float See Also SM.11, SM.12, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1		μm/s		
Pefault -60.000 rpm -1.000 rps -359.999 deg/s -5.000 custom units/s -5.000 custom units/s -6.283 rad/s -1.inear: -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) mm/s -999.998*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s Data Type Float See Also SM.11, SM.12, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1		-1,250.000 to 1,250.000 custom units/s		
 Default -1.000 rps -359.999 deg/s -5.000 custom units/s -6.283 rad/s Linear: -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) mm/s -999.998*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s Data Type Float See Also SM.11, SM.12, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1 		Rotary:		
 Default Value -359.999 deg/s -5.000 custom units/s -6.283 rad/s Linear: -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) mm/s -999.998*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s Data Type Float See Also SM.11, SM.12, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1 		-60.000 rpm		
 Default Value -5.000 custom units/s -6.283 rad/s Linear: -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) mm/s -999.998*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s Data Type Float See Also SM.11, SM.12, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1 		-1.000 rps		
Default Value-6.283 rad/sValue-6.283 rad/sLinear:-0.001 counts/s-0.001 counts/s-1.000*MOTOR.PITCH (pg 392) mm/s-1.000*MOTOR.PITCH (pg 392) µm/sec-999.998*MOTOR.PITCH (pg 392) µm/sec-5.000 custom units/s-5.000 custom units/sData TypeFloatSee AlsoSM.11, SM.12, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1		-359.999 deg/s		
 Value -6.283 rad/s Linear: -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) mm/s -999.998*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s Data Type Float See Also SM.11, SM.12, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1 	Defeut	-5.000 custom units/s		
Linear: -0.001 counts/s -1.000*MOTOR.PITCH (pg 392) mm/s -999.998*MOTOR.PITCH (pg 392) µm/sec -5.000 custom units/s Data Type Float See Also SM.11, SM.12, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1		-6.283 rad/s		
-1.000*MOTOR.PITCH (pg 392) mm/s-999.998*MOTOR.PITCH (pg 392) μm/sec-5.000 custom units/sData TypeFloatSee AlsoSM.11, SM.12, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1	value	Linear:		
-999.998*MOTOR.PITCH (pg 392) μm/sec -5.000 custom units/s Data Type Float See Also SM.11, SM.12, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1		-0.001 counts/s		
-5.000 custom units/s Data Type Float See Also SM.11, SM.12, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1		-1.000*MOTOR.PITCH (pg 392) mm/s		
Data Type Float See Also SM.I1, SM.I2, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1		-999.998*MOTOR.PITCH (pg 392) μm/sec		
See Also SM.I1, SM.I2, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1		-5.000 custom units/s		
	Data Type	Float		
Start Version M_01-00-000	See Also	SM.I1, SM.I2, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1		
	Start Version	M_01-00-000		

Description

SM.V2 defines the velocity that is used in service motion mode 1 (see SM.MODE) in the closed velocity and position mode of operation.

Related Topics

0.1 Service Motion

44 STO Parameters

This section describes the STO parameters.

44.1	STO.STATE	452
------	-----------	-----

44.1 STO.STATE

General Information		
Туре	R/O Parameter	
Description	Returns the status of the safe torque off.	
Units	N/A	
Range	0 to 1	
Default Value	N/A	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

STO.STATE returns the status of the safe torque off.

- 1 Safe torque on (no safe torque off fault).
- 0 Safe torque off (safe torque off fault).

Related Topics

9.1 Limits

45 SWLS Parameters

This section describes the SWLS parameters.

45.1	SWLS.EN	. 454
45.2	SWLS.LIMIT0	.454
45.3	SWLS.LIMIT1	.455
45.4	SWLS.STATE	. 456

45.1 SWLS.EN

General Information		
Туре	NV Parameter	
Description	Enables and disables software travel limit switches.	
Units	N/A	
Range	0 to 3	
Default Value	0	
Data Type	U8	
See Also	DRV.MOTIONSTAT	
Start Version	M_01-00-000	

Description

This parameter enables the software travel limit switches. The software limit switches are only active if the axis is homed.

Value	Description
0	Disables both limit switches.
1	Enables limit switch 0.
2	Enables limit switch 1.
3	Enables limit switch 0 and limit switch 1.

If SWLS.EN = 3, then whichever limit switch is set to a greater value will be used as the upper limit switch. For all other values of SWLS.EN, use SWLS.LIMIT0 for the lower limit switch, and SWLS.LIMIT1 for the upper limit switch.

Example

Bit 0 = 0: Disable SWLS.LIMIT0

Bit 0 = 1: Enable SWLS.LIMIT0 Bit 1 = 0: Disable SWLS.LIMIT1

Bit 1 = 1: Enable SWLS.LIMIT1

Related Topics

9.1 Limits

45.2 SWLS.LIMIT0

General Information		
Туре	NV Parameter	
Description	Sets the position of the software travel limit switch 0.	
Units	Position units	

General Information				
Range	-9,007,199,254,740,992 to 9,007,199,254,740,991			
Default Value	0			
Data Type	S64			
Start Version	M_01-00-00-00	0		
Fieldbus		Index/Subindex	Object Start Versior	
EtherCAT COE and CANopen		607Dh/1	M_01-00-00-000	

This parameter sets the compare register for the software limit switch 0. This value can be either the lower or the upper software limit switch register, depending on the configuration of the software limit switches:

- If only one limit switch is enabled (SWLS.EN = 1 or 2), then SWLS.LIMIT0 is the lower limit, and SWLS.LIMIT1 is the upper limit.
- If both limit switches are enabled (SWLS.EN = 3), then whichever switch is set to a larger value is the upper limit switch. The other switch becomes the lower limit switch.

These switches can be used in addition to hardware limit switches. The software limit switches are only active if the axis is homed. For more information about homing, please refer to the HOME Parameters and DRV.MOTIONSTAT.

Related Topics

9.1 Limits

45.3 SWLS.LIMIT1

General Inform	mation
Туре	NV Parameter
Description	Sets the position of the software travel limit switch 0.
Units	Position units
Range	-9,007,199,254,740,992 to 9,007,199,254,740,991
Default Value	1,048,576.000 counts, 16-bit (firmware versions M_01-02-00-000 and above) 68,719,476,736 counts (for firmware version M_01-01-00-000)
Data Type	S64
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version	
EtherCAT COE and	607Dh/2	M 01-00-00-000	
CANopen	607DN/2	M_01-00-00-000	

Description

This parameter sets the compare register for the software limit switch 1. This value can be either the lower or the upper software limit switch register, depending on the configuration of the software limit switches:

- If only one limit switch is enabled (SWLS.EN = 1 or 2), then SWLS.LIMIT0 is the lower limit, and SWLS.LIMIT1 is the upper limit.
- If both limit switches are enabled (SWLS.EN = 3), then whichever switch is set to a larger value is the upper limit switch. The other switch becomes the lower limit switch.

These switches can be used in addition to hardware limit switches. The software limit switches are only active if the axis is homed. For more information about homing, please refer to the HOME Parameters and DRV.MOTIONSTAT.

Related Topics

9.1 Limits

45.4 SWLS.STATE

General Information			
Туре	R/O Parameter		
Description	Reads the actual status of software limit switches.		
Units	N/A		
Range	0 to 3		
Default Value	0		
Data Type	U8		
Start Version	M_01-00-000		

Description

This parameter reads the status word of the software limit switches. The status word indicates the result of the compare between the software limit switch compare register and the actual position of the position loop.

Example

Bit 0 = 0: SWLS.LIMIT0 (pg 454) is not active.

Bit 0 = 1: SWLS.LIMIT0 is active.

Bit 1 = 0: SWLS.LIMIT1 (pg 455) is not active.

Bit 1 = 1: SWLS.LIMIT1 is active.

Bits 2 to 7 are currently not in use.

Related Topics

9.1 Limits

46 **TEMP** Parameters

This section describes the TEMP parameters.

46.1	TEMP.CONTROL	458
46.2	TEMP.POWER1 to TEMP.POWER3	458

46.1 TEMP.CONTROL

General Information			
Туре	R/O Parameter		
Description	Reads the temperature of the control board temperature sensor.		
Units	Degrees Celsius		
Range	-127 to 128		
Default Value	N/A		
Data Type	Integer		
Start Version	M_01-09-00-000		

Description

Reads the temperature of the control board temperature sensor.

Related Topics

DRV.TEMPERATURES (pg 286) | TEMP.POWER1 to TEMP.POWER3 (pg 458)

46.2 TEMP.POWER1 to TEMP.POWER3

General Information		
Туре	R/O Parameter	
Description	Reads the temperature of the power board(s) temperature sensor (s).	
Units	Degrees Celsius	
Range	-127 to 128	
Default Value	N/A	
Data Type	Integer	
Start Version	M_01-09-00-000	

Description

Reads the temperature of the power board(s) temperature sensor(s).

Related Topics

DRV.TEMPERATURES (pg 286) | TEMP.CONTROL (pg 458)

47 USER Parameters

This section describes the USER parameters.

47.1	USER.INT1 to USER.INT24	.460
------	-------------------------	------

47.1 USER.INT1 to USER.INT24

General Information			
Туре	R/W Parameter		
Description	Stores an integer value for future ref- erence.		
Units	N/A		
Range	-2,147,483,648 to 2,147,483,647		
Default Value	0		
Data Type	Integer		
Start Version	M_01-00-000		

Description

This parameter stores an integer value. To retain this value after a power-cycle, a "Save to Device" command must be performed from the Parameter Load/Save view in <u>EWV</u>¹.

¹Embedded Workbench Views

48 VBUS Parameters

This section describes the VBUS parameters.

48.1	VBUS.HALFVOLT	
48.2	VBUS.OVFTHRESH	
48.3	VBUS.OVWTHRESH	
48.4	VBUS.RMSLIMIT	
48.5	VBUS.UVFTHRESH	
48.6	VBUS.UVMODE	
48.7	VBUS.UVWTHRESH	
48.8	VBUS.VALUE	

48.1 VBUS.HALFVOLT

General Information				
Туре	NV Parameter			
Description	Changing voltage thresholds for HV and MV Drives			
Units	N/A			
Range	0 to 1			
Default	0			
Value	0			
Data Type	Integer			
See Also	N/A			
Start Version	M_01-04-01-000			

Description

This parameter is used in order to change some specific voltage thresholds in order to allow HV (high voltage) Drives working with MV (medium voltage) thresholds and to allow MV (medium voltage) Drives working with LV (low voltage) thresholds.

This parameter has an impact on the following voltage-thresholds:

1) DC-bus over-voltage threshold (see VBUS.OVFTHRESH).

2) The regen-resistor enable/disable voltage thresholds.

3) The inrush-relay enable/disable voltage thresholds.

A power-cycle is needed after changing the value of VBUS.HALFVOLT and after saving the parameter on the NV memory of the Drive, since the voltage thresholds mentioned above are read during the boot-sequence of the Drive.

The VBUS.HALFVOLT command takes only effect for a HV or MV Drive.

VBUS.HALFVOLT = 0: The original voltage thresholds are used for the functions mentioned above.

VBUS.HALFVOLT = 1: Setting the parameter to 1 on a HV Drive causes the AKD PDMM to use the voltage thresholds of a MV Drive for the functions mentioned above. Setting the parameter to 1 on a MV Drive causes the AKD PDMM to use the voltage thresholds of a LV Drive for the functions mentioned above.

The sequence must be as follows:

1) Change the value of VBUS.HALFVOLT.

2) Trigger a DRV.NVSAVE command.

3) Power cycle the Drive in order to activate the new configuration.

Note

The DC-bus under voltage fault threshold (see VBUS.UVFTHRESH) is a user selectable command. It means that the user is responsible for setting the under voltage threshold to a proper value in case that the AKD PDMM is supplied with a lower DC-bus voltage than the rated voltage.

48.2 VBUS.OVFTHRESH

General Information				
Туре	R/O Parameter			
Description	Reads the over voltage fault level.			
Units	VDC			
Range	0 to 900 VDC			
Default Value	N/A			
Data Type	Integer			
See Also	VBUS.UVFTHRESH			
Start Version M_01-00-000				

Description

VBUS.OVFTHRESH reads the over voltage fault level for the DC bus.

This value is read from the drive EEPROM and varies according to the drive type.

Related Topics

Regeneration (pg 19)

48.3 VBUS.OVWTHRESH

General Information				
Туре	NV Parameter			
Description	Sets voltage level for over voltage warn- ing.			
Units	VDC			
Range	0 to 900 VDC			
Default Value	0 VDC (warning disabled)			
Data Type	U16			
See Also	N/A			
Start Version	M_01-00-00-000			

Description

If VBUS.VALUE value exceeds VBUS.OVWTHRESH, then a warning is generated.

Related Topics

Regeneration (pg 19)

48.4 VBUS.RMSLIMIT

General Information				
Туре	R/O Parameter			
Description	Reads the limit for the bus capacitors load.			
Units	Vrms			
Range	N/A			
Default Value	N/A			
Data Type	Integer			
See Also	N/A			
Start Version	M_01-00-00-000			

Description

This parameter reads the limit of the bus capacitor load. When the bus capacitor loads exceeds this limit, the drive generates fault F503.

Excessive bus capacitor load may indicate a disconnected main supply phase.

Related Topics

Regeneration (pg 19)

48.5 VBUS.UVFTHRESH

General Information				
Туре	R/W Parameter			
Description	Sets the under voltage fault			
Description	level.			
Units	VDC			
Range	90 to 420 VDC			
Default	90 VDC			
Value				
Data Type	Integer			
See Also	VBUS.OVFTHRESH			
Start Version M_01-00-000				

Description

VBUS.UVFTHRESH sets the undervoltage fault level of the DC bus.

The default value is read from the EEPROM, but can by modified by the user and stored on the NV RAM. This value varies according to drive type.

Related Topics

Regeneration (pg 19)

48.6 VBUS.UVMODE

General Information				
Туре	N/V Parameter			
Description	Indicates undervoltage (UV) mode.			
Units	N/A			
Range	0 to 1			
Default Value	1			
Data Type	Integer			
See Also	N/A			
Start Version	M_01-00-000			

Description

This parameter indicates undervoltage (UV) mode.

When VBUS.UVMODE - 0, an undervoltage fault is issued whenever the DC bus goes below the undervoltage threshold.

When VBUS.UVMODE = 1, an undervoltage fault is issued whenever the DC bus goes below the

under voltage threshold and the controller attempts to enable the drive (software or hardware enable).

Related Topics

Regeneration (pg 19)

48.7 VBUS.UVWTHRESH

General Info	ormation			
Туре	NV Parameter			
Description	Sets voltage level for undervoltage warning.			
Units	VDC			
Range	0 to 900 VDC			
Default Value	10 volts above the default value of the under voltage fault threshold (VBUS.UVFTHRESH). The default value of VBUS.UVFTHRESH is hardware dependent.			
Data Type	U16			
See Also	VBUS.UVFTHRESH (pg 464)			
Start Ver- sion	M_01-00-000			

Description

If VBUS.VALUE value drops below VBUS.UVWTHRESH, then a warning is generated.

Related Topics

Regeneration (pg 19)

48.8 VBUS.VALUE

General Information			
Туре	R/O Parameter		
Description	Reads DC bus		
Description	voltage.		
Units	VDC		
Range	0 to 900 VDC		
Default	N/A		
Value			
Data Type	Float		
See Also	N/A		
Start Version	M_01-00-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	26146/0	M 01 00 00 000
CANopen	361Ah/0	M_01-00-00-000

Description

VBUS.VALUE reads the DC bus voltage.

Related Topics

5.4 Regeneration

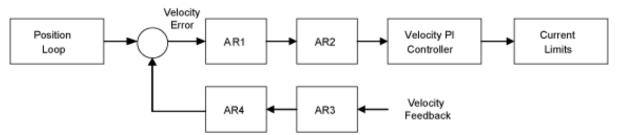
49 VL Parameters

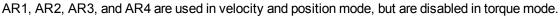
This section describes the VL parameters.

