AKDTM

PROFINET RT Communication

Edition: B, March 2012 Valid for Hardware Revision D Part Number 903-200012-00 Original Documentation

Keep all manuals as a product component during the life span of the product. Pass all manuals to future users and owners of the product.

KOLLMORGEN

Record of Document Revisions:

Revision	Remarks
A, 10/2011	Launch version
B, 03/2012	Jog mode added, mdi submode description extended

Hardware Revision (HR)

AKD HR	AKD PDMM HR	Firmware	WorkBench	KAS IDE	Remarks
Α	-	01.03.xx.yyy	1.3.0.zzzz	-	AKD Start revision
С	-	01.05.xx.yyy	1.5.0.zzzzz	-	STO certified, PROFINET RT released
D	DA	01.06.xx.yyy	16077777	2507777	Control board revision 9, AKD PDMM Start
		01.00.88.999	1.0.0.22222	2.0.0.22222	revision

PROFINET is a registered trademark of PROFIBUS and PROFINET International (PI)

EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH"

Ethernet/IP is a registered trademark of ODVA, Inc.

Ethernet/IP Communication Stack: copyright (c) 2009, Rockwell Automation

EnDat is a registered trademark of Dr. Johannes Heidenhain GmbH

HIPERFACE is a registered trademark of Max Stegmann GmbH

SIMATIC is a registered trademark of SIEMENS AG

Windows is a registered trademark of Microsoft Corporation

AKD is a registered trademark of Kollmorgen™ Corporation

Current patents:

US Patent 5,646,496 (used in control card R/D and 1 Vp-p feedback interface)

US Patent 5,162,798 (used in control card R/D)

US Patent 6,118,241 (used in control card simple dynamic braking)

Technical changes which improve the performance of the device may be made without prior notice!

Printed in the United States of America

This document is the intellectual property of KollmorgenTM. All rights reserved. No part of this work may be reproduced in any form (by photocopying, microfilm or any other method) or stored, processed, copied or distributed by electronic means without the written permission of KollmorgenTM.

Table of Contents

_
. 5
. 6
. 6
. 7
. 7
. 8
. 9
. 9
. 9
10
11
12
12
12
12
13
14
16
16
17
20
21
22
23
24
24
24
24
24
. 24
25
26
27 28
29
31
32
33
33
34
35
35
36

5.10.3 Homing	38
5.11 I/O Telegrams	
5.11.1 Telegram 0.	
5.11.2 Standard telegram 1.	39
5.11.3 Standard telegram 7.	39
5.11.4 Standard telegram 9.	39
5.11.5 Manufacturer specific telegram 350.	40
5.12 Units	40
5.12.1 Velocity units	40
5.12.2 Position Units.	40
5.12.3 Acc-/Deceleration Units	40
5.12.4 Current units.	40
5.13 Alarms	41
5.14 Fault	41
6 Sample Projects	42
6.1 Sample S7 Project	
6.1.1 Introduction	43
6.1.2 Project description.	43
6.1.3 Getting started	44
6.1.4 Enable the drive and run in velocity mode.	45
7 Index	47

1 General

1.1	About this Manual	. 6
1.2	Target Group	6
1.3	Symbols used	. 7
1.4	Abbreviations Used	7

1.1 About this Manual

This manual, AKD PROFINET RT Communication, describes the installation, setup, range of functions, and software protocol for the PROFINET AKD product series. All AKD PROFINET drives have built-in PROFINET functionality; therefore an additional option card is not required.

A digital version of this manual (pdf format) is available on the CD-ROM included with your drive. Manual updates can be downloaded from the Kollmorgen™ website.

Related documents for the AKD series include:

- AKD Installation Manual (also provided in hard copy for EU customers). This manual provides full instructions for installation and drive setup.
- AKD Users Manual. This manual describes how to use your drive in common applications. It also provides
 tips for maximizing your system performance with the AKD. This manual contains the AKD Parameter
 and Command Reference Guide, which provides documentation for the parameters and commands used
 to program the AKD.
- Accessories Manual. This manual provides documentation for accessories like cables and regen resistors used with AKD. Regional versions of this manual exist.

Additional documentation:

Profile-PROFIdrive (PI group, Profile-PROFIdrive_3172_v41_May06.pdf)

1.2 Target Group

This manual addresses personnel with the following qualifications:

- Installation: only by electrically qualified personnel.
- Setup: only by qualified personnel with extensive knowledge of electrical engineering and drive technology
- Programming: Software developers, project-planners

The qualified personnel must know and observe the following standards:

- ISO 12100, IEC 60364 and IEC 60664
- National accident prevention regulations

A WARNING

During operation there are deadly hazards, with the possibility of death, severe injury or material damage. The operator must ensure that the safety instructions in this manual are followed. The operator must ensure that all personnel responsible for working with the servo drive have read and understand the manual.

1.3 Symbols used

Symbol	Indication
▲ DANGER	Indicates a hazardous situation which, if not avoided, will result in death or serious injury.
▲ WARNING	Indicates a hazardous situation which, if not avoided, could result in death or serious injury.
▲ CAUTION	Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.
NOTICE	Indicates situations which, if not avoided, could result in property damage.
NOTE	This is not a safety symbol.
	This symbol indicates important notes.

1.4 Abbreviations Used

Abbreviation	Meaning
Cat	Category
DO	Drive object
DU	Data Unit
GSD	Device description file
GSDML	GSD Markup Language
НМІ	Human machine interface
ID	Identifier
I/O	Input / Output
IRT	Isochronous Real-Time
LED	Light emitting diode
PAP	Programm Ablauf Protokoll (program sequence protocol)
PLC	Programmable logic control
PNU	Parameter number
RT	Real-Time
STW	Control word
ZSW	Status word

2 Safety

2.1	Safety Instructions	9
2.2	Use as directed	9
2.3	Prohibited use	9

2.1 Safety Instructions

▲ DANGER	During operation there are deadly hazards, with the possibility of death, severe injury or material damage. Do not open or touch the equipment during operation. Keep all covers and cabinet doors closed during operation. Touching the equipment is allowed during installation and commissioning for properly qualified persons only.
	 During operation, drives may have uncovered live components, depending on their level of enclosure protection. Control and power connections may be live, even though the motor is not rotating. Drives may have hot surfaces during operation. Heat sink can reach temperatures above 80°C.
▲ WARNING	Electronic equipment can fail. The user is responsible for ensuring that, in the event of a failure of the servo amplifier, the drive is set to a state that is safe for both machinery and personnel, for instance with the aid of a mechanical brake. Drives with servo amplifiers and PROFINET are remote-controlled machines. They can start to move at any time without previous warning. Take appropriate measures to ensure that the operating and service personnel is aware of this danger. Implement appropriate protective measures to ensure that any unintended start-up of the machines cannot result in dangerous situations for personnel or machinery. Software limit-switches are not a substitute for the hardware limit-switches in the machine.
NOTICE	Install the drive as described in the <i>Installation Manual</i> . Never break any of the electrical connections to the drive while it is live. This can result in destruction of the electronics The PROFINET Ethernet cable must be connected to the service interface on X11.
NOTICE	The PROFINE LEthemet cable must be connected to the service interface on XTT.

2.2 Use as directed

Drives are components that are built into electrical plants or machines and can only be operated as integral components of these plants or machines. The manufacturer of the machine used with a drive must generate a risk assessment for the machine and take appropriate measures to ensure that unforeseen movements cannot cause personnel injury or property damage.

- Observe the chapters "Use as directed" and "Prohibited use" in the AKD Installation Manual.
- The PROFINET interface serves only for the connection of the AKD directly or via a switch to a network with PROFINET connectivity.

2.3 Prohibited use

Other use than that described in chapter "Use as directed" is not intended and can lead to personnel injuries and equipment damage. The drive may not be used with a machine that does not comply with appropriate national directives or standards. The use of the drive in the following environments is also prohibited:

- potentially explosive areas
- · environments with corrosive and/or electrically conductive acids, alkaline solutions, oils, vapors, dusts
- ships or offshore applications

3 Installation and Setup

3.1	Safety Instructions	11
3.2	PROFINET Onboard	12
3.3	Guide to Setup.	13
3.4	Configure IP Address parameters	14
3.5	Setup Step 7	17
3.6	Parameter Configuration with PROFIdrive over PROFINET IO	20

3.1 Safety Instructions

▲ DANGER

Never disconnect any electrical connections to the drive while the drive is live. There is a danger of electrical arcing with damage to contacts and serious personal injury. Wait at least seven minutes after disconnecting the drive from the main supply power before touching potentially live sections of the equipment (e.g. contacts) or undoing any connections. Capacitors can still have dangerous voltages present up to 7 minutes after switching off the supply power. To be sure, measure the voltage in the DC Bus link and wait until it has fallen below 40 V. Control and power connections can still be live, even if the motor is not rotating.

WARNING

Electronic equipment can fail. The user is responsible for ensuring that, in the event of a failure of the servo amplifier, the drive is set to a state that is safe for both machinery and personnel, for instance with the aid of a mechanical brake.

Drives with servo amplifiers and PROFINET are remote-controlled machines. They can start to move at any time without previous warning. Take appropriate measures to ensure that the operating and service personnel is aware of this danger.

Implement appropriate protective measures to ensure that any unintended start-up of the machines cannot result in dangerous situations for personnel or machinery. Software limit-switches are not a substitute for the hardware limit-switches in the machine.

NOTICE

Install the drive as described in the *Installation Manual*. The wiring for the analog setpoint input and the positioning interface, as shown in the wiring diagram in the *Installation Manual*, is not required. Never break any of the electrical connections to the drive while it is live. This action can result in destruction of the electronics.

NOTICE

The drive's status must be monitored by the PLC to acknowledge critical situations. Wire the FAULT contact in series into the emergency stop circuit of the installation. The emergency stop circuit must operate the supply contactor.

NOTE

Use WorkBench to alter drive settings. Any other alterations will invalidate the warranty.

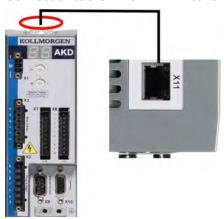
NOTE

Because of the internal representation of the position-control parameters, the position controller can only be operated if the final limit speed of the drive does not exceed:

rotary

at sinusoidal² commutation: 7500 rpm at trapezoidal commutation: 12000 rpm.

linear


at sinusoidal² commutation: 4 m/s at trapezoidal commutation: 6.25 m/s

NOTE

All the data on resolution, step size, positioning accuracy etc. refer to calculatory values. Non-linearities in the mechanism (backlash, flexing, etc.) are not taken into account. If the final limit speed of the motor must be altered, then all the parameters that were previously entered for position control and motion blocks must be adapted.

3.2 PROFINET Onboard

Connection to the PROFINET Network via X11.

Connect the service interface (X11) of the drive to an Ethernet interface on the PROFINET Master directly or via a network switch, while the supply to the equipment is switched off.

Confirm that the link LED on the AKD (the green LED on the RJ45 connector) and on your Master or Switch are both illuminated. If both lights are illuminated, then you have a good electrical connection.

PROFINET RT and WorkBench can operate simultaneously if a switch is used.

3.2.1 LED functions

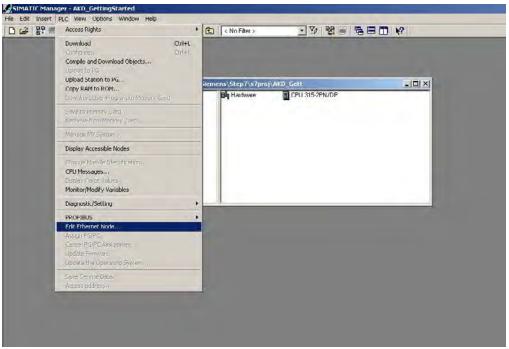
The communication status is indicated by the built-in LEDs.

Connector	LED#	Name	Function
X11	LED1	IN port Link	ON = active, OFF= not active
	LED2	RUN	ON = running, OFF = not running

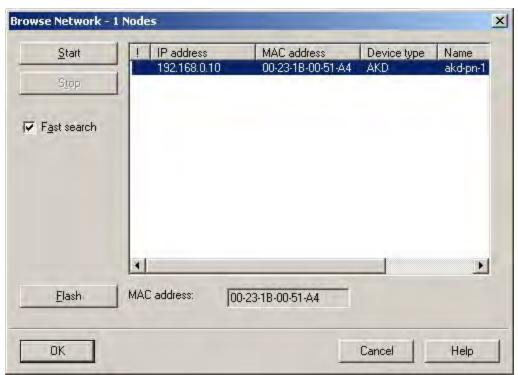
3.2.2 Connection technology

You can connect to the PROFINET network using RJ-45 connectors. Use standard Cat. 5 Ethernet cables for either connection configuration.

3.2.3 Network Connection Examples


3.3 Guide to Setup

▲ WARNING	Only professional personnel with extensive knowledge of control and drive technology are allowed to setup the drive.
A CAUTION	Make sure that any unintended movement of the drive cannot endanger machinery or personnel.

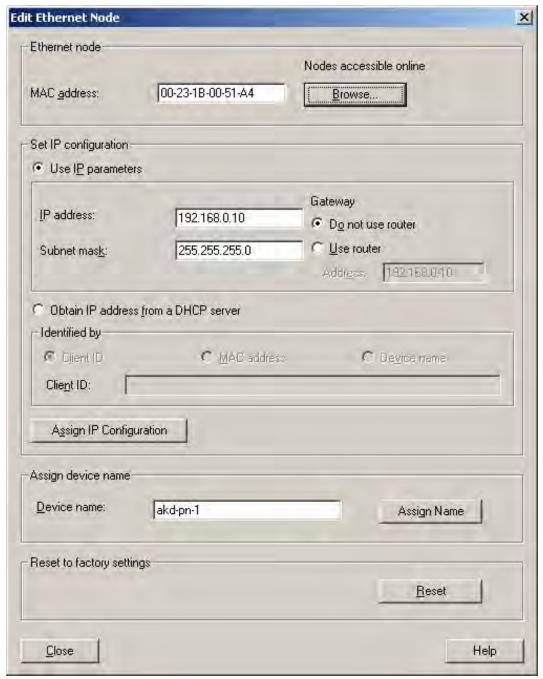

- 1. Check assembly/installation. Check that all the safety instructions in the product manual for the drive and this manual have been observed and implemented. Check station address and baud rate setting.
- 2. Connect PC, start WorkBench. Use the setup software WorkBench to set the parameters for the drive.
- 3. Setup basic functions. Start up the basic functions of the drive and optimize the current, speed and position controllers. This section of the setup is described in the in the online help of the setup software.
- 4. Save parameters. When the parameters have been optimized, save them in the drive.