49.1 VL.ARPF1 TO VL.ARPF4	468
49.2 VL.ARPQ1 TO VL.ARPQ4	
49.3 VL.ARTYPE1 TO VL.ARTYPE4	470
49.4 VL.ARZF1 TO VL.ARZF4	471
49.5 VL.ARZQ1 TO VL.ARZQ4	472
49.6 VL.BUSFF	473
49.7 VL.CMD	473
49.8 VL.CMDU	
49.9 VL.ERR	
49.10 VL.FB	476
49.11 VL.FBFILTER	476
49.12 VL.FBSOURCE	477
49.13 VL.FBUNFILTERED	
49.14 VL.FF	478
49.15 VL.GENMODE	479
49.15 VL.GENMODE	
	479
49.16 VL.KBUSFF	479 480
49.16 VL.KBUSFF	479 480 481
 49.16 VL.KBUSFF	479 480 481 481
 49.16 VL.KBUSFF 49.17 VL.KI 49.18 VL.KO 49.19 VL.KP 	479 480 481 481 484
 49.16 VL.KBUSFF 49.17 VL.KI 49.18 VL.KO 49.19 VL.KP 49.20 VL.KVFF 	479 480 481 481 484 484
 49.16 VL.KBUSFF 49.17 VL.KI 49.18 VL.KO 49.19 VL.KP 49.20 VL.KVFF 49.21 VL.LIMITN 	479 480 481 481 484 484 484 486
 49.16 VL.KBUSFF 49.17 VL.KI 49.18 VL.KO 49.19 VL.KP 49.20 VL.KVFF 49.21 VL.LIMITN 49.22 VL.LIMITP 	479 480 481 481 484 484 484 486 488
 49.16 VL.KBUSFF 49.17 VL.KI 49.18 VL.KO 49.19 VL.KP 49.20 VL.KVFF 49.21 VL.LIMITN 49.22 VL.LIMITP 49.23 VL.LMJR 	479 480 481 481 484 484 486 488 488
 49.16 VL.KBUSFF 49.17 VL.KI 49.18 VL.KO 49.19 VL.KP 49.20 VL.KVFF 49.21 VL.LIMITN 49.22 VL.LIMITP 49.23 VL.LMJR 49.24 VL.MODEL 	479 480 481 481 484 484 486 488 488 489
 49.16 VL.KBUSFF 49.17 VL.KI 49.18 VL.KO 49.19 VL.KP 49.20 VL.KVFF 49.21 VL.LIMITN 49.22 VL.LIMITP 49.23 VL.LMJR 49.24 VL.MODEL 49.25 VL.OBSBW 	479 480 481 481 484 484 486 488 488 489 489 489

49.1 VL.ARPF1 TO VL.ARPF4

General Information				
Туре	R/W Parameter			
Description	Sets the natural frequency of the pole (denominator) of anti-resonance (AR) filters 1, 2, 3, and 4; active in opmodes 1 (velocity) and 2 (position) only.			
Units	Hz			
Range	5 to 5,000 Hz			
Default Value	500 Hz			
Data Type	Float			
See Also	VL.ARPQ1 TO VL.ARPQ4 (pg 469), VL.ARZF1 TO VL.ARZF4 (pg 471), Sets the Q of the zero (numerator) of anti-resonance filter #1; active in opmodes 1 (velocity) and 2 (position) only. (pg 472)			
Start Ver- sion	M_01-02-00-000			
Fi	eldbus	Index/Subindex	Object Start Version	


Fieldbus	Index/	Subindex	Object Start Version
	3406h/1	VL.ARPF1	
EtherCAT COE and	3406h/2	VL.ARPF2	M 01-02-00-000
CANopen	3406h/3	VL.ARPF3	M_01-02-00-000
	3406h/4	VL.ARPF4	


Description

VL.ARPF1 sets the natural frequency of the pole (denominator) of AR filter 1. This value is F_{p} in the approximate transfer function of the filter:

```
ARx(\mathbf{s}) = [\mathbf{s}^{2}/(2\pi F_{2})^{2} + \mathbf{s}/(Q_{2}^{2}\pi F_{2}) + 1]/[\mathbf{s}^{2}/(2\pi F_{p})^{2} + \mathbf{s}/(Q_{p}^{2}\pi F_{p}) + 1]
```

The following block diagram describes the AR filter function; note that AR1 and AR2 are in the forward path, while AR3 and AR4 are applied to feedback:

Discrete time transfer function (applies to all AR filters)

The velocity loop compensation is actually implemented as a digital discrete time system function on the DSP. The continuous time transfer function is converted to the discrete time domain by a backward Euler mapping:

 $s \approx (1-z^{-1})/t$, where t = 62.5 µs

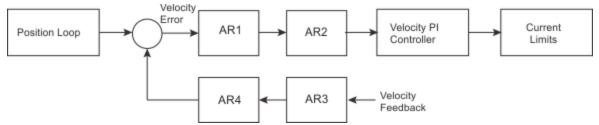
The poles are prewarped to ${\rm F_{P}}$ and the zeros are prewarped to ${\rm F_{Z}}.$

Related Topics

1 Velocity Loop

49.2 VL.ARPQ1 TO VL.ARPQ4

General Info	rmation
Туре	R/W Parameter
Description	Sets the Q of the pole (denominator) of anti-resonance (AR) filter 1; active in opmodes 1 (velocity) and 2 (position) only.
Units	None
Range	0.2 to 20
Default Value	0.5
Data Type	Float
See Also	VL.ARPF1 TO VL.ARPF4 (pg 468), VL.ARZF1 TO VL.ARZF4 (pg 471), VL.ARZQ1 TO VL.ARZQ4 (pg 472)
Start Ver- sion	M_01-02-00-000


Fieldbus	Index/	Subindex	Object Start Version
	3406h/5	VL.ARPQ1	
EtherCAT COE and	3406h/6	VL.ARPQ2	M 01-02-00-000
CANopen	3406h/7	VL.ARPQ3	W_01-02-00-000
	3406h/8	VL.ARPQ4	

Description

VL.ARPQ1 sets the Q (quality factor) of the pole (denominator) of AR filter 1. This value is Q_p in the approximate transfer function of the filter:

$$ARx(\mathbf{s}) = [\mathbf{s}^{2} / (2\pi F_{2})^{2} + \mathbf{s} / (Q_{2}^{2}\pi F_{2}) + 1] / [\mathbf{s}^{2} / (2\pi F_{p})^{2} + \mathbf{s} / (Q_{p}^{2}\pi F_{p}) + 1]$$

The following block diagram describes the AR filter function; note that AR1 and AR2 are in the forward path, while AR3 and AR4 are applied to feedback:

AR1, AR2, AR3, and AR4 are used in velocity and position mode, but are disabled in torque mode.

Discrete time transfer function (applies to all AR filters)

The velocity loop compensation is actually implemented as a digital discrete time system function on the DSP. The continuous time transfer function is converted to the discrete time domain by a backward Euler mapping:

 $s \approx (1-z^{-1})/t$, where t = 62.5 µs

The poles are prewarped to F_{p} and the zeros are prewarped to F_{z} .

Related Topics

1 Velocity Loop

49.3 VL.ARTYPE1 TO VL.ARTYPE4

General Info	ormation
Туре	NV Parameter
Description	Indicates the method used to calculate BiQuad coefficients; active in opmodes 1 (velocity) and 2 (position) only.
Units	N/A
Range	0
Default Value	0
Data Type	U8
See Also	N/A
Start Ver- sion	M_01-00-000

Fieldbus	Index	x/Subindex	Object Start Version
	3405h /1	VL.ARTYPE1	
EtherCAT COE and	3405h /2	VL.ARTYPE2	M 01-02-00-000
CANopen	3405h /3	VL.ARTYPE3	0 * 02 00 000
	3405h /4	VL.ARTYPE4	

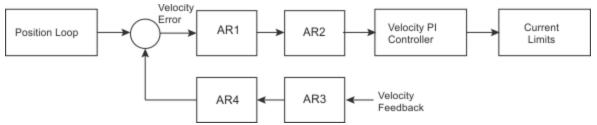
Description

These parameters indicate the method used to calculate the biquad coefficients VL.ARPFx, VL.ARPQx, VL.ARZFx, and VL.ARZQx. A value of 0 indicates that the coefficients are set directly. This parameter has no effect on the filter itself, but is only used to determine the original design parameters. Currently, only the value of 0 is supported.

Related Topics

49.4 VL.ARZF1 TO VL.ARZF4

General Info	ormation
Туре	R/W Parameter
Description	Sets the natural frequency of the zero (numerator) of anti-resonance (AR)filter 1; active in opmodes 1 (velocity) and 2 (position) only.
Units	Hz
Range	5 to 5,000 Hz
Default Value	500 Hz
Data Type	Float
See Also	VL.ARPF1 TO VL.ARPF4 (pg 468), VL.ARPQ1 TO VL.ARPQ4 (pg 469), VL.ARZQ1 TO VL.ARZQ4 (pg 472)
Start Ver- sion	M_01-02-00-000


Fieldbus	Index/S	Subindex	Object Start Version
	3406h/9	VL.ARZF1	
EtherCAT COE and	3406h/A	VL.ARZF2	M 01-02-00-000
CANopen	3406h/B	VL.ARZF3	W_01-02-00-000
	3406h/C	VL.ARZF4	

Description

VL.ARZF1 sets the natural frequency of the zero (numerator) of AR filter 1. This value is F_Z in the approximate transfer function of the filter:

 $ARx(\mathbf{s}) = [\mathbf{s}^{2} / (2\pi F_{p})^{2} + \mathbf{s} / (Q_{p}^{2}\pi F_{p}) + 1] / [\mathbf{s}^{2} / (2\pi F_{p})^{2} + \mathbf{s} / (Q_{p}^{2}\pi F_{p}) + 1]$

The following block diagram describes the AR filter function; note that AR1 and AR2 are in the forward path, while AR3 and AR4 are applied to feedback:

AR1, AR2, AR3, and AR4 are used in velocity and position mode, but are disabled in torque mode.

Discrete time transfer function (applies to all AR filters)

The velocity loop compensation is actually implemented as a digital discrete time system function on the DSP. The continuous time transfer function is converted to the discrete time domain by a backward Euler mapping:

s ≈ (1-z⁻¹)/t, where t = 62.5 µs

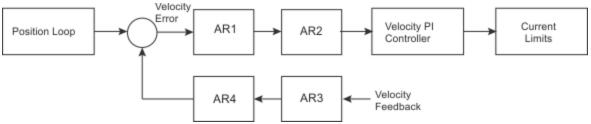
The poles are prewarped to F_{p} and the zeros are prewarped to F_{7} .

Related Topics

1 Velocity Loop

49.5 VL.ARZQ1 TO VL.ARZQ4

General Info	rmation
Туре	R/W Parameter
Description	Sets the Q of the zero (numerator) of anti-resonance filter #1; active in opmodes 1 (velo- city) and 2 (position) only.
Units	N/A
Range	0.1 to 5
Default Value	0.5
Data Type	Float
See Also	VL.ARPF1 TO VL.ARPF4 (pg 468), VL.ARPQ1 TO VL.ARPQ4 (pg 469), VL.ARZF1 TO VL.ARZF4 (pg 471)
Start Ver- sion	M_01-02-00-000
E	oldbus Indox/Subindox Object Start Version


Fieldbus	Index/S	Subindex	Object Start Version
	3406h/D	VL.ARZQ1	
EtherCAT COE and	3406h/E	VL.ARZQ2	M 01-02-00-000
CANopen	3406h/F	VL.ARZQ3	W_01-02-00-000
	3406h/10	VL.ARZQ4	

Description

VL.ARZQ1 sets the Q (quality factor) of the zero (numerator) of AR filter 1. This value is Q_Z in the approximate transfer function of the filter:

```
AR1(\mathbf{s}) = [\mathbf{s}^{2} / (2\pi F_{p})^{2} + \mathbf{s} / (Q_{p}^{2}\pi F_{p}) + 1] / [\mathbf{s}^{2} / (2\pi F_{p})^{2} + \mathbf{s} / (Q_{p}^{2}\pi F_{p}) + 1]
```

The following block diagram describes the AR filter function; note that AR1 and AR2 are in the forward path, while AR3 and AR4 are applied to feedback:

AR1, AR2, AR3 and AR4 are used in velocity and position mode, but are disabled in torque mode.

Discrete time transfer function (applies to all AR filters)

The velocity loop compensation is actually implemented as a digital discrete time system function on the DSP. The continuous time transfer function is converted to the discrete time domain by a backward Euler mapping:

```
s \approx (1-z^{-1})/t, where t = 62.5 µs.
```

The poles are prewarped to F_{P} and the zeros are prewarped to F_{Z} .

Related Topics

1 Velocity Loop

49.6 VL.BUSFF

General Info	rmation
Туре	R/O Parameter
Description	Displays the velocity loop feedforward value injected by the field-bus; active in opmodes 1 (velocity) and 2 (position) only.
	Depends on or
Units	Rotary: rpm, rps, deg/s, (custom units)/s, rad/s
	Linear: counts/s, mm/s, µm/s, (custom units)/s
Range	0.0 to VL.LIMITP (pg 486)
Default Value	0.0
Data Type	Float
See Also	VL.FF (pg 478), VL.KBUSFF (pg 479)
Start Ver-	M 01-00-000
sion	0. 00 00 000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	60B1h/0	M_01-00-00-000

Description

This parameter displays the velocity loop feedforward value injected by the fieldbus.

Related Topics

1 Velocity Loop

49.7 VL.CMD

General Infor	General Information		
Туре	R/O Parameter		
Description	Reads the actual velocity command; active in opmodes 1 (velocity) and 2 (position) only.		
Units	Depends on or Rotary: rpm, rps, deg/s, (custom units)/s, rad/s		
	Linear: counts/s, mm/s, µm/s, (custom units)/s		
Range	N/A		

General Inform	General Information		
Default	N/A		
Value	N/A		
Data Type	Float		
See Also	VL.FB (pg 476), VL.CMDU (pg 474), VL.LIMITP (pg 486), VL.LIMITN (pg 484)		
Start Version	M_01-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	606Bh/0	M 01-00-00-000
CANopen	00081//0	M_01-00-00-000

Description

VL.CMD returns the actual velocity command as it is received in the velocity loop entry after all velocity limits (such as VL.LIMITN (pg 484) and VL.LIMITP (pg 486)). See velocity loop design diagram for more details.

Related Topics

- 1 Velocity Loop
- 1 Position Loop
- 17 Block Diagrams

49.8 VL.CMDU

General Info	prmation	
Туре	R/W Parameter	
Description	Sets the user velocity command; active in opmodes 1 (velocity) and 2 (position) only.	
	Depends on or	
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s	
	Linear: counts/s, mm/s, μm/s, custom units/s	
	Rotary	
	-15,000.000 to 15,000.000 rpm	
	-250.000 to 250.000 rps	
	-90000.000 to 90000.000 deg/s	
	-1250.000 to 1250.000 custom units/s	
Range	-1570.796 to 1570.796 rad/s	
	Linear	
	-1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s	
	-8,000.000 to 8,000.000 mm/s	
	-8,000,000.000 to 8,000,000.000 μm/s	
	-1,250.000 to 1,250.000 custom units/s	

General Information			
Default			
Value	0		
Data Type	Float		
See Also	VL.FB (pg 476), VL.CMD (pg 473), DRV.OPMODE (pg 282), DRV.CMDSOURCE (pg		
See Also	250), VL.LIMITN (pg 484), VL.LIMITP (pg 486)		
Start Ver-	M 01 00 00 000		
sion	M_01-00-000		
Fieldbus	Index/Subindex Object Start Version		
EtherCAT C			

<u>.</u>	
Description	

CANopen

VL.CMDU sets the user velocity command. When DRV.OPMODE (pg 282) is set to 1 (velocity loop) and DRV.CMDSOURCE (pg 250) is set to 0 (TCP/IP channel), then setting this value when the drive is enabled will cause the drive to rotate at the required velocity.

60FFh/0

M_01-00-00-000

Related Topics

1 Velocity Loop

49.9 VL.ERR

General Infor	mation	
Туре	R/O Parameter	
Description	Sets the velocity error; active in opmodes 1 (velocity) and 2 (position) only.	
	Depends on or	
Units	Rotary: rpm, rps, deg/s, (custom units)/s, rad/s	
	Linear: counts/s, mm/s, µm/s, (custom units)/s	
Range	N/A	
Default Value	N/A	
Data Type	Float	
See Also	VL.CMD (pg 473), VL.FB (pg 476)	
Start Version	M_01-00-000	
Fieldbus	Index/Subindex Object Start Version	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3407h/4	M_01-00-00-000
CANopen		

Description

VL.ERR sets the velocity error. It is calculated in the velocity loop as the difference between VL.CMD (pg 473) and VL.FB (pg 476).

Related Topics

1 Velocity Loop

49.10 VL.FB

General Inform	mation	
Туре	R/O Parameter	
Description	Reads the velocity feedback; active in opmodes 1 (velocity) and 2 (position) only.	
	Depends on or	
Units	Rotary: rpm, rps, deg/s, (custom units)/s, rad/s	
	Linear: counts/s, mm/s, µm/s, (custom units)/s	
Range	N/A	
Default Value	N/A	
Data Type	Float	
See Also	VL.CMDU (pg 474)	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3618h/0	M 01 00 00 000
CANopen	606Ch/0	M_01-00-00-000

Description

VL.FB returns the velocity feedback as it is received in the velocity loop, after passing through Filter 3 and Filter 4.

Related Topics

Velocity Loop

49.11 VL.FBFILTER

General Information		
Туре	R/O Parameter	
Description	Filters VL.FB (pg 476) value; active in opmodes 1 (velocity) and 2 (position) only.	
Units	Depends on or Rotary: rpm, rps, deg/s, (custom units)/s, rad/s Linear: counts/s, mm/s, µm/s, (custom units)/s	
Range	N/A	
Default Value	N/A	

General Information	
Data Type	Float
See Also	VL.FB (pg 476)
Start Version	M_01-00-000
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	2407b/1	M 01 00 00 000
CANopen	3407h/1	M_01-00-00-000

Description

This parameter returns the same value as VL.FB (pg 476), filtered through a 10 Hz filter.