3.4 Configure IP Address parameters

Start the SIMATIC Manager. To assign a new IP address, go to PLC->Edit Ethernet Node:

In the next dialog window, click on browse in the Ethernet node group and look for all PROFINET devices in your network:

Select the AKD and click ok. If you have several AKD's in your network, you can also use the MAC address to filter one PROFINET device.


To be sure, that the intended device is selected, you can click the "Flash" Button in the dialog. The display of selected device will flash as long as this function is active.

NOTE

The MAC address can be found on the label of the AKD.

Select the radio button *Use IP parameters*: then enter a new IP address and subnet mask to AKD. Click the *Assign IP Configuration* button for the change to take effect

Use the same popup to change the device name at this time by entering a name in the *Device Name* fields and clicking on the *Assign Name* button. Each device connected to the same IO connection must have a unique name. The PROFINET device name for AKD is derived from the AKD DRV.NAME parameter. The PLC, which acts as PROFINET IO-Controller. will use the *Device Name* as address and can change the IP address for each *Device Name*.

You will usually see a status message that indicates that the change was successful and the AKD display will show the new address. If you receive a failure message, make sure that no IO connection is currently running, then retry the address or name change.

A current connection of WorkBench to AKD will be disconnected when the IP address is changed. When this happens, reconnect to the new IP address.

3.4.1 Dependency Service channel (WorkBench) and PROFINET

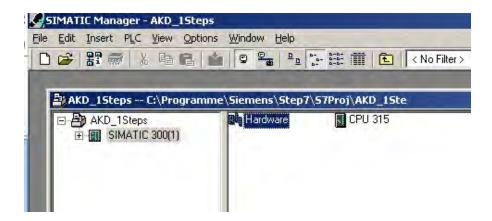
WorkBench and PROFINET use the same IP communication channel to communicate with the drive so changing the IP address has implications for both interfaces.

There are several options for assigning the IP address for WorkBench and PROFINET as described in the AKD User Guide:

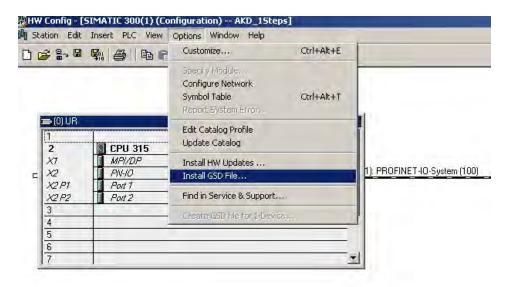
- DHCP, AutoIP
- Static IP addressing
 - Via rotary switches (Address area 192.168.0.xx)
 - Via ASCII commands IP.ADDRESS, IP.SUBNET. IP.GATEWAY
- PROFINET Devices (only): DCP

Once you have changed the IP address via DCP (e.g. through the steps above), the IP.* parameters stored in the drive are overwritten. Should you need to use DHCP or static IP addressing later, you must use WorkBench to set, the IP.MODE to something other than 1. See AKD User Guide for details on the mode you would like to use.

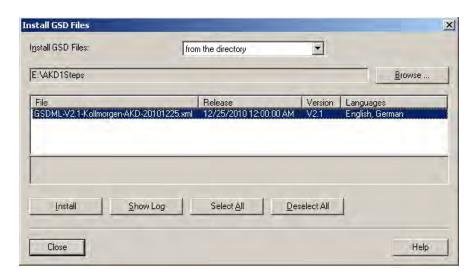
3.4.2 Reset of IP Address parameters

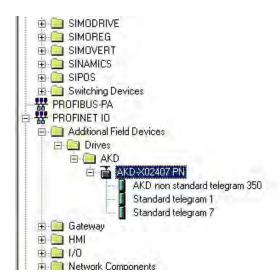

If the AKD can not be found in the network, as a last resort, reset all IP address parameters to their default values.

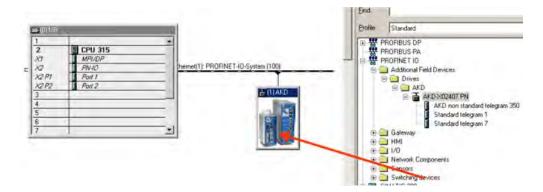
This is done by setting the rotary switches to 0 and holding the B1 button longer than 5 seconds. After this, the current IP address setting will be lost and the IP address is restored to default settings (after power cycle): If rotary switches are zero, the DHCP and AutoIP is enabled.

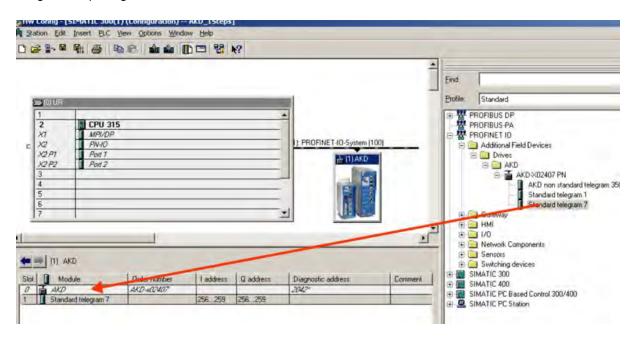

If rotary switches are not zero, the static IP address is 192.168.0.xx (xx rotary switches) and subnet mask 255.255.255.0.

3.5 Setup Step 7


- 1. Start the SIMATIC Manager.
- 2. Open the hardware manager (double click on Hardware).


3. Go to Options and click "Install GSD Files". Here also the GSDML files for PROFINET devices can be installed.:


4. Browse for the latest AKD GSDML file and click on install:


5. The AKD GSDML file is installed now and can be found in the SIMATIC hardware catalog. Open PROFINET I/O->Additional Fieldbus Devices->Drives->AKD

6. Click on the AKD device (not a telegram) and connect it to the PLC (drag and drop)

7. Now configure the telegram, for example telegram 7 for use in position mode. Drag and drop telegram 7 into slot 1.

8. Double click on the PROFINET network (line which connects PLC and AKD) and configure the update time. Click OK for closing this window.

9. Save and compile the hardware configuration.

3.6 Parameter Configuration with PROFIdrive over PROFINET IO

The AKD is defined as an I/O Device in PROFINET IO. A PLC or other IO-Controller establishes a connection via a so called application relations (AR). Within this AR, different profiles like PROFIdrive, PROFIsafe etc. can be used for the communication. The PROFIdrive profile, which AKD supports, is defined as Application Process Identifier (API) 0x3A00.

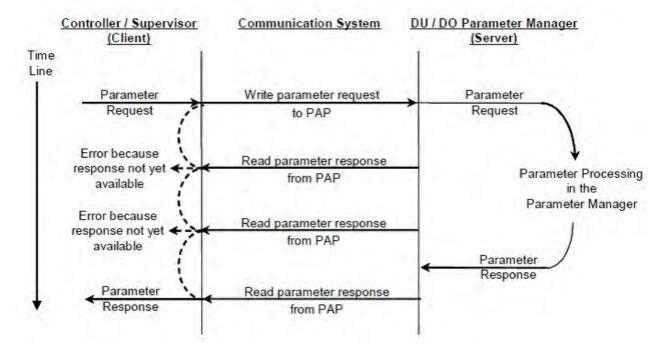
Within the AR, further addressing needs to done. PROFINET IO divides each device in so called slots and subslots. Sub 0 refers to the device itself and returns all generic data like vendor name, software and hardware version. The subslots within the device can be used with different real and virtual modules. Each module a functional component, which for example can be a digital I/O or Telegram with Position values.