Related Topics

1 Velocity Loop

49.12 VL.FBSOURCE

General Infor	mation	
Туре	NV Parameter	
Description	Sets feedback source for the velocity loop; active in opmodes 1 (velocity) and 2 (position)	
Description	only.	
Units	N/A	
Range	0 to 1	
Default	0	
Value		
Data Type	Integer	
See Also	PL.FBSOURCE (pg 411)	
Start Ver-	M 01-00-000	
sion		

Description

This parameter determines the feedback source to be used by the velocity loop. A value of 0 selects the primary feedback, and 1 selects the secondary feedback.

Related Topics

1 Velocity Loop

49.13 VL.FBUNFILTERED

General Information		
Туре	R/O Parameter	
Description	Reads the velocity feedback.	

General Information			
	Depends on UNIT.VROTARY or UNIT.VLINEAR, UNIT.ACCLINEAR		
Units	Rotary: rpm, rps, deg/s, (custom units)/s, rad/s		
	Linear: counts/s, mm/s, µm/s, (custom units)/s		
Range	N/A		
Default	N/A		
Value			
Data Type	Float		
See Also	VL.FB (pg 476), VL.FBFILTER (pg 476)		
Start Version	M_01-03-06-000		

Description

VL.FBUNFILTERED reads the raw velocity feedback before any filters affect the value of this feedback.

Related Topics

Velocity Loop

49.14 VL.FF

General Info	rmation	
Туре	R/O Parameter	
Description	Displays the velocity loop overall feedforward value; active in opmodes 1 (velocity) and 2 (position) only.	
	Depends on or	
Units	Rotary: rpm, rps, deg/s, (custom units)/s, rad/s	
	Linear: counts/s, mm/s, µm/s, (custom units)/s	
Range	0 to VL.LIMITP (pg 486)	
Default Value	0	
Data Type	Float	
See Also	VL.KBUSFF (pg 479)	
Start Ver- sion	M_01-00-000	

Description

This parameter displays the velocity loop overall feedforward value.

Related Topics

- 1 Velocity Loop
- VL.KVFF (pg 484)

49.15 VL.GENMODE

General Information				
Туре	NV Parameter			
Description	Selects mode of velocity generation (Observer, d/dt); active in opmodes 1 (velocity) and 2 (position) only.			
Units	N/A			
Range	0 to 1			
Default Value	0			
Data Type	Integer			
Start Ver- sion	M_01-00-000			

Description

This parameter is used to select the velocity generator mode.

Mode	Description			
0	d/dt mode: The derivative of the mechanical angle of the drive is fed to a first order low			
0	pass.			
1	Luenberger Observer mode			

Related Topics

1 Velocity Loop

CANopen

49.16 VL.KBUSFF

General Information				
Туре	R/W Parameter			
Description	Sets the velocity loop acceleration feedforward gain value; active in opmodes 1 (velocity) and 2 (position) only.			
Units	NA			
Range	0.0 to 2.0	0.0 to 2.0		
Default Value	0.0			
Data Type	Float			
See Also	VL.BUSFF (pg 473)			
Start Ver- sion	M_01-00-000			
Fieldbus		Index/Subinde	ex Object Start Version	
EtherCAT COE and		3407h/3	M 01 00 00 000	

M_01-00-00-000

3407h/3

Description

This parameter sets the gain for the acceleration feedforward (a scaled second derivative of the position command is added to the velocity command value).

The nominal feedforward value can be multiplied by this gain value.

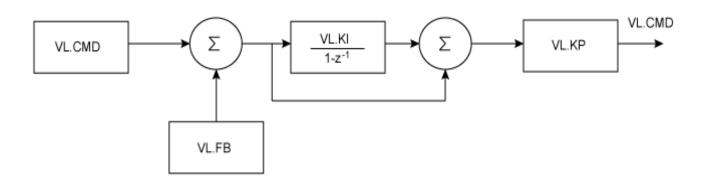
This will have affect only when using position mode (DRV.OPMODE (pg 282) = 2).

Related Topics

1 Velocity Loop

49.17 VL.KI

General Info	ormation			
Туре	NV Parameter			
Description	Sets the velocity loop integral gain for the PI controller; active in opmodes 1 (velocity) and 2 (position) only.			
Units	Hz			
Range	0 to 1,000 Hz			
Default Value	160 Hz			
Data Type	Float			
See Also	VL.KP (pg 481)			
Start Ver- sion	M_01-00-000			


Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	354Dh/0	M 01 00 00 000
CANopen	354DN/0	M_01-00-00-000

Description

VL.KI sets the integral gain of the velocity loop.

A factor of 2π is included in the time calculation, therefore a PI velocity loop with a constant error of 1 rps in which VL.KI is set to 160 and VL.KP (pg 481) is set to 1, will take (1000/160)* 2π ms to increase the integral gain to 1. Therefore, the total gain is 2 at this time (see velocity loop structure below).

Velocity Loop Structure

Related Topics

1 Velocity Loop

49.18 VL.KO

General Information			
Туре	R/W Parameter		
Description	Scales the observer velocity signal; active in opmodes 1 (velocity) and 2 (position) only.		
Units	Internal		
Range	0 to 65,535		
Default Value	0		
Data Type	Float		
See Also	VL.MODEL (pg 488)		
Start Version	M_01-00-01-000		

Description

VL.KO is used to scale the observer model to match the load. When VL.KO is tuned properly, Reads the observer velocity signal; active in opmodes 1 (velocity) and 2 (position) only. (pg 488) will match VL.FB (pg 476), except when there is an unspecified offset between the two.

Related Topics

1 Velocity Loop

49.19 VL.KP

General Information		
Туре	NV Parameter	
Description	Sets velocity loop proportional gain for the PI controller; active in opmodes 1 (velocity) and 2 (position) only.	
Units	A/(rad/sec)	

General Information		
Range	0.001 to 2,147,483.008	
Default Value	1	
Data Type	Float	
See Also	VL.KI (pg 480)	
Start Ver- sion	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3548h/0	M 01-00-00-000
CANopen	3346170	IVI_01-00-00-000

Description

VL.KP sets the proportional gain of the velocity loop.

The idealized velocity loop bandwidth in Hz is:

Rotary motor:

Bandwidth (Hz) = VL.KP $K_t / (2\pi J_m)$

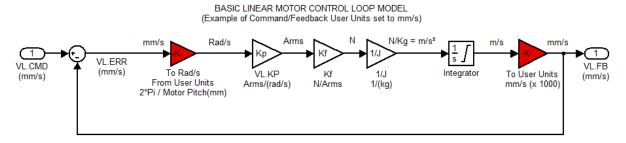
Where:

K₊= motor torque constant, in units of Nm/Arms

 J_m = motor inertia, in units of kg*m²

Linear motor:

Bandwidth (Hz) = VL.KP * K_t / (Motor Pitch (mm) * J_m)


Where:

K₊= motor torque constant, in units of Nm/Arms

 J_m = motor inertia, in units of kg

The drive uses the same control loop for both linear and rotary motors. VL.KP units are in Arms /(rad/s). If you want to tune in units of Arms/(mm/s), then you must manually convert the units.

The diagram below shows how linear motors are implemented at the control loop level.

The red blocks are automatically handled at the drive level.

 2π radians is the linear equivalent of one full mechanical revolution of a rotary motor - and is equal to the MOTOR.PITCH of a linear motor.

Example

To convert VL.KP = 0.320 Arms/(rad/s) to Arms/(mm/s), where MOTOR.PITCH is 32 mm:

VL.KP = 0.320 Arm /rad/s * (2 π rad / 32mm MOTOR.PITCH) VL.KP = 0.32 * 2 π / 32 = 0.063 Arms / (mm/s)

Related Topics

Velocity Controller Environment Block Diagram

49.20 VL.KVFF

General Info	General Information		
Туре	R/W Parameter		
Description	Sets the velocity loop velocity feedforward gain value; active in opmodes 1 (velocity) and 2 (position) only.		
Units	NA		
Range	0.0 to 2.0		
Default Value	0.0		
Data Type	Float		
See Also	VL.FF (pg 478)		
Start Ver- sion	M_01-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3407h/2	M 01-00-00-000
CANopen	354Bh/0	IVI_01-00-00-000

Description

This parameter sets the gain for the velocity feedforward (a scaled derivative of the position command is added to the velocity command value). The nominal feedforward value can be multiplied by this gain value.

This parameter is only used in the position mode (DRV.OPMODE (pg 282) = 2).

Related Topics

1 Velocity Loop

49.21 VL.LIMITN

General Information		
Туре	NV Parameter	
Description	Sets the velocity lower limit; active in opmodes 1 (velocity) and 2 (position)	
	only.	
	Depends on or	
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s	
	Linear: counts/s, mm/s, µm/s, custom units/s	

General Inform	mation
	Rotary:
	-15,000.000 to 0.000 rpm
	-250.000 to 0.000 rps
	-90,000.000 to 0.000 deg/s
	-1,250.000 to 0.000 custom units/s
Range	-1570.796 to 0.000 rad/s
	Linear:
	-1,073,741,824,000.000 to 0.000 counts/s
	-250.000*MOTOR.PITCH (pg 392) to 0.000 mm/s
	-250,000.000*MOTOR.PITCH (pg 392) to 0.000 µm/sec
	-1,250.000 to 0.000 custom units/s
	Rotary:
	-3,000.000 rpm
	-50.000 rps
	-18,000.002 deg/s
Defeuilt	-250.000 (custom units)/s
Default Value	-314.159 rad/s
value	Linear:
	-0.050 counts/s
	-50*MOTOR.PITCH (pg 392) mm/s
	-50,000.004*MOTOR.PITCH μm/sec
	-250.000 custom units/s
Data Type	Float
See Also	VL.LIMITP (pg 486), VL.CMD (pg 473)
Start Version	M_01-00-000
Fieldhue	Index/Subindex Object Start Version

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3623h/0	M 01 00 00 000
CANopen	36231/0	M_01-00-00-000

Description

VL.LIMITN sets the velocity command negative limit.

If the input to the velocity loop is lower than VL.LIMITN, then the actual velocity command VL.CMD (pg 473) is limited by the value of VL.LIMITN.

Related Topics

49.22 VL.LIMITP

General Information		
Туре	NV Parameter	
Description	Sets the velocity high limit; active in opmodes 1 (velocity) and 2 (position)	
Description	only.	
	Depends on or	
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s	
	Linear: counts/s, mm/s, µm/s, custom units/s	
	Rotary:	
	0.000 to 15,000.000 rpm	
	0.000 to 250.000 rps	
	0.000 to 90,000.000 deg/s	
	0.000 to 1,250.000 custom units/s	
Range	0.000 to 1570.796 rad/s	
	Linear:	
	0.000 to 1,073,741,824,000.000 counts/s	
	0.000 to 250.000*MOTOR.PITCH (pg 392) mm/sec	
	0.000 to 250,000.000*MOTOR.PITCH (pg 392) μm/s	
	0.000 to 1,250.000 custom units/s	
	Rotary:	
	3,000.000 rpm	
	50.000 rps	
	18,000.002 deg/s	
	250.000 (custom units)/s	
Default Value	314.159 rad/s	
value	Linear:	
	0.050 counts/s	
	50.000*MOTOR.PITCH (pg 392) mm/sec	
	50,000.004*MOTOR.PITCH µm/sec	
	250.000 custom units/s	
Data Type	Float	
See Also	VL.LIMITN (pg 484), VL.CMD (pg 473)	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3622h/0	M 01-00-00-000
CANopen	30221/0	M_01-00-00-000

Description

VL.LIMITP sets the velocity command positive limit.

486

If the input to the velocity loop is higher than VL.LIMITP, then the actual velocity command VL.CMD (pg 473) is limited by the value of VL.LIMITP.

Related Topics

49.23 VL.LMJR

General Information		
Туре	NV Parameter	
Description	Sets the ratio of the estimated load moment of inertia relative to the motor moment of iner-	
	tia; active in opmodes 1 (velocity) and 2 (position) only.	
Units	NA	
Range	0 to 100.0	
Default	0	
Value		
Data Type	Float	
See Also	IL.FF (pg 353)	
Start Ver-	M 01-00-000	
sion		

Description

This parameter is used in the internal calculation of the current loop acceleration feed forward gain value.

Related Topics

1 Velocity Loop

49.24 VL.MODEL

General Information		
Туре	R/O Parameter	
Description	Reads the observer velocity signal; active in opmodes 1 (velocity) and 2 (position) only.	
	Depends on UNIT.VROTARY or UNIT.VLINEAR, UNIT.ACCLINEAR	
Units	Rotary: rpm, rps, deg/s, (custom units)/s, rad/s	
	Linear: counts/s, mm/s, µm/s, (custom units)/s	
Range	N/A	
Default Value	N/A	
Data Type	Float	
See Also	VL.FB (pg 476), VL.KO (pg 481)	
Start Version	M_01-00-01-000	

Description

VL.MODEL is the observer velocity output. When VL.KO (pg 481) is tuned properly, VL.MODEL will match VL.FB (pg 476), except when there is an unspecified offset between the two.

Related Topics

49.25 VL.OBSBW

General Information		
Туре	NV Parameter	
Description	Sets the bandwidth of the observer in Hz.	
Units	Hz	
Range	10 to 4,000 Hz	
Default Value	30 Hz	
Data Type	Float	
See Also	N/A	
Start Version	M_01-03-00-004	

Description

This parameter sets the bandwidth of the observer in Hz. The observer passes the velocity feedback through a PID control loop that behaves like a low-pass filter with a bandwidth of VL.OBSBW.

Related Topics

1 Velocity Loop

49.26 VL.OBSMODE

General Information		
Туре	NV Parameter	
Description	Sets the observer operating mode.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-03-00-004	

Description

This parameter sets the observer operating mode. When VL.OBSMODE = 0, the observer is not part of the control loop; that is, VL.FB is used as the velocity feedback signal to the velocity loop. When VL.OBSMODE = 1, the observer is part of the control loop; VL.MODEL is used as the velocity feedback signal.

Related Topics

49.27 VL.THRESH

General Inform	nation
Туре	NV Parameter
Description	Sets the over speed fault value; active in opmodes 1 (velocity) and 2 (position)
	only.
	Depends on or
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s
	Linear: counts/s, mm/s, µm/s, custom units/s
	Rotary:
	0.000 to 15,000.000 rpm
	0.000 to 250.000 rps
	0.000 to 90,000.000 deg/s
	0.000 to 1,250.000 custom units/s
Range	0.000 to 1,570.796 rad/s
	Linear:
	0.000 to 1,073,741,824,000.000 counts/s
	0.000 to 250.000*MOTOR.PITCH (pg 392) mm/s
	0.000 to 250,000.000*MOTOR.PITCHMOTOR.PITCH (pg 392)µm/s
	0.000 to 1,250.000 custom units/s
	Rotary:
	3,600 rpm
	60 rps
	21,600.000 deg/s
	300.000 custom units/s
Default	376.991 rad/s
Value	Linear:
	0.060 counts/s
	60.000*MOTOR.PITCH (pg 392) mm/s
	60,000.04*MOTOR.PITCHMOTOR.PITCH (pg 392)µm/s
	300.000 custom units/s
Data Type	Float
See Also	VL.CMD (pg 473), VL.CMDU (pg 474)
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and	3627h/0	M 01-00-00-000
CANopen	3027170	M_01-00-00-000

Description

VL.THRESH sets the threshold for the velocity over which an over speed fault is generated.

The value is considered as an absolute value, hence it applies for both negative and positive velocities.

Example

VL.THRESH is set to 600 rpm. A velocity (VL.FB (pg 476)) of 700 rpm will generate an over speed fault.

Related Topics

50 EtherCAT Profile

50.1	Slave Register	493
50.2	AL Event (Interrupt Event) and Interrupt Enable	494
50.3	Phase Run-Up	.497
50.4	CANopen over EtherCAT (CoE) Status Machine	500
50.5	Fixed PDO Mappings	505
50.6	Flexible PDO Mappings	508
50.7	Supported Cyclical Setpoint and Actual Values	514
50.8	Supported Operation Modes	516
50.9	Adjusting EtherCAT Cycle Time	516
50.10	Maximum Cycle Times depending on operation mode	517
50.11	Synchronization	518
50.12	Latch Control Word and Latch Status Word	520
50.13	Mailbox Handling	522
50.14	Fieldbus Parameters	528
50.15	EEProm Content	529

50.1 Slave Register

The table below gives the addresses of individual registers in the FPGA memory. The data is provided in little-endian format, with the 'least significant byte' occupying the lowest address. A detailed description of all registers and FPGA memory locations is available in the "EtherCAT Slave Controller" description of the EtherCAT user organization (www.EtherCAT.org).