AKD provides several virtual modules, which can be used in Slot 1 and are used for the real time data exchange. For read or write parameters to or from the AKD, the global base mode parameter access can be used (see PRO-Fldrive chapter 8.6). The parameter manager is accessed through Slot 1 and a non real time channel needs to be used for this purpose. The AKD supports the record data 47, which is used to address the Parameter numbers (PNUs).

Base mode parameter access shows the construction of the telegram:

Block definition	Byte n+1	Byte n	n
Request Header	Request Reference	Request ID	0
	Axis-No. / DO-ID	No. of Parameters = n	2
1 st Parameter Address	Attribute	No. of Elements	4
	Parameter Number (PN	U)	
	Subindex		
n th Parameter Address		4 + 6 × (n-1)	
1 st Parameter Value(s)	Format	No. of Values	4 + 6 × n
(only for request	Values		
"Change parameter")	·		į
n th Parameter Values	I		
			4 + 6 × n ++ (Format_n × Qty_n)

The following PROFIdrive services are supported:


- Single parameter value request
- Multiple parameter value request
- Single parameter change request
- Multiple parameter change request

Record data fields

The table shows the structure and the supported fields in the AKD for a parameter request.

Field	Data type	Values	Comment
Request reference	Unsigned8	0x00 reserved	
		0x01 – 0xFF	
Request ID	Unsigned8	0x01 Request parameter	
		0x02 Change parameter	
Response ID	Unsigned8	0x01 Request parameter (+)	
		0x02 Change parameter (+)	
		0x81 Request parameter (-)	
		0x82 Change parameter (-)	
Axis / DO-ID	Unsigned8	0x00	one Axis
No. of Parameters	Unsigned8	0x01 0x27	
Attribute	Unsigned8	0x00 reserved	
		0x10 Value	
		0x20 Description	
No. of Elements	Unsigned8	0x01 0xEA Quantity	
Parameter number	Unsigned16	0x0001 0xFFFF PNU	
Subindex	Unsigned16	0x0000 0xFFFE	

3.6.1 Parameter configuration

3.6.2 Example for writing the operation mode

For writing the operation mode an acyclic change parameter value request needs to be send from the IO-Controller/Supervisor to the AKD.

If the user wants to write e.g. the operation mode to position mode (DRV.OPMODE 2) over PROFINET, the PNU 930 needs to be written with value 0x0002. The PROFIdrive base parameter access (see "Position Units" (=> p. 40)) describes the procedure.

Change parameter request (Operation mode):

Byte (dec)	Value (hex)	Description
0	0x05	Request reference: e.g. 5
1	0x02	Request ID: Change parameters
2	0x00	Axis: 0 (the AKD parameter manager)
3	0x01	No of Parameter: 1
4	0x0A	Attribute: Value
5	0x01	No. of Elements
6	0x03	PNU: 930 Operation mode
7	0xA2]
8	0x00	Subindex: 0
9	0x00]
10	0x42	Format: Word
11	0x01	No of Values: 1
12	0x00	Operation mode
13	0x02]

The AKD answers with a positive response without values:

Byte (dec)	Value (hex)	Description
0	0x05	Request reference: e.g. 5
1	0x02	Request ID: Change parameters
2	0x00	Axis: 0 (the AKD parameter manager)
3	0x01	No of Parameter: 1
4	0x00	Format
5	0x00	No. of Values 0

4 PROFINET IO

4.1	Introduction	24
4.2	Restrictions and requirements.	24

4.1 Introduction

PROFINET IO is a real time protocol based on Ethernet. It is used as high level network for industrial automation applications. PROFINET IO is very similar to PROFIbus and focuses on the data exchange for programmable controller.

A PROFINET IO network consists of following devices:

- IO controller: This is typically the PLC, which controls the whole application.
- IO device: a decentralized IO device (e.g. drive, encoder, sensor), which is controlled by the IO controller.
- IO supervisor: HMI (human machine interface) or PC for diagnostic purposes or commissioning.

The real time channel (RT) is used for IO data and alarm mechanism. In PROFINET IO RT (conformance class A and B), the RT data is transferred via a prioritized Ethernet frame. No special hardware is required. Due to this prioritization a cycle time < 10ms can be achieved.

 PROFINET IO IRT is used for higher timing requirements. Cycle times < 1ms is possible, but also special hardware for IO Devices and switches are required.

All diagnostic and configuration data is transferred via the non real time channel (NRT). The well known UDP protocol is used for this purpose. Anyhow, no timing determinism can be guaranteed and typical the cycle times can be > 100ms.

4.2 Restrictions and requirements

4.2.1 Conformance Classes

AKD support Conformance Classes A and B. This means PROFIdrive parameters can be configured over the PROFINET network, fault can be delivered and cyclic data channel functions. However, the synchronization between axes can not take place since it is a part of Conformance Class C.

4.2.2 Cycle time of RT data

AKD fastest cycle time for the PROFINET cyclic data is 8 milliseconds.

4.2.3 Connector

PROFINET network connector in the AKD is the same RJ45 connector used for the service functions. This connector is numbered as X11 on the AKD's top panel.

4.2.4 Network topology

AKD can be connected as an I/O device on the PROFINET network in two manners:

- 1. As the last node in the network (since AKD has only one connector) in a line topology
- 2. As another node on the network in star topology (using a switch)

5 PROFIDRIVE over PROFINET IO

5.1	Introduction	26
5.2	AKD as Drive Object (DO)	27
5.3	General State Machine	28
5.4	Control word bits (STW1).	29
5.5	Status word bits (ZSW1).	31
5.6	Supported PNU's	32
5.7	Signals	33
5.8	Telegram configuration	33
5.9	Velocity Mode (Application class 1).	34
5.10	Position Mode (Application class 3).	35
5.11	I/O Telegrams	39
5.12	Units	40
5.13	Alarms.	41
5.14	Fault	41

5.1 Introduction

The AKD supports the PROFIdrive profile for accessing and configuring standard and manufacture parameters via PROFINET IO to start/stop/configuring motion control tasks.

The profile defines as main element the Drive Object (DO), which is controlling the motion task related parameters. It is important to understand that PROFIdrive is only a user profile, which can be used with PROFINET IO. Note that the AKD supports all mandatory functionality of the PROFIdrive profile, but naturally not all optional

functionality. This chapter describes the supported optional elements.

Clock Acyclic Cyclic Synchronous **Alarm Queue Data Exchange Data Exchange** Operation transmit transmit setpoint actual Master Clock write read signal exception values parameter parameter values sync information cyclically cyclically Alarm Parameter Master Clock DO IO Data Mechanism Access Regeneration sync/trigger Parameter Setpoint Values Actual Values Manager Parameter General **Axis Control Task** Data Base State Machine (closed loop control, motion control, ...) sync/trigger Axis type Drive Object **Actors and Sensors**

(e.g. motor and measurement system)