Address	Length (Byte)	Description	ZA ECAT*	ZA Drive*
0x0120	2	AL Control	R/W	R/O
0x0130	2	AL Status	R/O	R/W
0x0134	2	AL Status Code	R/O	R/W
0x0204	2	Interrupt Enable Register	R/O	R/W
0x0220	2	AL Event (IRQ Event)	R/W	R/O
0x0800	8	Sync Manager 0 (Mail Out Control Register)	R/W	R/O
0x0808	8	Sync Manager 1 (Mail In Control Register)	R/W	R/O
0x0810	8	Sync Manager 2 (Process data Output Con- trol Register)	R/W	R/O
0x0818	8	Sync Manager 3 (Process data Input Control Register)	R/W	R/O
0x0820	8	Sync Manager 4	R/W	R/O
0x0828	8	Sync Manager 5	R/W	R/O
0x0830	8	Sync Manager 6	R/W	R/O
0x0838	8	Sync Manager 7	R/W	R/O
0x0840	8	Sync Manager 8	R/W	R/O
0x1100	Max. 64	ProOut Buffer (Process data Output, set- points ECAT)	R/W	R/O
0x1140	Max. 64	ProIn (Process data Input, act. values ECAT)	R/O	R/W
0x1800	512	Mail Out Buffer (Object Channel Buffer ECAT, byte-length is specified in the device description file)	R/W	R/O
0x1C00	512	Mail In Buffer (Object Channel Buffer Drive, byte-length is specified in the device descrip- tion file)	R/O	R/W

* ZA ECAT = Access mode EtherCAT

* ZA Drive = Access mode drive

50.2 AL Event (Interrupt Event) and Interrupt Enable

Communication between the drive and the EtherCAT FPGA can be interrupt-driven. The interrupt enable register and the AL event register are responsible for the EtherCAT interface interrupt functionality.

There are two events which lead also to a HW interrupt within the drive, the EEPROM emulation event and the SyncManager 2 event. The actual values of the drive (SyncManager 3 data) are written without any AL event request during each HW IRQ, e.g. triggered by a SyncManager 2 event. The Mailbox exchange between the master and the AKD PDMM is completely handled by polling the AL event register within the background task of the drive.

The drive activates individual EtherCAT interface events when the corresponding bit of the interrupt enable register is set to 1. When it is set to 0, the hardware interrupts for the specific events are deactivated.

Parameter	Address	Bit	ZA Drive	ZA ECAT	Description
AL Control Event	0x204	0	R/W	R/O	Activation of AL control
					event for phase run-up
-	0x204	1	R/W	R/O	Reserved
Sync0 DC Distributed	0x204	2	R/W	R/O	Activation of distributed
Clock					clock (DC) sync 0 inter-
					rupts for entire com-
					munication
Sync1 DC Distributed	0x204	3	R/W	R/O	Activation of distributed
Clock					clock (DC) sync 1 inter-
					rupts for entire com-
					munication
SyncManager activation	0x204	4	R/W	R/O	Activation of 'Syn-
register change					cManager activation
					register change' IRQ.
EEPROM emulation	0x204	5	R/W	R/O	Activation of the
event					EEPROM emulation inter-
					rupts.
-	0x204	3 to 7	R/W	R/O	Reserved
Sync Manager 0 Event	0x205	0	R/W	R/O	Activation of output event
(Mail Out Event)					mailbox (SDO, Sync Man-
					ager 0) for object channel.
Sync Manager 1 Event	0x205	1	R/W	R/O	Activation of input event
(Mail In Event)					mailbox (SDO, Sync Man-
					ager 1) for object channel.

50.2.1 Interrupt Enable Register (Address 0x0204:0x0205)

AKD PDMM User Guide | 50.2.1 Interrupt Enable Register (Address 0x0204:0x0205)

Parameter	Address	Bit	ZA Drive	ZA ECAT	Description
Sync Manager 2 Event (Pro Out Event)	0x205	2	R/W	R/O	Activation of output event process data (PDO, card's cyclical setpoints)
Sync Manager 3 Event (Pro In Event)	0x205	3	R/W	R/O	Activation of input event process data (PDO, drive's cyclical actual val- ues)
-	0x205	4 to 7	R/W	R/O	Reserved

50.2.2 AL Event Request (Address 0x0220:0x0221)

When the relevant bit of the AL event request register is set to 1, the EtherCAT interface tells the drive which event it should process by the AKD PDMM.

Parameter	Address	Bit	ZA	ZA	Description
			Drive		
AL Control Event	0x220	0	R/O	R/W	Processing of AL con- trol event for phase run- up
Sync0 Distributed Clock (DC) Event	0x220	2	R/O	R/W	Processing of a dis- tributed clock (DC) event
Sync1 Distributed Clock (DC) Event	0x220	3	R/O	R/W	Processing of a dis- tributed clock (DC) event
SyncManager activation register change	0x220	4	R/O	R/W	The content of the Syn- cManager activation register has been changed.
EEPROM emulation event	0x220	5	R/O	R/W	Processing of an EEPROM emulation event in order to identify the AKD PDMM within the network.
-	0x220	6 to 7	R/O	R/W	Reserved
Sync Manager 0 Event	0x221	0	R/O	R/W	Mailbox request (SDO, Sync Manager 0) for object channel.
Sync Manager 1 Event	0x221	1	R/O	R/W	Mailbox response (SDO, Sync Manager 1) for object channel.
Sync Manager 2 Event	0x201	2	R/O	R/W	Process data output (PDO, card's cyclical setpoints)
Sync Manager 3 Event	0x201	3	R/O	R/W	Process data input (PDO, drive's cyclical actual values)
Sync Manager 4 –					
Sync Manager 7 Event	0x221	4 to 7	R/O	R/W	Reserved
Sync Manager 8 –					
Sync Manager 15 Event	0x222	0 to 7	R/O	R/W	Reserved

496

50.3 Phase Run-Up

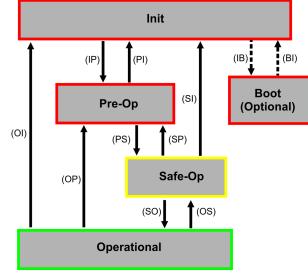
The AL control, AL status and AL status code registers are responsible for communication phase run-up (also referred to as EtherCAT status change), for current status display and for any fault messages. The drive responds to every EtherCAT interface transition request made by the AL control register via the AL Status and AL Status Code registers. Any fault messages are displayed in the AL status code register.

A status change within the AL control register is polled within the AKD PDMM, which means that an AL control event does not lead to a HW interrupt within the drive.

Parameter	Address	Bit	ZA Drive	ZA ECAT	Description
Status	0x120	3 to 0	R/O	W/O	0x01: Init Request
0x02: PreOperational					
Request					
0x03: Bootstrap Mode					
Request					
0x04: Safe Operational					
Request					
0x08: Operational					
Request					
Acknowledgement	0x120	4	R/O	W/O	0x00: No fault acknow-
					ledgement
					0x01: Fault acknow-
					ledgement (positive edge)
Reserved	0x120	7 to 5	R/O	W/O	-
Applic. specific	0x120	15 to 8	R/O	W/O	-

50.3.1 AL Control (Address 0x0120:0x0121)

50.3.2 AL Status (Address 0x0130:0x0131)


Parameter	Address	Bit	ZA Drive	ZA ECAT	Description
Status	0x130	3 to 0	W/O	R/O	0x01: Init
0x02: PreOperational					
0x03: Bootstrap Mode					
0x04: Safe Operational					
0x08: Operational					
Status change	0x130	4	W/O	R/O	0x00: Acknowledgement 0x01: Error, e.g. for- bidden transition
Reserved	0x130	7 to 5	W/O	R/O	-
Applic. specific	0x130	15 to 8	W/O	R/O	-

50.3.3 AL Status Code (Address 0x0134:0x0135)

Parameter	Address	Bit	ZA I	Drive	ZA ECAT	Desc	ription	
Status	0x134	7 to 0	W	//O	R/O	See ta	able below	
Status	0x135	7 to 0	N	//0	R/O	See ta	able below	
Code	Description	Description			ent Status us change))	Resulting Status	
0x0000	No error			All			Current Status	
0x0011	Invalid requested state change				, I -> O, P - B, S -> B, P		Current Status + E	
0x0017	Invalid sync manager configuration			l -> P	, P -> S		Current Status + E	

No other codes are supported.

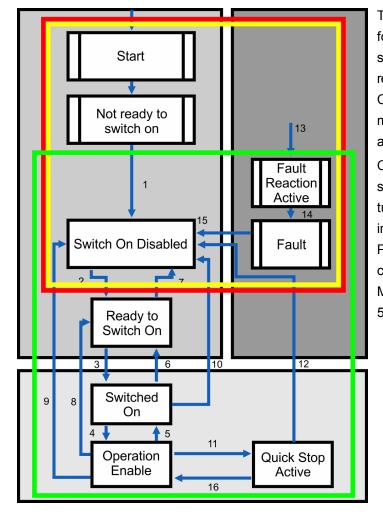
50.3.4 EtherCAT communication phases

INIT: Initialization, no communication. EEPROM emulation will be activated. PRE-OP: Mailbox active, slave para-

meterization and startup parameters

SAVE-OP:

Cyclical actual values are transferred and the drive tries to synchronize.


OPERATIONAL:

Cyclical setpoints are processed, torque enable can be activated and the drive must be synchronized.

Individual communication transitions

Transition	AL Control (Bit 3 to 0)	Description
(IB)	0x03	-
(BI)	-	-

Transition	AL Control (Bit 3 to 0)	Description
(IP)	0x02	AKD PDMM reads the SyncManager 0 & 1 configuration and verifies the value of the start-address and the length. The AKD PDMM prepares itself for handling Syn- cManager 0 events.
(PI)	0x01	-
(PS)	0x04	AKD PDMM reads the SyncManager 2 & 3 configuration and verifies the value of the start-address and the length.
(SP)	0x02	-
(SI)	0x01	-
(SO)	0x08	The SnycManager 2 hardware interrupt will be enabled by the drive.
(OS)	0x04	Deactivation of SyncManager 2 hardware interrupt.
(OP)	0x02	Deactivation of SyncManager 2 hardware interrupt
(OI)	0x01	Deactivation of SyncManager 2 hardware interrupt.

50.4 CANopen over EtherCAT (CoE) Status Machine

The status machine for the control and status words corresponds to the CANopen status machine in accordance with DS402. CANopen control and status words are captured in every instance of fixed PDO mapping (see chapter "Fixed PDO Mappings" (→ p. 505)).

50.4.1 Status Description

Status	Description
Not Ready to	The drive is not ready to switch on; the controller has not indic-
Switch On	ated readiness for service. The drive is still in the boot phase or in
	fault status.
Switch On Dis-	In 'Switch On Disable' status, the amplifier cannot be enabled via
able	the EtherCAT interface, because (for example) there is no con-
	nection to a power source.
Ready to Switch	In 'Ready to Switch On' status, the drive can be enabled via the
On	control word.
Switched On	In 'Switched On' status, the amplifier is enabled, but the setpoints
	of the EtherCAT-interface are not yet transferred. The amplifier is
	idle, and a positive edge in bit 3 of the control word activates set-
	point transfer (transition to 'Operation Enable' status).
Operation Enable	In this status, the drive is enabled and setpoints are transferred
	from the EtherCAT interface.

Status	Description
Quick Stop Act-	The drive follows a quick stop ramp.
ive	
Fault Reaction	The drive responds to a fault with an emergency stop ramp.
Active	
Fault	A fault is pending, the drive is stopped and disabled.

50.4.2 Commands in the Control Word

Bit assignment in the control word

Bit	Name	Bit	Name
0	Switch on	8	Pause/halt
1	Disable Voltage	9	reserved
2	Quick Stop	10	reserved
3	Enable Operation	11	reserved
4	Operation mode specific	12	reserved
5	Operation mode specific	13	Manufacturer-specific
6	Operation mode specific	14	Manufacturer-specific
7	Reset Fault (only effective for faults)	15	Manufacturer-specific

Commands in the control word

Command	Bit 7 Fault Reset	Bit 3 Enable Operation	Bit 2 Quick Stop	Bit 1 Disable Voltage	Bit 0 Switch On	Transitions
Shutdown	Х	Х	1	1	0	2, 6, 8
Switch on	Х	Х	1	1	1	3
Disable Voltage	Х	Х	Х	0	Х	7, 9, 10, 12
Quick Stop	Х	Х	0	1	Х	7, 10, 11
Disable Operation	Х	0	1	1	1	5
Enable Operation	Х	1	1	1	1	4, 16
Fault Reset	1	Х	Х	Х	Х	15

Bits labeled X are irrelevant. 0 and 1 indicate the status of individual bits.

Mode-dependent bits in the control word

The following table shows the mode-dependent bits in the control word. Only manufacturer-specific modes are supported at present. The individual modes are set by Object 6060h Modes of operation.

Operation mode	No	Bit 4	Bit 5	Bit 6
Profile Position Mode (pp)	01-	new_setpoint	change_	abso-
	h		set_imme-	lute/relative
			diately	
Profile Velocity Mode (pv)	03-	reserved	reserved	reserved
	h			
Profile Torque Mode (tq)	04-	reserved	reserved	reserved
	h			
Homing Mode (hm)	06-	homing_operation_	reserved	reserved
	h	start		
Interpolated Position Mode	07-		reserved	reserved
(ip)	h			
Cyclic synchronous position	08-	reserved	reserved	reserved
mode	h			

Description of the remaining bits in the control word

Bit 8: (Pause) If Bit 8 is set, then the drive halts (pauses) in all modes. The setpoints (speed for homing or jogging, motion task number, setpoints for digital mode) for the individual modes are retained.

Bit 9,10: These bits are reserved for the drive profile (DS402).

Bit 13, 14, 15: These bits are manufacturer-specific, and reserved at present.

50.4.3 Status Machine Bits (status word)

Bit assignment in the status word

Bit	Name	Bit	Name
0	Ready to switch on	8	Manufacturer-specific (reserved)
1	Switched on	9	Remote (always 1)
2	Operation enable	10	Target reached
3	Fault	11	Internal limit active
4	Voltage enabled	12	Operation mode specific (reserved)
5	Quick stop	13	Operation mode specific (reserved)
6	Switch on disabled	14	Manufacturer-specific (reserved)
7	Warning	15	Manufacturer-specific (reserved)

States of the status machine

State	Bit 6 switch on disable	Bit 5 quick stop	Bit 3 fault	Bit 2 operation enable	Bit 1 switched on	Bit 0 ready to switch on
Not ready to switch on	0	Х	0	0	0	0
Switch on disabled	1	Х	0	0	0	0
Ready to switch on	0	1	0	0	0	1
Switched on	0	1	0	0	1	1
Operation enabled	0	1	0	1	1	1
Fault	0	Х	1	0	0	0
Fault reaction active	0	Х	1	1	1	1
Quick stop active	0	0	0	1	1	1

Bits labeled X are irrelevant. 0 and 1 indicate the status of individual bits.

Description of the remaining bits in the status word

Bit 4: voltage_enabled The DC-link voltage is present if this bit is set.

Bit 7: warning There are several possible reasons for Bit 7 being set and this warning being produced. The reason for this warning can be revealed by using the Object 20subindex manufacturer warnings.

Bit 9: remote is always set to 1, i.e. the drive can always communicate and be influenced via the RS232 - interface.

Bit 10: target_reached This is set when the drive has reached the target position.

Bit 11: internal_limit_active This bit specifies that a movement was or is limited. In different modes, different warnings cause the bit to be set.

50.5 Fixed PDO Mappings

Various ready-to-use mappings can be selected for cyclic data exchange via SDO's of the object 0x1C12 and 0x1C13. Using object 0x1C12 subindex 1 (Sync Manager 2 assignment), a fixed mapping for the cyclic command values can be set with the values 0x1701, 0x1702,0x1720 to 0x1724. Using object 0x1C13 subindex 1 (Sync Manager 3 assignment), a fixed mapping for the cyclic actual values can be set via the data 0x1B01, 0x1B20 to 0x1B25.

Use the sequence below to select the fixed command value mapping 0x1701 via SDO's:

- 1. SDO write access to object 0x1C12Sub0 Data:0x00
- 2. SDO write access to object 0x1C12Sub1 Data:0x1701
- 3. SDO write access to object 0x1C12Sub0 Data:0x01
- NOTE

Up to firmware version 1.8.x.x AKD.XML file, fixed mapping 0x1701 called out 0x6062sub0 as the "Position Command". From AKD PDMM firmware release 1.8.5.0, the AKD.XML will be changed to call out 0x60C1sub1 as the "Position Command" and an additional XML file called "AKD_TwinCAT.XML" will be added to support TwinCat 2x and older. In reality, SDO 0x6062sub0 is not supported in the AKD PDMM firmware but was called in the fixed mapping to support a TwinCat issue.

Position interface, supported fixed mappings:

0x1701	Position command value (4 bytes), Control word (2 bytes), total (6 bytes)
0x1720	Control Word (2 bytes), Interpolated position command value (4 bytes), Latch control word (2 bytes), Torque feed forward (2 bytes), Digital out- puts (2 bytes)
0x1721	Interpolated position command value (4 bytes), Control Word (2 bytes), Torque feed forward (2 bytes)
0x1722	Control word (2 byte), Interpolated position command value (4 bytes), Latch control word (2 bytes), Torque feed forward (2 bytes), Digital out- puts (2 bytes), max. torque (2 bytes)
0x1723	Control word (2 bytes), Interpolated position command value (4 bytes), Latch control word (2 bytes), Torque feed forward (2 bytes), Digital out- puts (2 bytes), Reset of changed input information (2 bytes)
0x1724	Target position for cyclic synchronous position mode (4 bytes), Control word (2 byte), Torque feed forward (2 bytes)
0x1B01	Position actual value (4 bytes), Status word (2 bytes), total (6 bytes)
0x1B20	Position actual internal value (4 bytes), 2nd position feedback position (4 bytes), velocity actual value (4 bytes), digital inputs (4 bytes), following error (4 bytes), latch position positive (4 bytes), status word (2 bytes), torque actual value (2 bytes), latch status (2 bytes), analogue input value (2 bytes)
0x1B21	Position Actual Internal Value (4 bytes), Status word (2 bytes)

sition actual internal value (4 bytes), 2nd position feedback position (4
es), velocity actual value (4 bytes), digital inputs (4 bytes), following
or (4 bytes), latch position negative (4 bytes), status word (2 bytes),
que actual value (2 bytes), latch status (2 bytes), analogue input value
bytes)
sition actual internal value (4 bytes), 2nd position feedback position (4
es), velocity actual value (4 bytes), digital inputs (4 bytes), following
or (4 bytes), latch position positive / negative (4 bytes), status word (2
es), torque actual value (2 bytes), latch status (2 bytes), analogue
ut value (2 bytes)
sition actual value (4 bytes), status word (2 bytes)
ition actual internal value (4 bytes), 2nd position feedback position (4
es), latch position 2 positive / negative (4 bytes), digital inputs (4
es), following error (4 bytes), latch position 1 positive / negative (4
es), status word (2 bytes), torque actual value (2 bytes), latch status (2
es), analogue input value (2 bytes)

Velocity interface, supported fixed mappings:

0x1702 Velocity command value (4 bytes), Control word (2 bytes), total (6 bytes)

The objects, which are mapped into the fixed PDOs can be read via the subindices 1 to n of the above indices. The number of mapped entries is available by reading subindex 0 of the above indices. Example: A read access to object 1702 sub 0 gives a value of 2, a read on subindex 1 gives 0x60ff0020, on subindex 2 0x60400010. The meaning of these numbers can be seen in the CANopen manual or the flexible-mapping example (\rightarrow p. 511.).

50.6 Flexible PDO Mappings

In addition to the fixed PDO mapping the so-called flexible mapping of real-time objects is possible.

Restrictions of flexible mapping:

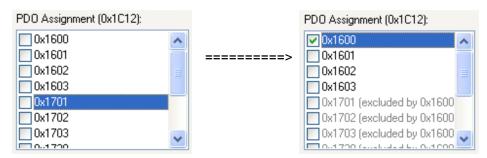
- An odd length PDO is not allowed.
 - In the Rx(=set-point)-direction the dummy-object 0x0002 sub 0 with a length of 8 bits can be used to make the PDO-length even.
 - In the Tx(=actual value)-direction one sub-index of the manufacturer status object 0x2002 sub 1..4 can be used to guarantee the even length of the Tx-PDO.
 - These special mappings may be used if the objects 0x6060 and 0x6061 have to be used in the mapping.
- The allowed PDOs have up to 32 bytes (Tx) or 22 bytes (Rx). They are built from smaller PDO modules with a maximum length of 8 bytes. These are built by using the mapping objects 0x1600 to 0x1603 and 0x1a00 to 0x1a03.

The configuration is similar to the described sequence for the fixed mappings:

- 1. The mapping selection is cleared (write 0 to object 0x1C12 sub 0 and 1C13 sub 0)
- As the AKD PDMM implementation is based on CANopen the real-time data are build from up to 4 PDOs with 8 bytes in both directions. These PDOs are built in the same way as in a CANdrive with the objects 0x1600 - 0x1603 and 0x1A00 - 0x1A03. Unused PDOs must be cleared with writing 0 to the subindex 0.
- 3. SDO write access to object 0x1C12 sub 1 ... 4 with the PDOs (0x1600 ... 0x1603), that should be used in receive direction of the AKD PDMM (set point values).
- 4. SDO write access to object 0x1C13 sub 1 ... 4 with the PDOs (0x1A00 ... 0x1A03), that should be used in transmit direction of the AKD PDMM (actual values).
- 5. SDO write access to the objects 0x1C12 sub 0 and 0x1C13 sub 0 with the number of mapped PDOs in this direction.

See an example in chapter "Flexible PDO Mappings" (→ p. 508).

The cyclically used data are visible in the PDO-assignment window for the Inputs and Outputs of the Sync Managers. Default setting are the fixed PDOs 0x1701 and 0x1B01 (visible contents when selected in the PDO list).


eneral Ether(AT DC	Process	Data Startup	CoE • I	Online Online						
Sync Manager:			PDO List:								
SM Size	Туре	Flags	Index	Size	Name	Flags	SM	SU	^		
0 512	MbxOut		0x1A00	2.0	Inputs			0			
1 512	MbxIn		0x1A01	0.0	Inputs			0			
2 6	Outputs		0x1A02	0.0	Inputs			0			
36	Inputs		0x1A03	0.0	Inputs			0			
			0x1B01	6.0	Inputs	F	3	0			
			0x1B20	32.0	Inputs	F		0			
			0x1B21	6.0	Inputs	F		0			
			0x1B22	32.0	Inputs	F		0			
			0x1B23	32.0	Inputs	F		0			
			0x1B24	6.0	Inputs	F		0			
<		>	0x1600	2.0	Outputs			0	~		
PDO Assignme	nt (0x1C12):		PD0 Conter	it (0x1A00)):						
🔲 0x1600 (ex	cluded by 0x1	701 🔨	Index	Size	Offs Name	Т	уре	Default (hex)			
🔲 0x1601 (ex	cluded by Ox1	701	0x6041:00	2.0	0.0 Status word		INT				
🔲 0x1602 (ex	cluded by 0x1	701 =			2.0						
0x1603 (ex	cluded by 0x1	701									
V 0x1701	,										
0x1702 (ex	cluded by Ov1	701									
	cluded by 0x1										
0.1700 (0.	cluded by 0x1	701									
Download			-								
			Predefined	PDU Assi	ignment: (none)				~		
									_		
	ignment	PD0 Assignment			Load PDO info from device						
			Load PDO i	nfo from o	levice						

General EtherCAT DC Process Data Startup CoE - Online Online										
Sync Manag	er:		PDO List:							
SM Siz	e Type	Flags	Index	Size	Name		Flags	SM	SU	1
0 512	2 MbxOut		0x1A00	2.0	Inputs				0	
1 512	2 MbxIn		0x1A01	0.0	Inputs				0	
2 6	Outputs		0x1A02	0.0	Inputs				0	
36	Inputs		0x1A03	0.0	Inputs				0	
			0x1B01	6.0	Inputs		F	3	0	
			0x1B20	32.0	Inputs		F		0	
			0x1B21	6.0	Inputs		F		0	
			0x1B22	32.0	Inputs		F		0	
			0x1B23 0x1B24	32.0	Inputs		F		0	
<		>	0x1624	6.0 2.0	Inputs Outputs		F		0	
0x1600 (ment (0x1C12): excluded by 0x1		PD0 Conten Index	Size	Offs	Name	1	Гуре	Default	(hex)
	excluded by 0x1		0x6040:00	2.0	0.0	Control word	U	INT		
🔲 0x1602 (excluded by 0x1	701 🔳			2.0					
	excluded by 0x1	701								
		_								
🗹 0x1701										
Ox1702 (excluded by 0x1									
0x1702 (0x1703 (excluded by 0x1 excluded by 0x1	701 🥫								
0x1702 (0x1703 (0x1703 (Download	excluded by 0x1	701 🥫	Predefined F	PDO Assi	gnment: (no	ne)				
Ox1702 (Ox1703 (Ox1703 (Ox1703 (Ox1700 C Ox1700 C	excluded by 0x1	701 🥫	Predefined F			ne)				
Ox1702 (Ox1703 (Ox1703 (Ox1703 (Ox1700 C Ox1700 C	excluded by 0x1	701 🥫		nfo from d	levice	ne)				

If the flexible mapping is required, the PDO configuration check box must be changed.

50.6.1 Example: Flexible PDO Mapping

For the flexible mapping of the Outputs the fixed mapping 0x1701 has to be switched off and up to 4 freemappable PDOs (0x1600-0x1603) can be used instead. The maximum number of bytes for each of these PDOs is 8.

After that the default mapping of e.g. the PDO 0x1600 can be extended:

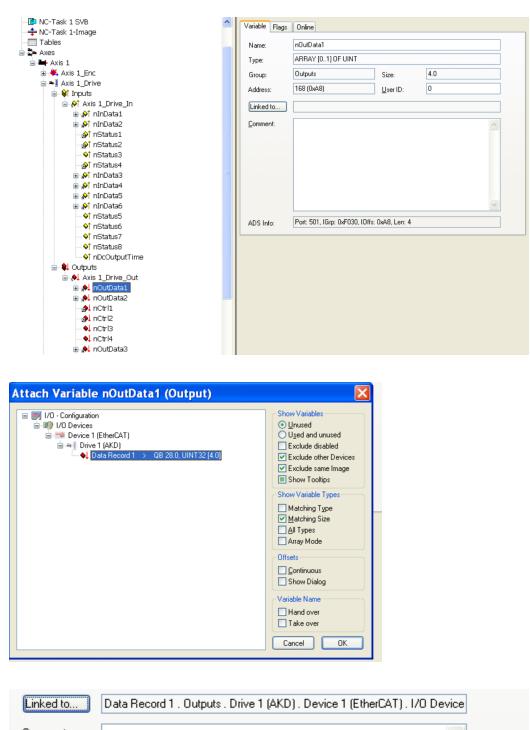
PDO Content (0x1600):

Index Size Of	fs Name	Туре	Default (hex)
0x6040:00 2.0 0.0		UINT	
Insert			
Edit			
Prede Move Up Move Down	(none)		×

A list of possible objects for the mapping will be shown and a new entry can be chosen.

Edit Pdo Entry Edit Pdo Entry Name: Data Record 1 OK Name: Position Actual Internal Value OK Index (hex): 60C1 24769 Cancel Index (hex): 60G3 24675 Cancel Sub Index: 1 OK Name: Position Actual Internal Value OK Cancel Data Type: UDINT Index (hex): 60G3 24675 Cancel Bit Lentgh: 32 Interve Data Type: DINT Data Type: Dint Data Type: Dint Data Type: Dint D								
Index (hex): 60C1 24769 Cancel Index (hex): 6063 24675 Cancel Sub Index: 1 Sub Index: 0 Data Type: DINT Data Type: DINT Data Type: DINT Data Type: DINT Index (hex): 6063 24675 Cancel Bit Lentgh: 32 32 Data Type: DINT Index (hex): 0 Data Type: DINT Index (hex): Data Type: DINT Data Type: DINT Data Type: Dintex (hex): Data Type: Dintex (hex): Data Type: Dintex (hex): Data Type:	Edit Pdo	Entry			Edit Pdo	Entry		
[0x2040 - Latch1P32 [0x2041 - Latch1N32 [0x2042 - Latch2P32 [0x2043 - Latch1N32 [0x2044 - Latch1N32 [0x2045 - Latch2N32 [0x2046 - Latch1N32 [0x2046 - Latch1P32 [0x2046 - Latch1P32 [0x2046 - Latch1N32 [0x2046 - Latch1P32 [0x2046 - Latch1P31 [0x6040 - Controlword [0x6041 - reserved [0x6042 - reserved [0x6042 - reserved [0x6041 - Wades of Operation [0x6041 - Wades of Operation [0x6041 - Wades of Operation [0x6041 - weserved [0x6041 - weserved [0x6041 - weserved	Index (hex): Sub Index: Data Type:	60C1 2 1 UDINT			Index (hex): Sub Index: Data Type:	6063 0 DINT	24675	
	From Dictionary:				0x1002 - Man 0x2050 - DRV 0x2040 - Latc 0x2041 - Latc 0x2042 - Latc 0x2043 - Latc 0x2044 - Latc 0x2044 - Latc 0x2045 - Latc 0x2045 - Latc 0x2046 - Latc 0x20	Vidacturer Status Reg / HANDWHEEL h1P32 h1N32 h2P32 h2P32 h2D32 h5tatus h1pn th5tatus h1pn th6janputChangedBi rved trolword usword trolword trole	ţ	
		· · ·		•	ection.			0-011-

Here the value of the actual internal position is selected.

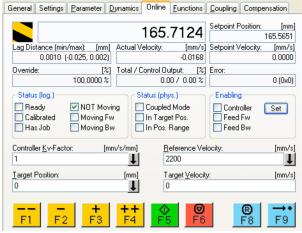

Transition	Protocol	Index	Data	Comment
C <ps></ps>	CoE	0x1C12:00	0x00 (0)	clear sm pdos (0x1C12)
C <ps></ps>	CoE	0x1C13:00	0x00 (0)	clear sm pdos (0x1C13)
C <ps></ps>	CoE	0x1A00:00	0x00 (0)	clear pdo 0x1A00 entries
C <ps></ps>	CoE	0x1A00:01	0x60410010 (1614872592)	download pdo 0x1A00 entry
C <ps></ps>	CoE	0x1A00:02	0x60630020 (1617100832)	download pdo 0x1A00 entry
C <ps></ps>	CoE	0x1A00:00	0x02 (2)	download pdo 0x1A00 entr
C <ps></ps>	CoE	0x1A01:00	0x00 (0)	clear pdo 0x1A01 entries
C <ps></ps>	CoE	0x1A02:00	0x00 (0)	clear pdo 0x1A02 entries
C <ps></ps>	CoE	0x1A03:00	0x00 (0)	clear pdo 0x1A03 entries
C <ps></ps>	CoE	0x1600:00	0x00 (0)	clear pdo 0x1600 entries
C <ps></ps>	CoE	0x1600:01	0x60400010 (1614807056)	download pdo 0x1600 entry
C <ps></ps>	CoE	0x1600:02	0x60C10120 (1623261472)	download pdo 0x1600 entry
C <ps></ps>	CoE	0x1600:00	0x02 (2)	download pdo 0x1600 entr
C <ps></ps>	CoE	0x1601:00	0x00 (0)	clear pdo 0x1601 entries
C <ps></ps>	CoE	0x1602:00	0x00 (0)	clear pdo 0x1602 entries
C <ps></ps>	CoE	0x1603:00	0x00 (0)	clear pdo 0x1603 entries
C <ps></ps>	CoE	0x1C12:01	0x1600 (5632)	download pdo 0x1C12:01 i
C <ps></ps>	CoE	0x1C12:00	0x01 (1)	download pdo 0x1C12 count
C <ps></ps>	CoE	0x1C13:01	0x1B01 (6913)	download pdo 0x1C13:01 i
C <ps></ps>	CoE	0x1C13:00	0x01 (1)	download pdo 0x1C13 count
C PS	CoE	0x6060:00	0x07 (7)	Opmode
C PS	CoE	0x60C2:01	0x02 (2)	Cycle time
C PS	CoE	0x60C2:02	0xFD (253)	Cycle exp

This results in the startup-SDO-list for this sample free-mapped-configuration.

The meaning of the data (for example 0x60410010 in the mapping of 0x1A00 sub 1) is as follows:

- 0x6041 is the index of the DS402 status word
- 0x00 is the subindex of the DS402 status word
- 0x10 is the number of bits for this entry, i. e. 16 bits or 2 bytes.

If this shall be used in the NC, the interpolation set point position has to be linked from the axis to the NCaxis.



Comment:


After doing this configuration the mapping can be activated as seen before in this document:

Now the NC-screen should show a position in the online window, which changes a bit in the last digits.

After enabling the power stage with the All-button, the drive can be moved via the jog-buttons or via the functions in the function menu.