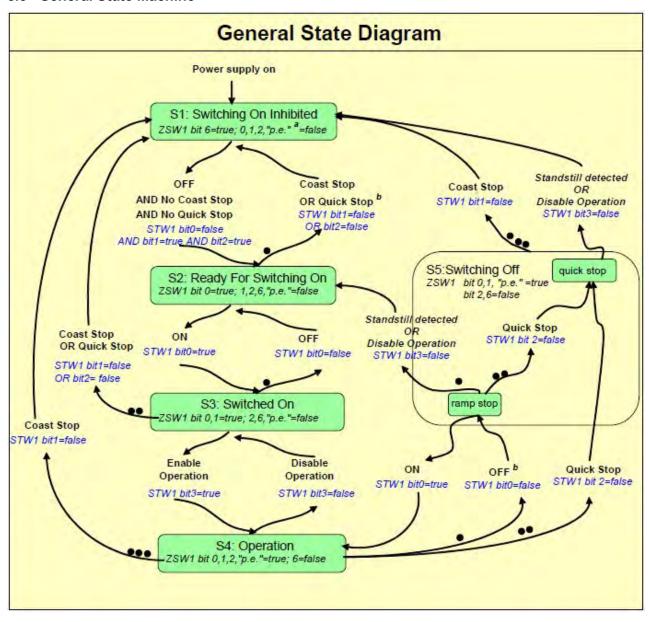
5.2 AKD as Drive Object (DO)

The drive object contains the following items:

- · General state machine
- · Axis control task
- Parameter manager with parameter data base

Multiple communication channels are used for read/write data values over PROFINET IO. The drive object can be accessed via:

- Cyclic data exchange
- · Acyclic data exchange
- Alarm queue (currently not supported)
- Clock synchronous operation (currently not supported)


The cyclic data exchange includes the transmission/reception of data values like set point values (e.g. Position set point, velocity set point or control word) and actual values (actual position value, actual velocity or status word) between the master and the drive object. These values are called IO data and are transferred in real time.

The acyclic data is used for configuring the drive, which typically is not time critical. Each DO has an own parameter manager, which handles the access. The non real time channel is used for this in PROFINET IO.

The alarm queue is used for signaling the master an exception situations, which are generated through the state machine or the axis control task itself (not supported in AKD).

The clock synchronous operation requires PROFINET IRT (conformance class C), which is currently not supported by the AKD.

5.3 General State Machine

5.4 Control word bits (STW1)

The S7 application must set the bits in control word 1 to go through the PROFIdrive standard state machine to enable mode (complying with the PROFIdrive standard 6.3.2). Bits 0-3 control the state machine state.

The control word (STW1) defines the following general functions:

General C	General Control Word Bits			
Bit	Description	Comment		
Number				
0	STW1 on/off	ON / OFF.		
1	STW1 no coast stop	The drive will not coast stop if this bit is set.		
2	STW1 no quick stop	The drive will not execute quick stop if this bit is set.		
3	STW1 enable operation	The drive will enable and execute command if all preconditions		
		are set.		
7	Fault acknowledge	Set this bit to reset faults in the drive.		
10	Control by PLC	When not set no command will be accepted from the PLC.		

In velocity mode:

STW1 Spec	STW1 Special bits (Velocity mode)			
Bit	Description	Comment		
Number				
4	Enable ramp generator of the drive	Use DRV.ACC and DRV.DEC.		
5	Unfreeze the ramp generator in the drive	If frozen, the drive stays at current velocity without continuing to ramp up or down.		
6	Enable set point	The drive accepts set point from the master. If this bit is not set, the velocity will be 0.		
8	Jog 1 on/off	The drive runs up/brakes along the ramp to jogging setpoint 1/standstill. Prerequisite: Operation is enabled, drive is in standstill and STW1 bit 4, 5, 6 = 0.		
9	Jog 2 on/off	The drive runs up/brakes along the ramp to jogging setpoint 2/standstill. Prerequisite: Operation is enabled, drive is in standstill and STW1 bit 4, 5, 6 = 0.		
11-15	Device specific	Not implemented.		

Control word 1 must also set bits 4,5,6 (for speed control – in velocity operation mode) to enable ramp generator and bit 10 to set the drive to be controlled by the PLC.

Bit 7 is used to acknowledge fault. The AKD will clear the fault and go automatically to S1 state after a fault is cleared.

The optional jog bits 8 and 9 can be used for the jogging functionility in velocity mode. PNU 1004 and 1005 define the jogging setpoints 1 and 2.

In position mode:

STW1 Spec	STW1 Special bits (Position mode)			
Bit	Name	Description		
Number				
4	Do Not Reject Trav- ersing Task	A traversing task is activated using the positive signal edge at bit 6.		
5	No Intermediate Stop	Traversing task can be interrupted and continued.		
6	Activate Traversing Task	Positive signal edge enables a traversing task.		
8	Jog 1 on/off	The drive runs up/brakes along the ramp to jogging setpoint 1/standstill. Prerequisite: Operation is enabled, drive is in standstill and STW1 bit 4, 5, 6 = 0.		
9	Jog 2 on/off	The drive runs up/brakes along the ramp to jogging setpoint 2/standstill. Prerequisite: Operation is enabled, drive is in standstill and STW1 bit 4, 5, 6 = 0.		
11	Start Homing Procedure	Homing mode is active. If this bit is cleared, the homing is aborted and the drive stops.		
12-15	Device-specific	Not implemented.		

The optional jog bits 8 and 9 can be used for the jogging functionility in position mode. PNU 1004 and 1005 define the jogging setpoints 1 and 2.

5.5 Status word bits (ZSW1)

All status word1 bits are implemented according to the PROFIdrive standard.

For application class 1 (speed control) and 3 (position mode) all mandatory bits are implemented.

The status word (ZSW1) defines the following functions:

General Stat	General Status Word Bits			
Bit Number	Description	Comment		
0	ZSW1 drive ready to switch on	Ready To Switch On /Not Ready To Switch On.		
1	ZSW1 drive ready to operate	Ready To Operate / Not Ready To Operate.		
2	ZSW1 operation enabled	Operation Enabled (drive follows velocity set point) / Operation Disabled.		
3	Fault present	A fault is present in the drive.		
4	Coast stop not activated	No coast stop is executed.		
5	Quick stop not activated	No quick stop is executed.		
6	Switching on inhibited			
7	Warning present			
9	Control requested by the master			

In velocity mode:

ZSV	ZSW1 Special bits (Velocity mode)		
Bit	Number	Description	Comment
	8	Velocity error within range	
	10	Target velocity reached	
	11-15	Device specific	Not Implemented.

In position mode:

ZSW1 Speci	ZSW1 Special bits (Position mode)			
Bit Number	Name	Description		
8	Following error in range	Error window (PL.ERR and PL.ERRWTHRESH).		
10	Target position reached	DRV.MOTIONTASK Bit 0 (motion task active).		
11	Home position set	DRV.MOTIONTASK Bit 1 & 2 (Homing finished).		
12	Traversing Task acknowl- edgment	On positive edge, traversing task acknowledged or set point accepted.		
13	Drive stopped	No motion task is active. Axis is not moving.		
14-15	Device specific	Not Implemented.		

5.6 Supported PNU's

List of all supported PROFIdrive PNU's

The table mentions all supported PROFIdrive specific parameters. The access needs to be done via base mode parameter access described in "Parameter Configuration with PROFIdrive over PROFINET IO" (=> p. 20).

PNU	Name	Data type	Description
915	DO IO Data configuring (set point telegram)	Array of U16	
916	DO IO Data configuring (actual value telegram)	Array of U16	
922	Telegram selection	U16	The PROFIdrive telegram used for the IO connection can be configured.
923	List of all parameters for signals	Array of U16	All supported signals and their corresponding PNU's.
930	Operating mode	U16	
944	Fault message counter	U16	
947	Fault number	Array of U16	All active faults.
964	Drive Unit Identification	Array of U16	Indices 0 – 4
965	Profile identification number		
975	DO identification		
980 to 989	Number list of defined parameter	Array of U16	
1004	Jog v1	S16	Jogging set point 1
1005	Jog v2	S16	Sogging set point 2
1006	Jog Acc	U16	Jogging acceleration. Uses the acceleration ramp of the velocity loop.
1007	Jog Dec	U16	Jogging deceleration. Uses the deceleration ramp of the velocity loop.