50.7 Supported Cyclical Setpoint and Actual Values

Supported cyclical setpoint values

Name	CANopen	Data	Description
	object	type	
Position command value	0x60C1 sub 1	INT32	Interpolation data record in
			IP-mode
Velocity command value	0x60FF sub 0	INT32	
CANopen control-word	0x6040 sub 0	UINT16	CANopen control word.
Latch Control word	0x20A4 sub 0	UINT16	
Torque feed forward	0x60B2 sub 0	INT16	
Digital outputs	0x60FE sub 1	UINT32	
Target current	0x2071 sub 0	32 bit	scaled in mA
Modes of Operation	0x6060 sub 0	8 bit	DS402 opmode setpoint
Velocity Window	0x606D sub 0	16 bit	
Velocity Window Time	0x606E sub 0	16 bit	
Target Torque	0x6071 sub 0	16 bit	0.1% resolution
Maximum Torque	0x6072 sub 0	16 bit	
Profile position target velocity	0x6081 sub 0	32 bit	MT.V
Profile position target acc	0x6083 sub 0	32 bit	MT.ACC
Profile position target dec	0x6084 sub 0	32 bit	MT.DEC
Velocity feed forward	0x60B1 sub 0	32 bit	
Touch probe function	0x60B8	16 bit	
Analog output value	0x3470 sub 3	16 bit	
External feedback position	0x3497 sub 0	32 bit	
Clear digital Input Change Bit	0x20B8	16 bit	

Supported cyclical actual values

Name	CANopen	Data	Description
	object	type	
Position actual internal value	0x6063 sub 0	INT32	
Velocity actual value	0x606C sub 0	INT32	
CANopen status-word	0x6041 sub 0	UINT16	CANopen status word
Second position feedback	0x2050 sub 0	INT32	
Digital inputs	0x60FD sub 0	UINT32	
Following error actual value	0x60F4 sub 0	INT32	
Latch position positive edge	0x20A0 sub 0	INT32	
Torque actual value	0x6077 sub 0	INT16	
Latch status	0x20A5 sub 0	UINT16	
Analog input value	0x3470 sub 0	INT16	
Actual Current	0x2077 sub 0	32 bit	scaled in mA
Latch1 negative edge	0x20A1 sub 0	32 bit	
Latch2 Positive	0x20A2 sub 0	32 bit	
Latch2 Negative	0x20A3 sub 0	32 bit	
Latch1 positive/negative edge	0x20A6	32 bit	
Latch 2 positive/negative edge	0x20A7	32 bit	
Modes of Operation	0x6061	8 bit	DS402 opmode status
Position Actual Value	0x6064 sub 0	32 bit	WB/ DS402 scale
			units
Touch probe status	0x60B9 sub 0	16 bit	
Touch probe 1 positive edge pos	0x60BA sub 0	32 bit	
Touch probe 1 negative edge pos	0x60BB sub 0	32 bit	
Touch probe 2 positive edge pos	0x60BC sub 0	32 bit	
Touch probe 2 negative edge pos	0x60BD sub 0	32 bit	
Additional Pos actual value	0x60E4 sub 0	48 bit	
Additional Pos actual value	0x60E4 sub 1	32 bit	
Motor I2t	0x3427 sub 3	32 bit	
Analog output value	0x3470 sub 2	16 bit	
Analog Input & Output value	0x3470 sub 4	16 bit	
Manufacturer status register	0x1002 sub 0	32 bit	

50.8 Supported Operation Modes

CANopen mode of	AKD PDMM mode of	Description
operation	operation	
Profile velocity	DRV.OPMODE 1	0x6060Sub0 Data: 3
	DRC.CMDSOURCE 1	In this mode, the EtherCAT master
		sends cyclic velocity command val-
		ues to the AKD PDMM.
Interpolated position	DRV.OPMODE 2	0x6060Sub0 Data: 7
	DRV.CMDSOURCE 1	In this mode of operation the Ether-
		CAT master sends cyclic position
		command values to the AKD
		PDMM. These command values are
		interpolated by the AKD PDMM
		according to the fieldbus sample
		rate.
Homing mode	DRV.OPMODE 2	0x6060 sub 0 data : 6
	DRV.CMDSOURCE 0	In this mode an AKD PDMM-internal
		homing can be done.
Profile Position	DRV.OPMODE 2	0x6060sub0 Data: 1
	DRV.CMDSOURCE 0	Uses motion task 0 to execute a
		point to point move
Torque	DRV.OPMODE 0	0x6060sub0 Data: 4
	DRV.CMDSOURCE 1	Commands torque in % of drive peak
		torque
Cyclic Synchronous	DRV.OPMODE 2	0x6060sub0 Data: 8
Position	DRV.CMDSOURCE 1	Master calculates move profile and
		commands motion with position
		points

50.9 Adjusting EtherCAT Cycle Time

The cycle time to be used in the drive for the cyclical setpoints and actual values can either be stored in the FBUS.SAMPLEPERIOD parameter in the amplifier or configured in the startup phase.

This takes place via SDO mailbox access to CANopen objects 60C2 subindex 1 and 2.

Subindex 2, known as the interpolation time index, defines the power of ten of the time value (e.g. -3 means 10-3 or milliseconds) while subindex 1, known as interpolation time units, gives the number of units (e.g. 4 means 4 units).

You can run a 2 ms cycle using various combinations. For example,

Index = -3, Units = 2

or Index = -4, Units = 20 etc. The FBUS.SAMPLEPERIOD parameter is counted in multiples of 62.5us microseconds within the device. This means, for example that 2 ms equates to FBUS.SAMPLEPERIOD value of 32.

50.10 Maximum Cycle Times depending on operation mode

The minimum cycle time for the drive is largely dependent on the drive configuration (second actual position value encoder latch functionality enabled and so on)

Interface	Cycle time AKD PDMM
Position	≥0.25 ms (≥250 µs)
Velocity	≥0.25 ms (≥250 µs)
Torque	≥0.25 ms (≥250 µs)

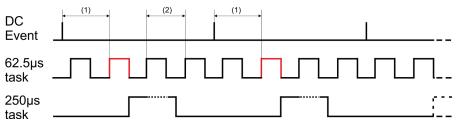
50.11 Synchronization

On all drives, the internal PLL is theoretically able to even out an average deviation of up to 4800 ppm in the cycle time provided by the master. The drive checks once per fieldbus cycle a counter within the drive internal FPGA, which is cleared by a Sync0 (Distributed clock) event. Depending of the counter value, the drive extends or decreases the 62.5 µs MTS signal within the drive by a maximum of 300 ns.

The theoretical maximum allowed deviation can be calculated by using the following formula:

$$\max_{de} v = \frac{300[ns]}{62.5[\mu s]} \cdot 1,000,000 = 4800 \text{ [ppm]}$$

The synchronization functionality within the drive can be enabled via setting bit 0 of the FBUS.PARAM02 parameter to high. Therefore FBUS.PARAM02 must be set to the value of 1. Furthermore the distributed clock functionality must be enabled by the EtherCAT master in order to activate cyclic Sync0 events.


50.11.1 Synchronization behavior with distributed clocks (DC) enabled

When the EtherCAT master enables distributed clocks, a distributed clock (DC) event is created in the AKD PDMM once per fieldbus cycle. An assigned 62.5 µs real-time task in the AKD PDMM monitors the elapsed time between the DC events and the AKD PDMM System time and extends or reduces the 62.5 µs strobe to the CPU as necessary.

The following fieldbus parameters are used for the synchronization feature:

- 1. FBUS.SYNCDIST = Expected time delay of the AKD PDMM PLL-code to the DC event.
- 2. FBUS.SYNCACT = Actual time delay of the AKD PDMM PLL-code to the DC event.
- 3. FBUS.PLLTHRESH = Number of consecutive successful synchronized PLL cycles of the AKD PDMM before the Drive is considered as synchronized.
- FBUS.SYNCWND = Synchronization window in which the AKD PDMM is considered to be synchronized. The Drive is considered synchronized as long as the following statement is true is true for FBUS.PLLTHRESH consecutive cycles: FBUS.SYNCDIST-FBUS.SYNCWND < FBUS.SYNCACT < FBUS.SYNCDIST+FBUS.SYNCWND

Example with a 4kHz fieldbus sample rate:

Explanation: The red-marked 62.5[µs] real-time task displays the AKD PDMM 62.5 µs real-time task within one fieldbus cycle which is responsible for calling the AKD PDMM PLL-code. The time delay (1) shows the actual delay to the previous DC event, which is ideally close to the adjusted FBUS.SYNCDIST parameter. Depending on (1) the AKD PDMM slightly extends or reduce the 62.5[µs] IRQ generation of the high-priority real-time task in order to either increase or decrease the measured time delay to the DC event (1) for the next PLL cycle. The time distance (2) shows the $62.5[\mu s] \pm x[ms]$ realtime task of the AKD PDMM.

50.11.2 Synchronization behavior with distributed clocks (DC) disabled

The AKD PDMM fieldbus synchronization algorithm is similar to that used by Distributed Clocks. The difference is that the AKD PDMM synchronizes to a SyncManager2 event instead of the DC event. A SyncManager2 event is created when the EtherCAT Master sends a new package of command values to the drive while the network is in the Operational state. This occurs once per fieldbus cycle.

50.12 Latch Control Word and Latch Status Word

Latch Control word (2 Byte)

Bit	Value (bin)	Value (hex)	Description
0	00000000 00000001	zz01	Enable extern latch 1 (positive rise)
1	00000000 00000010	zz02	Enable extern latch 1 (negative rise)
2	00000000 00000100	zz04	Enable extern latch 2 (positive rise)
3	00000000 00001000	zz08	Enable extern latch 2 (negative rise)
4			
5-7			Reserve
8-12	00000001 00000000	01zz	Read external latch 1 (positive rise)
	00000010 00000000	02zz	Read external latch 1 (negative rise)
	00000011 00000000	03zz	Read external latch 2 (positive rise)
	00000100 00000000	04zz	Read external latch 2 (negative rise)
13-15			Reserve

Latch Status word (2 Byte)

Bit	Value (bin)	Value (hex)	Description
0	0000000 00000001	zz01	External latch 1 valid (positive rise)
1	0000000 00000010	zz02	External latch 1 valid (negative rise)
2	0000000 00000100	zz04	External latch 2 valid (positive rise)
3	0000000 00001000	zz08	External latch 2 valid (negative rise)
4			
5-7			Reserve
8-11	00000001 00000000	z1zz	Acknowledge value external latch 1 (positive rise)
	00000010 00000000	z2zz	Acknowledge value external latch 1 (negative rise)
	00000011 00000000	z3zz	Acknowledge value external latch 2 (positive rise)
	00000100 00000000	z4zz	Acknowledge value external latch 2 (negative rise)

Bit	Value (bin)	Value (hex)	Description
12-15	00010000 00000000	1zzz	Zustand Digital Input 4
	00100000 00000000	2zzz	Zustand Digital Input 3
	0100000 00000000	4zzz	Zustand Digital Input 2
	1000000 0000000	8zzz	Zustand Digital Input 1

50.13 Mailbox Handling

With EtherCAT, acyclical data traffic (object channel or SDO channel) is called mailbox. This system is based around the master:

Mailbox Output:

The master (EtherCAT controller) sends data to the slave (drive). This is essentially a (read/write) request from the master. Mailbox output operates via Sync Manager 0.

Mailbox Input:

The slave (drive) sends data to the master (EtherCAT controller). The master reads the slave's response. Mailbox input operates via Sync Manager 1.

Timing diagram

The timing diagram illustrates the mailbox access process:

- 1. The EtherCAT master writes the mailbox request to the mail-out buffer.
- On the next interrupt, the EtherCAT interface activates a Sync Manager 0 event (mailbox output event) in the AL event register.
- 3. The drive reads 16 bytes from the mail-out buffer and copies them to the internal mailbox output array.
- 4. The drive identifies new data in the internal mailbox output array and performs an SDO access to the object requested by the EtherCAT interface. The response from the drive is written to an internal mailbox input array.
- 5. The drive deletes all data in the internal mailbox output array so that a new mailbox access attempt can be made.
- 6. The drive copies the response telegram from the internal mailbox input array to the mail-in buffer of the EtherCAT interface.

50.13.1 Mailbox Output

An interrupt by the EtherCAT-interface with a Sync Manager 0 - Event starts a Mailbox Output Process. A 1 in the Mail Out Event-Bit of the AL Event register signalizes the drive, that the EtherCAT-interface wants to send a Mailbox message and that it has already stored the required data in the Mail Out Buffer. Now 16 Byte data are read by the drive with the IRQ process. The bytes are defined as follows

	A	ddress	s 0x18	00		Address 0x180F								
0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CA	N over	Ether	CAT s	pecific	c data	a			CA	N sp	ecific	data	3	
	((CoE ⊦					(stan	dard	CAN	SD	C)			
Byte 0	Length	of the	data	(Low E	Byte)									
Byte 1	Length	of the	data	(High E	Byte))								
Byte 2	Addres	s (Lov	v Byte	;)										
Byte 3	Addres	s (Hig	jh Byte	e)										
Byte 4	Bit 0 to	5: Ch	annel											
	Bit 6 to) 7: Pri	ority											
Byte 5	Bit 0 to	» З: Ту	ре			1 = Res								
						2 = Res						ther	CAT	
						3 = Can	ove	er Et	herC	A I	.)			
	Bit 4 to			-										
Byte 6						'DO i	num-							
Dista 7	ber, see Byte 7 for MSB)													
Byte 7	Bit 0: MSB of the PDO number, see Byte 6													
	Bit 1 to				-+									
	Bit 4 to) /: Co	E spe	CIFIC ty	· +	0: Reserved								
	<u> </u>					1: Emergency message								
	<u> </u>					2: SDO request 3: SDO answer								
	<u> </u>													
						4: TXP[
						5: RxPDO								
						6: Remote transmission request of a TxPDO								
						7: Remote transmission request of a								
		RxPDO												
	<u> </u>					815: ı	rese	rvec						
Byte 8	Contro	ol-Byte	in the	CAN	teleg	ram:								
	write a	-				0x23=4	Byte	e, Ox	27=3	Byte	e, 0x2	2B=2	Byte	,
						0x2F=1	Byte	Э		-			-	
	read ac	ccess:			-	0x40								

Byte 10	High Byte of the CAN object number (Index)
Byte 11	Subindex according to CANopen Specification for the drive
Byte 12	Data with a write access (Low Byte)
Byte 13	Data with a write access
Byte 14	Data with a write access
Byte 15	Data with a write access (High Byte)

The drive answers every telegram with an answer in the Mailbox Input buffer.

50.13.2 Mailbox Input

The drive answers every CoE telegram with a 16 byte answer telegram in the Mailbox Input buffer. The bytes are defined as follows:

	Address 0x1C00	Address 0x1C0F						
0 1	2 3 4 5 6 7	8 9 10 11 12 13 14 15						
CA	N over EtherCAT specific data	CAN specific data						
	(CoE Header)	(standard CAN SDO)						
Byte 0	Length of the data (Low Byte)	·						
Byte 1	Length of the data (High Byte)							
Byte 2	Address (Low Byte)							
Byte 3	Address (High Byte)							
Byte 4	Bit 0 to 5: Channel							
	Bit 6 to 7: Priority							
Byte 5	Bit 0 to 3: Type	1 = Reserved: ADS over EtherCAT						
		2 = Reserved: Ethernet over Ether-						
		3 = Can over EtherCAT)						
	Bit 4 to 7: Reserved							
Byte 6		ons only, Bit 0 = LSB of the PDO num-						
Dite 7	ber, see Byte 7 for MSB)	Dute C						
Byte 7	Bit 0: MSB of the PDO number, see Byte 6							
	Bit 1 to 3: Reserved							
	Bit 4 to 7: CoE specific type							
		1: Emergency message						
		2: SDO request						
		3: SDO answer						
		4: TXPDO						
		5: RxPDO						
		6: Remote transmission request of a						
		TxPDO						
		7: Remote transmission request of a RxPDO						
		815: reserved						
Byte 8	Control-Byte in the CAN telegram:							
	write access OK:	0x60						
	read access OK + length of answer:	0x43 (4 Byte), 0x47 (3 Byte), 0x4B						
		(2Byte), 0x4F (1Byte)						
	error with read- or write access:	0x80						
Byte 9	Low Byte of the CAN object number							
		(

Byte 10	High Byte of the CAN object number (Index)						
Byte 11	Subindex according to CANopen Specification for Kollmorgen drive						
Byte 12	Data (Low Byte)						
Byte 13	Data	error code Fehlercode according to CANopen Specification in case of an error					
Byte 14	Data	data value of the object in case of successfull read access					
Byte 15	Data (High Byte)						

50.13.3 Example: Mailbox Access

In the example below, PDOs 0x1704 are mapped (see Chapter # "Fixed PDO Mappings"):

The master sends this mailbox output message:

0x0A	The next 10 Bytes contain data (Byte 2 to Byte 11)
0x00	The next 10 Bytes contain data (Byte 2 to Byte 11)
0x00	Address 0
0x00	Address 0
0x00	Channel 0 and Priority 0
0x03	CoE Object
0x00	PDO Number 0
0x20	PDO Number 0 and SDO-Request
0x2B	2 Byte write access
0x12	SDO-Object 0x1C12
0x1C	SDO-Object 0x1C12
0x01	Subindex 1
0x04	Data value 0x00001704
0x17	Data value 0x00001704
0x00	Data value 0x00001704
0x00	Data value 0x00001704
	0x00 0x00 0x00 0x03 0x03 0x20 0x28 0x12 0x12 0x01 0x04 0x04

The drive returns the following message:

0x0E	The next 14 Bytes contain data (Byte 2 to Byte 15)
0x00	The next 14 Bytes contain data (Byte 2 to Byte 15)
0x00	Address 0
0x00	Address 0
0x00	Channel 0 and Priority 0
0x03	CoE Object
0x00	PDO Number 0
0x20	PDO Number 0 and SDO-Answer
0x60	Successful write access
0x12	SDO-Object 0x1C12
0x1C	SDO-Object 0x1C12
0x01	Subindex 1
0x00	Data value 0x0000000
	0x00 0x00 0x00 0x03 0x00 0x20 0x20 0x60 0x12 0x12 0x01 0x00 0x00 0x00

50.14 Fieldbus Parameters

The AKD PDMM holds several fieldbus-specific, general purpose parameters. Some of them contain the following EtherCAT relevant data:

- **FBUS.PARAM02**: This parameter activates the synchronization feature of the AKD PDMM. The DC feature must be activated in order to allow the AKD PDMM to get synchronized with the master. A value of 1 enables the drive internal PLL functionality, a value of 0 deactivates this feature.
- FBUS.PARAM03: This parameter contains the Configured Station Alias address of the AKD PDMM. An EEPROM emulation write access to the Configured Station Alias address forces the AKD PDMM to store the drive parameters automatically using the DRV.NVSAVE command.
- **FBUS.PARAM04**: This parameter enables (1) or disables(0) the synchronization supervision of the CANOpen or EtherCAT fieldbus.

Default values for this parameter are as follows:

CANopen drive: disabled (0)

EtherCAT drive: enabled (1)

Synchronization supervision is active when FBUS.PARAM 04 = 1 and the first CANOpen Sync message or first EtherCAT frame is received. When more than three CANOpen sync messages or seven EtherCAT frames have not been received and the drive is enabled, fault F125 ("Synchronization lost"), occurs.

• FBUS.PARAM05

Bit 0	1	Faults can only be reset using DS402 control word bit 7.
	0	The reset can also be done via telnet or digital input and the DS402 state
		machine reflects this condition.
Bit 1	1	The state of the hardware enable does not change the state machine state
		Operation Enable.
	0	If the state Operation Enable or Switched on is active it falls back to the
		state switched On Disabled, if the Hardware enable goes to 0.
Bit 2	1	Workbench/Telnet can not software enable the drive, when
		CANopen/EtherCAT are Operational.
	0	Workbench/Telnet can software enable the drive.
Bit 3	1	DS402-state machine is not influenced, if the software-enable is taken
		away via Telnet.
	0	DS402-state machine is influenced, if the software-enable is taken away
		via Telnet.
Bit 4	1	Scaling is done via special DS402 - objects (independent on units)
	0	Scaling for position, velocity and acceleration objects is done via UNIT
		parameters

Bit 5	1	FBUS.PARAM03 defines the station alias address if not 0. If
		FBUS.PARAM03 set to 0, the address will be taken from rotary switches
		instead, if they are not 0. The EtherCAT master has the ability to use the
		alias address, selected by the drive, or issue its own.
	0	The rotary switches define the station alias address if not 0. If the rotary
		switches are set to 0, the address will be taken from FBUS.PARAM03
		instead, if it is not 0.
Bit 6	1	Bit 0 of parameter MT.CNTL (object 35D9 sub 0) can be accessed
	0	Bit 0 of parameter MT.CNTL (object 35D9 sub 0) is exclusively used for
		DS402 controlword
Bit 7		reserved
Bit 8	1	DS402-state SWITCHED ON means power stage disabled
	0	DS402-state SWITCHED ON means power stage enabled

50.15 EEProm Content

AKD PDMM has a built-in emulated EEProm. This EEProm can be read by the EtherCAT master to get some information about drive properties, like PDO-information, drive name, serial numbers and communication-specific attributes.

They are organized in categories. There are two manufacturer-specific categories implemented in the AKD PDMM:

- Category 0x0800: Holds a string with the model type in the format AKD PDMM-P00000-NxxC-0000
- Category 0x0801: Holds the firmware version in the format 0x_xx-xx-yyy

Glossary

-	Present attem
Term	Description
60° & 120° Hall	A method for decoding logic signals produced by Hall effect sensors installed
Sequences	in an electronically-switched three-phase brushless motor.
	The optical disk of the absolute encoder is designed to produce a digital word
Absolute	that distinguishes N distinct positions of the shaft. For example, if there are 8
Encoder	tracks, the encoder is capable of producing 256 distinct positions or an angular resolution of 1.406 (360/256) degrees.
	A positioning movement which is referenced to a fixed original position. For
Absolute	example, if a stage is positioned at +500 mm, an absolute move to +300 mm
Move	would result in a move of 200 mm towards the origin (in the negative direction).
	A change in velocity over time. Because <u>velocity</u> is a <u>vector</u> , it can change in
	two ways: a change in magnitude and/or a change in direction. In one dimen-
Acceleration	sion, acceleration is the rate at which something speeds up or slows down.
	However, more generally, acceleration is a <u>vector</u> quantity expressing the
	change with time of the velocity both in magnitude and in direction.
	Accuracy is the distance between the actual position of a mechanical system
Accuracy	and the expected position. It is typically specified in microns or arcsec per
	given travel for a deviation of $\pm 3\sigma$ (sigma).
	Mechanical device for moving or controlling a mechanism or system. The actu-
	ator is usually a physical mechanism but it can also refer to an artificial
Actuator	agent/intelligent agent.
	In virtual instrumentation actuators and sensors are the hardware com-
	plements of virtual instruments. Computer programs of virtual instruments use
	actuators to act upon real world objects.
Almirant	Almirant is a read only type of screen offered to the end user to control Sinop.
AS Input	A safety feature in the drive to prevent servos from being restarted.
	Short for American Standard Code for Information Interchange. ASCII provides
ASCII	a one-to-one mapping between alphanumeric characters, and a digital one-byte
	word.
	Astrolab is a Windows integrated design environment (IDE) containing all the
Astrolab	tools and editors (based on the different IEC 61131 languages) that users need
	during the entire life cycle of the machine.
Auxiliary	Describes the feedback on the load to close the position loop in critical applic-
Encoder	ations. See Encoder.
	The backlash is an error in positioning caused by the reversal of travel dir-
Backlash	ection. It is caused by a clearance between the elements of the mechanical
	system. The backlash also affects the bidirectional repeatability. The backlash
	can be compensated by the position controller.

Токто	Description
Term	Description
	In computer networking, bandwidth often refers to a data rate measured in bit-
Bandwidth	s/s, for example, network throughput. The reason for the connection of data
	rate with the term <i>bandwidth</i> is that the limit to the data rate of a physical com-
	munication link is related to its bandwidth in hertz.
	The frequency at which the small signal response of a servo system begins to
Bandwidth	drop off; stage performance is enhanced by increasing servo bandwidth,
	although structural resonances typically limit the achievable bandwidth.
	Blackfin refers to a family of 16/32-bit microprocessors with built-in Digital Sig-
	nal Processor (DSP) functionality, which is traditionally only accompanied by a
Blackfin	small and power-efficient microcontroller. The result is a low-power, unified pro-
	cessor architecture that can run operating systems while simultaneously hand-
	ling complex numeric tasks such as real time H.264 video encoding.
Brake	The two states of the braking system.
Applied or	A device for slowing or stopping the motion of amotor, or alternatively a device
Released	to restrain it from starting to move again.
	An "inside-out" DC motor, with a permanent magnet rotor, and electrical coils
Brushless ser-	in the stator. Commutation of current in the windings is typically achieved via
vomotor	external switching transistors, and Hall-effect detectors. This avoids the lim-
Volhotol	ited life of brushes and their radiated EMI.
Busy/Free	AKD PDMM support only one connection at a time. If a connection is in use,
	then the drive is "busy." If the connection is not use, then the drive is "free."
	The position of a slave axis is mathematically linked to the position of a master
	axis. A good example of this would be in a system where two rotating drums
CAM profiling	turn at a given ration to each other. A more advanced case of electronic gearing
- P- 3	is electronic camming. With electronic camming, a slave axis follows a profile
	that is a function of the master position. This profile need not be linear, but it
	must be a mathematical function.
CANopen	CANopen is a communication protocol and device profile specification for
CANopen	embedded systems used in automation for fieldbuses working in real-time
Cantilevered	Any load not symmetrically mounted on a stage. Such loads exert torque
load	moments upon the ways, and the resulting deformations can degrade accuracy
	The term caret is also sometimes used in graphical user interface terminology
	where it means a text insertion point indicator, frequently represented by a
Caret	blinking vertical bar. In this context, it may be used interchangeably with the
	Word cursor, although the latter term is often reserved for a mouse pointer
Casting	see Typecasting item
Closed loop	The use of feedback devices (encoders, resolvers, interferometers, etc.) to
positioning	allow a motor to position a user payload accurately.
CmdGain	Sets the command gain for the command input.
CmdOffset	Sets the command offset for the command input.

Term	Description		
CmdSrc	Selects Analog, PWM, or Command variable for command.		
Coefficient of friction	This is defined as the ratio of the force required to move a given load to the mag- nitude of that load. Typical values for ball and crossed roller slides are 0.001 to 0.005.		
СОМ	COM is the original name of the serial port interface. It might not only refer to physical ports, but also to virtual ports, such as ports created by Bluetooth or USB-to-Serial adapters.		
Contactor	A contactor is an electrically controlled switch (relay) used for switching a power circuit. A contactor is activated by a control input which is a lower voltage / current than that which the contactor is switching. Unlike a circuit breaker a contractor is not intended to interrupt a short circuit current.		
Custom	Refers to user modified or defined material (such as custom units or custom settings)		
DeviceNet	DeviceNet is a communication protocol (based on Controller Area Network) used in the automation industry to interconnect control devices for data exchange. Typical applications as listed: information exchange, safety devices, and large I/O control networks		
Drive	In electrical engineering, a drive is an electronic device to provide power to a motor or servo.		
Driver	In computing and electronics, a driver is a software component allowing higher- level computer programs to interact with a computer hardware device. A driver typically communicates with the device through the computer bus or communications subsystem to which the hardware is connected.		
Eccentricity	The eccentricity is the distance between the centring diameter of the baseplate and the centring diameter of the rotor. It is not dependent on the position.		
Encoders	Generates an output signal that is directly proportional to the movement of the motor shaft. This signal is fed into the control circuitry in order to control the shaft position and speed. See also Optical encoders.		
	 The most common types are: Incremental/Serial encoders Hall effect sensors Resolvers Tachometer Generators 		
Encoder Counts	Used after quadrature decode.		
Encoder Lines	Used before quadrature decode.		

Term	Description
reim	Environment objects are global objects that exist before the execution of the
Environment	script. Typically, they are global objects of Astrolab that can be accessed from
	the script.
	· · · · · · · · · · · · · · · · · · ·
	"Ethernet for Control Automation Technology" EtherCAT is an open high per-
	formance Ethernet-based fieldbus system. The development goal of EtherCAT
EtherCAT	was to apply Ethernet to automation applications which require short data
	update times (also called cycle times) with low communication jitter (for syn-
	chronization purposes) and low hardware costs.
Ethernet	Ethernet is a large, diverse family of frame-based computer networking tech-
	nologies that operate at many speeds for local area networks (LANs).
	An open industrial application layer protocol for industrial automation applic-
EtherNet/IP	ations.
	The EtherNet/IP application layer protocol is based on the CIP layer.
	The inputs are taken into account at each cycle depending on the system peri-
	odicity (for instance each Millisecond). Under certain circumstances this can
	be insufficient when we need more accuracy or if a quick respond from the sys-
	tem is required. To fill in the gap, a drive may have some fast input connections
Fast Input	(generally one or two). When an event happens that triggers a Fast Input (e.g.
	when a sensor sends a rising edge), the detection of a signal occurs faster
	(which can be 1000-times more accurate than the system periodicity). Then the
	timestamp associated to this input can be provided to the IPC for taking the cor-
	rective actions.
	Some systems use a feedback device connected to the motor shaft or part of
Feedback	the driven mechanism to control the direction, acceleration and speed of the
Device	motor.
	A fieldbus is an industrial network system for real-time distributed control (e.g.
Fieldbus	CAN, Profibus, sercos $^{\mathbb{R}}$). It is one of the ways to connect Instruments in a
	plant design.
Flatness of	Deviation from ideal straight line travel in a vertical plane, also referred to as
travel	vertical runout.
Frame	In networking dialect, a message is called a frame.
	In software design, the front-end is the part of a software system that interacts
Front-end	directly with the user.
FW	Firmware.
Quit	A standardized protocol, analogous to RS-232, for transmitting digital inform-
G.p.i.b.	ation. Unlike RS-232, the GPIB interface (also called IEEE-488) transmits data
	in parallel, not serial format (one byte at a time).
Half step	An extended 8-cycle current switching sequence for stepping motors that
	doubles resolution, reduces noise, and improves resonant conditions.

533

Term	Description
Term	Highly accurate, non-contact limit switch which detects the proximity of a mag-
Hall-effect	net and provides a digital output to assure an accurate position reference. Typ-
sensor	
	ical repeatability of the NEAT Hall sensor is ±1-2 microns.
Holding	Stepping motors, when energized, hold position via a magnetic field. The hold-
torque	ing torque is the maximum torque which can be generated before the rotor slips
	to the next pole location (7.2 degrees for 200 step/revolution steppers).
	Any of a variety of sensors which can be used to establish an accurate initial
	position. This may consist of a standard end-of-travel Hall sensor; a center pos-
Home switch	ition opto-interrupter with half-travel blocking vane; an index signal on a linear
Fiome Switch	encoder; a shaft coupling mounted magnet with Hall sensor; or a once-per-
	revolution encoder index signal. Once-per-revolution sensors will usually
	require a logical or-ing with a linear signal if a unique home position is required.
	The homing procedure allows, based on a position measurement, to set a pos-
Homing	ition offset to the motor in order to ensure it is physically at the home position.
	The horizontal straightness is a horizontal deviation from the straight line of
Horizontal	travel. A horizontal straightness deviation in the travel of the X-axis will cause
Straightness	a positioning error in the Y direction.
	The hysteresis error is a deviation between the actual and the commanded pos-
Hysteresis	ition caused by elastic forces accumulated in the motion system. It affects the
Error	accuracy and the bidirectional repeatability.
1.15.47	
HW	
Incremental	The incremental encoder, sometimes called a relative encoder, is simpler in
encoder	design than the absolute encoder. It consists of two tracks and two sensors
(Relative	whose outputs are called channels A and B. As the shaft rotates, pulse trains
encoder)	occur on these channels at a frequency proportional to the shaft speed, and the
,	phase relationship between the signals yields the direction of rotation.
Incremental	Positioning mode in which moves are referenced from the previously held pos-
move	ition.
Index	Zero pulse (zero signal) of a hardware pin such as digital input or feedback pin.
	A single generated by a second track on the encoder emitter disk that occurs
	once per revolution, which can be used to indicate an absolute position of the
Index Pulse	motor shaft. Encoder manufacturers identify the index pulse using different
	terms such as index, marker, home position and zero reference.
	The tendency of a motor coil to store energy in a magnetic field. High speed
Inductance	stepping motor performance is inversely proportional to motor inductance.
	An Internet socket (or commonly, a network socket or socket), is an end-point
Internet socket	of a bidirectional process-to-process communication flow across an IP based
	network, such as the Internet. Each socket is mapped to an application pro-
	cess or thread. A socket is an interface between an application process or
	thread and the TCP/IP protocol stack provided by the operating system. The
	plug type is generally RJ-45.