List of all manufacturer specific PNU's

The table shows all manufacture specific signals. All supported PROFIdrive and manufacture specific signals can be mapped into telegram 0 (dynamic telegram configuration).

PNU	Name	Data type	Description
1	STW1	U16	I/O control word
2	ZSW1	U16	I/O status word
5	NSOLL_A	S16	Velocity set point value
6	NIST_A	S16	Velocity actual value
32	SATZANW	U16	Motion task selection
33	AKTSATZ	U16	Actual motion task running
52	ITIST_GLATT	U16	Active Current (torque)

Supported Formats:

Format	0x41	0x42	0x43
Data type	Byte	Word	Dword

5.7 Signals

MDI_MOD		
Bit	Description	
	Relative Positioning Absolute Positioning	
	Reserved	

5.8 Telegram configuration

The telegram configuration is made according to the PROFIdrive standard. The PROFIdrive parameters used in the configuration are: P922, P923, P915, P916 (see PROFIdrive profile, page 110). The following PROFIdrive signals are changing the corresponding AKD signals:

Signal No.	Signal name	PROFIdrive signal name	AKD signal
1	Control word 1	STW1	Control word 1
2	Status word 1	ZSW1	Status word 1
5	Speed A	NSOLL_A	VL.CMD
6	Speed actual value	NIST_A	VL.FB
32	Traversing block selection	SATZANW	MT.MOVE
33	Actual traversing block	AKTSATZ	MT.PARAMS
34	MDI target position	MDI_TARPOS	MT.P*
35	MDI velocity	MDI_VELOCITY	MT.V*
36	MDI acceleration	MDI_ACC	MT.ACC*
37	MDI deceleration	MDI_DEC	MT.DEC*
38	MDI mode	MDI_MOD	MT.CNTL*
52	Active current (torque)	ITIST_GLATT	IL.FB

^{*}Attention: The PROFIdrive signals are not mapped 1:1 to the AKD signals. The unit conversion for PROFIdrive needs to be used.

Either the predefined standard telegrams can be used for accessing the signals or a free mapping can be used with telegram 0.

The signals are also available in the PNU list. Each signal can be read/write with the same PNU number. For instance, signal "Speed actual value" is also available with PNU 6.

5.9 Velocity Mode (Application class 1)

In this mode, the drive is controlled via a primary set point (speed set point). The speed control is completely in the drive controller.

The field bus is merely the transmission medium between the automation system and the drive controller. The Cyclic Data Exchange Communication Service is used.

Example

This example demonstrates enabling the drive and executing motion in velocity mode using standard telegram 1. This means that the master needs to send 32 bits (16 control word and 16 velocity command) and read back 32 bits (16 status word and 16 velocity feedback)

- Send control word bits as follows to move the state machine to S1:
 0000_0100_0111_0000. Velocity command can be zero (it is ignored at this phase)
- 2. Send control word bits as follows to move the state machine to S2: 0000 0100 0111 0110. Velocity command can be zero (it is ignored at this phase)
- 3. Send control word bits as follows to move the state machine to S3: 0000_0100_0111_0111. Velocity command can be zero (it is ignored at this phase)
- 4. Send control word bits as follows to move the state machine to S4 and enable the drive: 0000_0100_0111_1111. Velocity command is used now, set it to 0x00A3 (1 rps)

5.10 Position Mode (Application class 3)

In this application class the Drive Object (DO) provides a closed position control loop with its own position interpolation. The motion tasks, which are configured by MT parameters in AKD, can be accessed.

In PROFIdrive two different submodes are possible, which allow the controlling device to access motion task parameters via I/O messaging.

Furthermore the general state machine of the drive Axis Object is extended to start/configure/stop a motion task. "ONLY" in state S4 ("Operational"), the extended state machine can be accessed.

5.10.1 Submode "Program mode"

The "Program mode" can be used to start/switch to a specific predefined motion task via I/O messaging. Telegram 7 ("Standard telegram 7" (=> p. 39)) is used for this purpose. For addressing the motion task signal "SATZANW" is used. With signal "AKTSATZ" the actual running motion task number can be read.

Requirements:

- Drive axis state machine needs to be in S4 ("Operational")
- Operation mode needs to be "Position mode"
- Standard telegram 7 needs to be configured
- Axis needs to be homed (ZSW1 Bit 11 set, Siehe auch "Status word bits (ZSW1)" on p.31)
- Motion task needs to be configured

Start a motion task:

- Set SATZANW to the motion task number, which shall be started
- Set STW1 Bit 4 and 5 to true (Do not reject traversing task and no intermediate stop)
- Set STW1 Bit 6 from zero to one, the motion task will be activated
- ZSW1 Bit 13 will be set to one when the drive is moving
- after the target position is reached, ZSW 1 Bit 10 is set

Abort or error in executing motion task:

- If the following error is not in tolerance range, ZSW1 Bit 8 is set
- For braking with ramp and reject current running motion task, STW1 Bit 4 must be set to false
- For make an intermediate stop, STW1 bit 5 must be set to false

Warning or Fault handling:

- case of warning, ZSW1 Bit 7 is set (Siehe auch "Status word bits (ZSW1)" on p.31)
- case of fault, ZSW1 Bit 3 is set (Siehe auch "Status word bits (ZSW1)" on p.31)

The figure on the next page shows the extension of the general state diagram of DO. Also the optional jog functionility is supported. The homing procedure can be achieved through bit STW1 Bit 11 (Siehe auch "Homing" on p.38). After an intermediate stop, the motion task can be activated again through STW1 Bit 5 set.

If the general state machine of the DO is in "Operational" and the standard telegram 7 is used to configure a motion task, the following sequence can be used to start a motion task:

- Configure a motion task
- Change the general state machine to S4 (Drive is enabled)
- Set SATZANW to the motion task number, which needs to be started
- Used STW1 Bit 4,5 and 6 to start the motiontask. BIT 6 needs to be an edge

State diagram of the Positioning Mode -Program Submode in "Operation" (S4) state of the general state diagram (always ZSW1 bit 0,1,2,p.eb = true; θ = false) BASIC STATE: Operation ZSW1 bit 10.13 Jog 1 ON OR Jog2 ON Start Homing Procedure OR (Jog1 ON and Jog2 ON) STW1 bit 11 = true STW1 bit 8 or 9 or 8&9 = true Jog 1 OFF **Stop Homing Procedure** AND Jog2 OFF STW1 bit 11 = false STW1 bit 8, 9 = false Jogging^c (optional) Homing Procedure ZSW1 bit 10,13 = false Do Not Reject Trave Running AND No Intermediate Stop ZSW1 bit10,11,13 = false Speed equal to zero AND Activate Trav. Task (Edge) STW 1 bit 4,5 = true AND STW1 bit 6 poo. edge Position Set Braking with ramp ZSW1 bit10,13 = false **END Traversing Task** ZSW1 bit 10,11,13 = true Reject Traversing Task STW1 bit 4 = faloe Activate Traversing task active Traversing Task ZSW1 bit10,13 = false Intermediate Stop (Edge) AND edge at ZSW1 bit 12 STW1 bit 6 poo. edge STW1 bit 5 = false Start Homing Procedure No Intermediate Stop Braking with ramp STW1 bit 11 = true STW1 bit 5 = true ZSW1 bit10,13 = false

The extension of the general state diagram of DO:

5.10.2 Submode "Manual data input (MDI)"

Jog 1 ON OR Jog2 ON

OR (Jog1 ON and Jog2 ON)

STW1 bit 8 or 9 or 8&9 = true

The "manual data input" mode can be used to run a motion task directly configured through IO data. Telegram 9 is used for this purpose and defines the motion task specific signals like acceleration (MID_ACC), deceleration (MID_DEC), velocity (MDI_VEL) and target position (MDI_TAR_POS). With setting bit 15 in signal "SATZANW", the MDI mode can be activated.

Intermediate Stop

optional

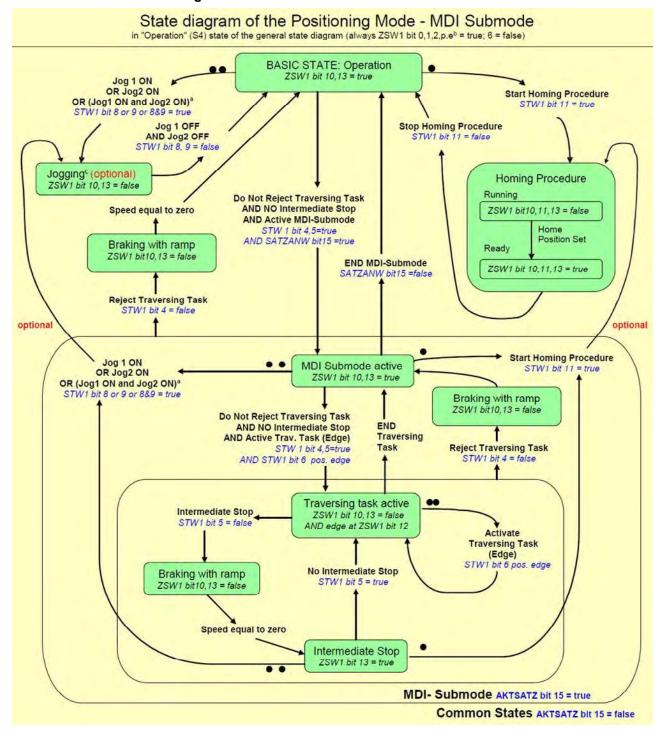
Common States AKTSATZ bit 15 = false

Program Submode AKTSATZ bit 15 = false

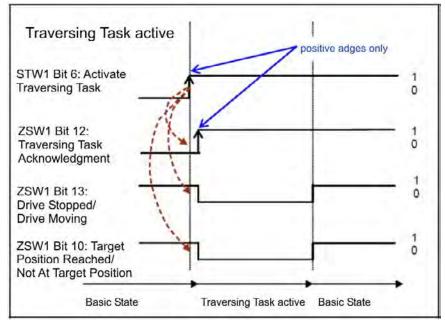
Requirements:

• Drive axis state machine needs to be in S4 ("Operational").

Speed equal to zero


optional

- Operation mode needs to be "Position mode".
- Standard telegram 9 needs to be configured.
- Axis needs to be homed (ZSW1 Bit 11 set, See also "Status word bits (ZSW1)" (=> p. 31).


Run a motion task:

- Set bit 15 in SATZANW to 1
- Configure all setpoint value in telegram 9 like MDI ACC, MDI DEC, MDI MOD etc..
- Set STW1 Bits 4 and 5 to true (Do not reject traversing task and no intermediate stop).
- Set STW1 Bit 6 from zero to one, the motion task will be loaded.
- ZSW1 Bit 12 is set to one, when the drive has started the new motion task.
- ZSW1 Bit 13 will be set to 1 when the drive is moving after the target position is reached, ZSW 1 Bit 10 is set.

The extension of the state diagram for mdi mode:

The activation of a new motion task (or traversing task), is done through a hand shake algorithm. After setting the "Activate traversing task" bit 6 in STW1, the signals MDI_TARPOS, MDI_VELOCITY, MDI_ACC, MDI_DEC and MDI_MOD with their current values are loaded into the drive. The "Traversing Task Acknowledgment" bit 12 in ZSW1 indicates the point in time, when the motion task is starting execution. The figure shows the behavior:

If another motion task shall be executed before the current motion task has finished ("Change on the fly"), the "Activate traversing task" Bit in STW1 can be directly cleared (after the setting of Bit 12 in ZSW1 was detected). In addition, the drive will clear Bit 12 in ZSW1. After this another motion task can be loaded. If an error occurs or the configured motion task can not be executed, bit 12 in ZSW1 will not be set.

5.10.3 **Homing**

Requirements:

- Drive axis state machine needs to be in S4 ("Operational")
- The homing mode needs to be configured via HOME.MODE 1001 (available also via PNU 1001).
- No motion task is active
- Operation mode needs to be "Position mode"

Home procedure:

- STW1 Bit 11 set to one
- ZSW1 Bit 10, 11,13 will be set to false if homing is running
- ZSW1 Bit 10,11,13 will be set to true if homing is finished

Abort homing:

• while the homing is running, clear STW1 Bit 11

If the controller aborts a running home procedure, the home position set flag (ZSW1 Bit 11) remains cleared. Warning or Fault handling:

- case of warning, ZSW1 Bit 7 is set
- case of fault, ZSW1 Bit 3 is set

Mapping to AKD specific commands:

An activation of the homing procedure via STW1 Bit 11 corresponds to the AKD specific command HOME.MOVE. When the homing procedure is finished, the AKD set the bits 2 and bit 4 in DRV.MOTIONSTAT. "Only" if these two bits are set, the PROFIdrive specific homing flag ZSW1 Bit 11 (home position) is set.

5.11 I/O Telegrams

5.11.1 Telegram 0

Telegram 0 is used for the free mapping of PROFIdrive signals into the PROFINET I/O data. With PNU 922 the telegram can be configured. PNU915 defines then set point signals and PNU 916 the actual value signals.

Limitations: The number and kind of signals, which can be mapped, are depending on the configuration of your PROFINET master. The length for input and output values in the IO communication is given through telegram configuration in slot 1.

5.11.2 Standard telegram 1

Typically used for application class 1 (velocity mode). The set point velocity value can be directly controlled by an PROFINET master.

IO Data Number	Set point	Actual values
1	STW1	ZSW1
2	NSOLL_A	NIST_A

5.11.3 Standard telegram 7

Typically used for application class 3 (position mode). Predefined motion tasks can be selected directly via IO data.

IO Data Number	Set point	Actual values
1	STW1	ZSW1
2	SATZANW	AKTSATZ

5.11.4 Standard telegram 9

Typically used for application class 3 (position mode). A motion task can be directly configured via IO data.

IO Data Number	Set point	Actual values
1	STW1	ZSW1
2	SATZANW	AKTSATZ
3	STW2	ZSW2
4	MDI_TARPOS	XIST_A
5		XIST_A
6	MDI_VELOCITY	
7		
8	MDI_ACC	
9	MDI_DEC	
10	MDI_MOD	

5.11.5 Manufacturer specific telegram 350

Telegram 350 is typically used for application class 1 (velocity mode). Additionally to telegram 1 the actual current value can be monitored in the IO data.

IO Data number	Set point	Actual values
1	STW1	ZSW1
2	NSOLL_A	NIST_A
3		ITIST_GLATT

5.12 Units

5.12.1 Velocity units

Velocity units are normalized according to X2 data normalization of PROFIdrive (hence "set normalization bit x" => 2^x = 100% velocity).