Term	Description
	An interrupt is an asynchronous signal from hardware indicating the need for
Interrupt	attention or a synchronous event in software indicating the need for a change to
	another execution stream.
	INtime software combines deterministic, hard real-time control with standard
	Windows operating systems (including Windows XP, Windows XP Embed-
	ded, Windows 2000 and Windows Server 2003) without requiring additional
Intime	hardware. Intime was designed specifically to take advantage of the powerful
	capabilities of the x86 processor architecture. Therefore, you're real-time and
	non real-time applications run in separate virtual machines on a single com-
	puter, for cost-effective, reliable control that is easy to develop and maintain.
l e el e	In physics, jerk, is the rate of change of acceleration; more precisely, the deriv-
Jerk	ative of acceleration with respect to time
	The deviation of a leadscrew from its nominal pitch. The error is often mono-
Lead error	tonic (linear), although periodic error and thermal expansion set limits to its pre-
	dictability.
	A sensor, typically Hall-effect, optical, eddy current, or mechanical, which is
Limit switch	used to sense the end of travel of a linear motion assembly. In addition to pre-
	venting overtravel, it is frequently used to establish a precision reference.
Mechanical	
angle	Mechanical angle of the feedback (always between 0°360°)
Mechanical	Machanical angle of the feedback, always between 0° and 260°
angle	Mechanical angle of the feedback, always between 0° and 360°.
	A technique which, instead of switching phase currents in a stepping motor on
Microstopping	and off, sinusoidally varies the current in the two windings. This effectively
Microstepping	increases the resolution from 200 steps per revolution to 2,000 (~10) or 10,000
	(~50) micro-steps per revolution.
	Modbus is a serial communications protocol and is now the most commonly
	available means of connecting industrial electronic devices.
Modbus	Modbus is often used to connect a supervisory computer with a remote ter-
Rudubus	minal unit in supervisory control and data acquisition (SCADA) systems.
	Versions of the Modbus protocol exist for serial port and Ethernet (it is widely
	used with TCP/IP over Ethernet)
	Motion control is a sub-field of automation, in which the position and/or velocity
Motion control	of machines are controlled using some type of device such as a hydraulic
	pump, linear actuator, or an electric motor, generally a servo. Motion control is
	an important part of robotics and CNC machine tools, however it is more com-
	plex than in the use of specialized machines, where the kinematics are usually
	simpler. The latter is often called General Motion Control (GMC). Motion con-
	trol is widely used in the packaging, printing, textile and assembly industries

Term	Description			
Motor Continu				
ous Stall Cur-	The amount of current applied to a motor when the rotor is locked and results in			
rent	the rated rated temperature rise.			
Motor Peak	Peak current or amps peak is the highest current that can flow through the			
Current	motor or amps peak = 1.41 X amps/phase (or amps RMS).			
	Information is stored in a specific memory to remain accessible even when the			
Nonvolatile	application has been powered off. The memory type is called NV (Non-Volatile			
	Memory) also NVS (Non Volatile Storage).			
	The stiffness of a leadscrew/nut assembly, typically measured in Newtons per			
Nut stiffness	meter (N/m). This stiffness, together with the moving mass and duplex bearing			
	stiffness, sets the primary natural frequency of a leadscrew-driven stage.			
Online/Offline	Active or connected/inactive or disconnected.			
	A positioning technique, typically utilizing stepping motors, in which the con-			
Onenleen	troller issues a sequence of commands to the motor without any absolute			
Open loop	means of detecting if the move has in fact been made. When the load and			
positioning	move velocity and acceleration are appropriately defined, open loop positioning			
	is capable of extended operation without losing steps.			
	OpenGL (Open Graphics Library) is a standard specification defining a cross-			
OpenCl	language cross-platform API for writing applications that produce 2D and 3D			
OpenGL	computer graphics.			
	The Softscope uses this API to implement graphical manipulations.			
	A linear or angular position feedback device, typically providing incremental			
Optical	two channel information in quadrature format (sine or square waves with a 90			
encoder	degree phase shift between each channel). Such two channel information			
	allows simple counter circuits to function as absolute position indicators.			
	The degree of perpendicularity, or squareness, between the two axes in an X-Y			
Orthogonality	or X-Z table. This parameter is usually measured in arc-seconds or micro radi-			
	ans.			
	a P-code machine or pseudo-code machine is a specification of a CPU (Cen-			
	tral Processing Unit) whose instructions are expected to be executed in soft-			
P-code	ware rather than in hardware.			
	Programs that have been translated to p-code are executed (interpreted) by a			
	software program that emulates the behavior of the CPU specification.			
Periodicity	Motor systems having a reciprocating or oscillating motor that operates syn-			
	chronously with the periodicity of the source which supplies the electrical			
	energy.			
	The period of execution of a pipe is the time spent between two successive			
	computations of set values for the same pipe. The period of execution of a pipe			
	is specified by the PERIOD parameter of the input pipe block.			
1				

Term	Description			
	The rated current which a stepping motor requires to generate its rated holding			
Phase current	torque. This value is usually based on unipolar (half-coil) operation. This choice			
	of how the motor is wired has significant impact on performance.			
Phase	The specific sequence of coil current changes used to advance a stepping			
sequence	motor clockwise and counter-clockwise, in either full or half step modes.			
	For lead-screws specified in British units, the number of full rotations required			
	to advance the nut 1î. For example, a 5 pitch lead-screw has a lead of 0.200î.			
	Metric screws are specified by lead only, in millimeters.			
	The pitch is a rotation (angular deviation from the ideal straight line of travel)			
Pitch	around an axis in the horizontal plane perpendicular to the direction of travel.			
	For the X-axis travel, a pitch will cause an Abbé error in the X and Z directions			
	An angular deviation possible in positioning systems, in which the table's lead-			
	ing edge rises or falls as the table translates along its direction of travel. This			
	represents rotation around a horizontal axis, perpendicular to the direction of			
	travel.			
PLCopen	A vendor -and product- independent worldwide association active in Industrial			
Loopon	Control and aiming at standardizing PLC file formats based on XML			
Position	AKD PDMMscales this so that the low 32 bits are the position per revolution			
counts	(mechanical or electrical?).			
Pragma	A compiler directive communicating additional "pragmatic" information.			
	In arithmetic and algebra, when a number or expression is both preceded and			
	followed by a binary operation, a rule is required for which operation should be			
	performed first. From the earliest use of mathematical notation, multiplication			
Precedence	took precedence over addition, whichever side of a number it appeared on.			
	Thus $3 + 4 \times 5 = 5 \times 4 + 3 = 23$.			
	To change the order of operations, we use parentheses (). Thus, if we want to			
	force addition to precede multiplication, we write			
Driveren	$(3+4) \times 5 = 35.$			
Primary	Describes the feedback mounted onto the motor the drive is controlling. The			
Encoder	Primary Encoder is used to force commutation. See also Encoder.			
Probe	See Softscope - Probe item			

Term	Description			
	PROFIBUS (Process Fieldbus) is a standard for fieldbus communication in			
	automation technology. PROFIBUS is the only fieldbus that can be used in			
	equal measure in production automation and process automation and has since			
	become a global market leader. Worldwide			
	There are two variations of PROFIBUS; the most commonly used DP, and the			
	lesser used PA variations:			
	PROFIBUS DP (Decentralized Peripherals) is used to operate sensors			
	and actuators via a centralized controller in production technology. The			
	many standard diagnostic options, in particular, are focused on here.			
PROFIBUS	Other areas of use include the connection of "distributed intelligence",			
	i.e. the networking of multiple controllers to one another (similar to			
	PROFIBUS FMS). Data rates up to 12 Mbit/s on twisted pair cables			
	and/or fiber optics are possible.			
	PROFIBUS PA (Process Automation) is used to monitor measuring			
	equipment via a process control system in process engineering. This			
	PROFIBUS variant is ideal for explosion-hazardous areas (Ex-zone 0			
	and 1). Here, a weak current flows through bus lines in an intrinsically			
	safe circuit so that explosive sparks are not created, even if a mal-			
	function occurs. The disadvantage of this variant is the slower data			
	transmission rate of 31.25 kbit/s.			
Programming	The act of performing a sequence of instructions or commands.			
Quasi-closed	A technique using a stepping motor and encoder in which open loop moves are			
loop pos-	completed, after which an encoder/counter is checked and, if necessary, a			
itioning	small final move or moves is used to achieve the desired accuracy.			
Radial Run-	The radial runout is the positioning error of a rotary table's centering diameter in			
out	the horizontal direction when the table is rotating in the horizontal plane.			
	The gradual acceleration and deceleration of a stepping motor, essential if per-			
Ramping	formance beyond the start/stop range is required. The slope of the ramp is a			
	function of screw pitch, load, drive voltage and design, and motor.			
	RTC is the study of hardware and software systems which are subject to a			
Real-time computing	"real-time constraint" (i.e. operational deadlines from event to system			
	response). By contrast, a non-real-time system is one for which there is no			
	deadline, even if fast response or high performance is desired or even pre-			
	ferred. The needs of real-time software are often addressed in the context of			
	real-time operating systems, and synchronous programming languages, which			
	provide frameworks on which to build real-time application software.			
	A real time system may be one where its application can be considered (within			
	context) to be mission critical.			
	, ,			

Term	Description		
	In computer science, reference counting is a technique of storing the number of		
Reference	references, pointers, or handles to a resource such as an object or block of		
Counting	memory. It is typically used as a means of de-allocating objects which are no		
	longer referenced.		
Reference			
situation	Any situation that indicates that the home position has been found.		
Reference			
	An adjustable hardware switch for indicating a home position.		
switch			
Refresh	GUI command that re-loads the data from the drive and redraws the display.		
	Regen Resistors are a necessity on all horizontal motion (bridge/trol-		
	ley/monorail) applied Variable Speed drives.		
Regen res-	Power returns to the drive when the connected motor is driven in generator		
istor	mode and is called regenerative power. This power is absorbed by charging the		
	bus smoothing capacitor with the regen resistor consuming all that regen-		
	erative power exceeding the chargeable energy of the capacitor.		
Relative	See Incremental encoder.		
encoder	See incremental encoder.		
Densetability	The difference in absolute position reached when returning to a given position		
Repeatability,	from the same direction. This value may mask significant amounts of back-		
bi-directional	lash.		
	The difference in absolute position reached when returning to a given position		
Repeatability,	from the opposing direction. This value is usually larger than the unidirectional		
uni-directional	repeatability.		
	The resolution is the smallest possible movement that can be achieved by a		
	system. It can be defined at the electronics, encoder and mechanics level.		
Resolution	The distance a stage can be commanded to move in a single step. For servo		
	systems, the basic increment produced by its optical encoder, or any other		
	feedback device.		
	A parasitic oscillation which is endemic to stepping motors, although frictional		
Resonance,	loads may mask its effect. It typically sets in from 5-15 revolutions per second,		
midrange	and can easily cause a loss of synchronization (stalling). All NEAT high speed		
marange	micro-stepping drives effectively suppress this resonance.		
	The rotor inertia of a stepping motor, together with its spring-like holding torque,		
Resonance, primary	constitutes a basic spring-mass oscillator. In the absence of sufficient damp-		
	ing, stepping at certain frequencies may excite resonance in this system, or		
	resonate with the stage or load, resulting in loss of synchrony. The addition of		
	system damping, micro-stepping, or ramping through problematic speeds will		
	usually eliminate this resonance.		
Rising Edge	A rising edge is the transition of a digital signal from low to high. It is also		
	named positive edge.		

Term	Description		
RJ-45	Internet plug type.		
Roll	An angular deviation from an ideal straight line motion, in which the positioning table rotates around its axis of travel as it translates along that axis.		
RS-232c	A popular protocol for transmitting digital data over two lines in a bit-serial format. RS-232C specifies signal levels, data formats, maximum transmission distance, etc.		
Runtime	In computer science, runtime or run time describes the operation of a computer program, the duration of its execution, from beginning to termination (compare compile time).		
Safe Torque Off	A safety feature in the drive to prevent servos from being restarted (STO).		
Sensor	A sensor is a type of transducer that converts one type of energy to another for various purposes including measurement or information transfer.		
sercos®			
Servo Drive	A servo drive is a special electric amplifier used to power electric servo motors. It monitors feedback signals from the motor and continually adjusts for devi- ation from expected behavior.		
Servo Motor	A DC motor which produces a torque proportional to current. Precise pos- itioning is achieved by linear or PWM (duty cycle) control of motor current or voltage, together with accurate monitoring of position via an external feedback device.		
Setpoint	Setpoint is the target value that an automatic control system, for example PID controller, will aim to reach		
Sinop	Sinop is a runtime engine issued from Astrolab and that provides a soft PLC and a motion controller via a graphical view of Axis movement with log mes- sages		
Softscope - Channel	A Channel is used by the softscope to acquire the evolution of a variable that is plugged into it		
Softscope - Probe	A device that uses onboard instruments to gather and relay a variety of meas- urement to controllers from remote locations. Probes may return their data over radio links or be physically tethered to controllers or another device, or to col- lect and return physical samples		
Softscope - Sampling	To acquire the variable's evolution, samples are taken at fixed intervals. The accuracy to create the trace depends on the resolution of the acquisition. The sampling frequency must be higher than 2 times the highest frequency in the input signal. This is called the Nyquist frequency. Theoretically it is possible to reconstruct the input signal with more than 2 samples per period. In practice, 10 to 20 samples per period are recommended to be able to examine the signal thoroughly		

Term	Description		
Softscope -	The time base allows to set the speed at which all the lines for each channel		
Time base	are drawn, and is calibrated in milliseconds per division		
Softscope -	The trace is the resulting graph of a variable's evolution against time, with the		
Trace	more distant past on the left and the more recent past on the right		
	The maximum speed which a stepping motor, properly ramped, can achieve		
Stall speed	without loss of synchrony. This speed is a function of motor inductance, ramp		
	slope, applied load, and drive voltage and design.		
	The maximum step rate which can be applied to a stationary stepping motor		
Start/stop	and still retain error-free performance. Also, the rate from which a stepping		
speed	motor may be instantaneously stopped without overshooting. This is a function		
	of the screw pitch, load, drive voltage and design, and motor.		
	A type of motor featuring two or four stator coils and a toothed permanent mag-		
Step rate	net rotor, which moves through a small angle in response to a specific		
	sequence of coil current changes.		
Stepping	The frequency of coil current changes, or input pulse train, applied to a stepping		
motor	motor, in pulses/second or hertz. For 200 step/revolution motors, the full step		
	rate multiplied by 0.3 equals the rotation rate in R.P.M.		
Straightness	Deviation from straight line motion in a horizontal plane. Also referred to as hori-		
of travel	zontal runout. This error is usually traceable to an underlying angular error of		
	the ways.		
	SynqNet is a digital machine control network. Built on the 100BT physical		
SynqNet	layer, SynqNet provides a synchronous real-time connection between motion		
	controllers, servo drives, stepper drives, I/O modules, and custom devices		
	This stands for Total Indicator Reading, which reflects the total absolute devi-		
T.i.r.	ation from a mean value (versus a ± value which indicates the deviation from a		
	nominal value).		
	The thermal expansion is a change of the size and shape of a system when the		
Thermal	temperature is modified. The amount of change is dependent on the size of the		
Expansion	component, the degree of temperature change and the characteristics of the		
	material.		
Timestamp	A timestamp is a sequence of characters, denoting the date and/or time at		
	which a certain event occurred.		
Torque	A radially directed force, typically measured in inch-ounces, foot-lbs. or New-		
	ton-meters.		

Term	Description	
	In computer science, type conversion or typecasting refers to changing an	
	entity of one data type into another. This is done to take advantage of certain	
	features of type hierarchies. For instance, values from a more limited set, such	
	as integers, can be stored in a more compact format and later converted to a dif	
	ferent format enabling operations not previously possible, such as division with	
Typecasting	several decimal places' worth of accuracy.	
	There are two types of conversion: implicit and explicit. The term for implicit	
	type conversion is coercion. The most common form of explicit type con-	
	version is known as casting. Explicit type conversion can also be achieved	
	with separately defined conversion routines such as an overloaded object con-	
	structor.	
	A vector quantity whose magnitude is a body's speed and whose direction is	
Velocity	the body's direction of motion. Both speed and direction are required to define	
	it and measured in meters/second (m/s).	
Wibu	Developed by WIBU-SYSTEMS AG, WibuKey is the way to protect DMS soft-	
VIDU	ware	
Wobble	To move or rotate with an uneven or rocking motion or unsteadily from side to	
vvobble	side.	
	The yaw is a rotation (angular deviation from the ideal straight line of travel)	
	around the Z axis which is a vertical plane perpendicular to the direction of	
Marrie	travel. For the X-axis travel, the yaw will cause an Abbé error in the X and Y dir-	
Yaw	ections.	
	An angular deviation from ideal straight line motion, in which the positioning	
	table rotates around the Z (vertical) axis as it translates along its travel axis.	
Zero angle	Mechanical zero angle of the feedback = 0 degree.	

This page intentionally left blank.

51 Index

Α

Acceleration ramp	
AL Event	
Analog inputs	
Analog setpoints	
Anti-resonance filter	
Aux. supply 24V, interface	

В

Basic drive setup	
Blink	
Block diagrams	
current loop	
position and velocity loops	
Brake view	

С

CANopen over EtherCAT	
Capture	
Command source	
Connection Diagrams	
B, P, T Variants	
Control Word Commands	
Controlled Stop	
copyrights	
Cycle Time	
Adjust	
Max.Values	
Cyclical Values	

D

DC bus link, interface	146
deceleration	
Direct DC mains	
Disable	
disclaimer	
Display Codes	
Dynamic Braking	

Ε

EEProm Content	
Emergency Off	
Emergency Stop Function	
emergency timeout	
Enable/Disable	
Error Messages	
parameter and command	

EtherCAT Proflie	492
F	
Fault messages	
Faults	
Feedback 1	
Feedback Connection Fieldbus	
Fieldbus Parameters	
1	
I/O-Connection	
Inputs Analog	
Interrupt Event	

L

Latch Words	
Limits	50

Μ

Macros	
Mailbox	
Mains supply, interface	
Motor	
Motor interface	

Ν

Operating mode	
parameters and commands active in	
Operation Modes	
Outputs	
Analog	

Ρ

PDO Fixed Mapping	505
PDO Flexible Mapping	
Phase run-up	
Power	
Pulse Direction, interface	

R

Regen resistor, interface	144
Regeneration	19

S

scope	
channels	
settings and presets	
time-base	
Slave Register	
Slider Tuning	
Status Machine	
Status Word	
Stop Function	
Synchronization	

Т

Terminal	
trademarks	
Trouble Shooting	
Tuning	

U

W

Warnings	
Wizard	11

This page intentionally left blank.

Global Support Contacts

North America KOLLMORGEN 203A West Rock Road	Europe KOLLMORGEN Europe GmbH Pempelfurtstraße 1	Asia KOLLMORGEN Rm 2205, Scitech Tower, China
Radford, VA 24141 USA	40880 Ratingen, Germany	22 Jianguomen Wai Street
Web: www.kollmorgen.com Mail: support@kollmorgen.com Tel.: +1 - 540 - 633 - 3545 Fax: +1 - 540 - 639 - 4162	Web: www.kollmorgen.com Mail: technik@kollmorgen.com Tel.: +49 - 2102 - 9394 - 0 Fax: +49 - 2102 - 9394 - 3155	Web: www.kollmorgen.com Mail: sales.asia@kollmorgen.com Tel.: +86 - 400 666 1802 Fax: +86 - 10 6515 0263

This page intentionally left blank.