In velocity mode:

The AKD uses x=15 and 100% is the maximum velocity of the AKD hence 12000 rpm.

Thus the velocity units are $2^{15} = 12000$ rpm.

E.g. if the S7 wants to set a velocity of 60 rpm in the cyclic channel in needs to convert:

 $(60 / 12000) * 2^15 = 163$

In position mode:

For signal MDI_VELOCITY x = 32 and 100% is the maximum velocity of the AKD hence 12000 rpm.

Thus a value of 2³² for MDI_VELOCITY is equal 12000 rpm.

5.12.2 Position Units

The signal MDI_TARPOS a 32 signed position value. In the default configuration, the resolution per revolution is 2^16 (65536) counts. The number of singleturn bits (default 16) can be changed through PNU 1002.

5.12.3 Acc-/Deceleration Units

The acceleration signal MDI_ACC and MDI_DEC are normalized in the X2 format. (x = 16 is equal to 100% and means 50000000 rpm /sec^2.)

5.12.4 Current units

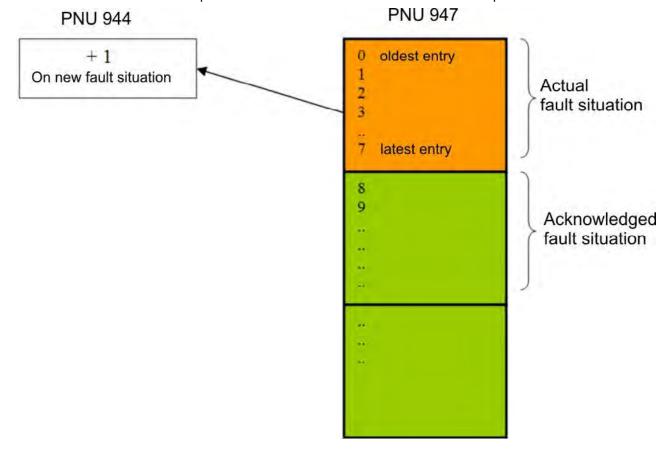
Current units are normalized according to N2 data normalization of PROFIdrive (2^14 = 100%).

The AKD's 100% is the maximum current of the AKD hence DRV.IPEAK.

Thus current units are 2¹⁴ = DRV.IPEAK.

E.g. for 3 amps AKD, if the S7 reads a current value of -182 Arms in the cyclic channel from the AKD, it will need to execute the following conversion:

 $(9/2^14) * (-182) = -0.1 \text{ Arms}$


5.13 Alarms

Not implemented yet.

5.14 Fault

All actual faults can be described as a so called "Fault situation". This fault situation can be read from the fault buffer with PNU 947. A fault situation can have up to 8 different faults. An unacknowledged is indicated by ZSW1 bit 3 (fault present). With acknowledging the actual fault situation, the fault numbers are shifted to the acknowledged faults section (shift of 8 positions in the fault buffer (PNU 947)). Each time a fault situation is generated, a fault message counter is incremented (PNU 944). With reading the value of the fault message counter before and after the read process of the Fault buffer (947), the user can be sure that no other fault situation has been occurred in the meanwhile if these values are equal.

The fault buffer PNU 947 store up to 8 fault situation. Each fault situation can have up to 8 fault numbers.

6 Sample Projects

6 1	ample S7 Project	12
O. I	andre of Fibres	40

6.1 Sample S7 Project

6.1.1 Introduction

On our website <u>www.kollmorgen.com</u>, you can find an STEP 7 sample project which provides a PROFINET network with an IO-controller and the AKD as IO-device.

The sample project can help you to learn:

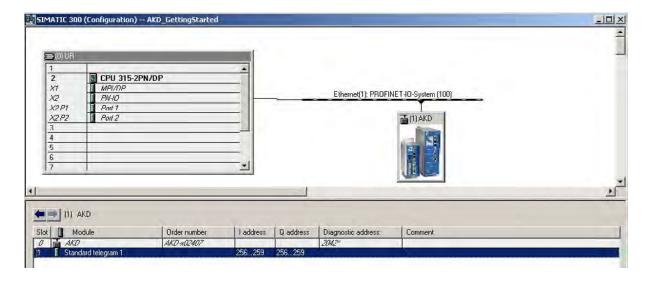
- how to enable the drive
- how to write/read a parameter via the acyclic channel
- how the cyclic data exchange is done

The sample project is based on a CPU-315 controller, which easily can be changed to another PROFINET supporting controller.

NOTE Kollmorgen™ does not guarantee correctness.

6.1.2 Project description

You will find in the STEP 7 program three organization blocks that need to be implemented.


- OB1, which is used for the main program and is a cyclic process.
- OB40, which is used for any process alarm (needs to be implemented the CPU from STOP to RUN).
- OB82, which catches the diagnostic alarms.

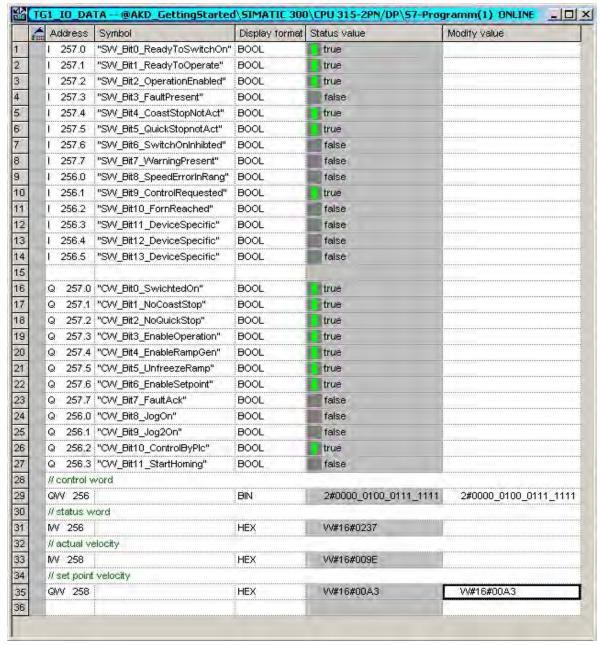
Two variable tables are included

- TG1_IO_DATA can be used to control easily the IO data between the plc and the AKD
- PARAMETER_ACCESS table is used for read/write PNU's via PROFINET

In the hardware manager, you can see the following setup:

6.1.3 Getting started

- 1. To use this example project, open the SIMATIC manager and retrieve the project zip file (SimaticManager->File->Retrieve).
- After the project is loaded, go to the hardware manager and check the communication setup. If no AKD GSDML file is installed, the hardware manager will install it from the project. If there is already an installation of the GSDML file, this step is not required.
- 3. Check the communication setup for your system in the hardware manager and adapt it to your settings. The initial setup for AKD is a static IP Address and an IO cycle time of 128 ms. Change the IP addresses for AKD and the PLC to your specific setup.
- 4. Verify the hardware configuration in the hardware manager and click the "save and compile" button in your configuration.
 - Verify the process-image input and output area of your plc and verify that is greater than 256 byte or change the input/output start address of the AKD telegram you choose. By default, the input is copied to start address 256 and the output to start address 256.
- 5. In this example, the AKD shall be used in velocity mode. Therefore the "Standard Telegram 1" (PRO-Fldrive) is chosen. The signals control word, speed set point as well as status word and speed actual value are mapped to the IO-Data.
 - The AKD has to be set to DRV.OPMODE 1 for this operation.


6.1.4 Enable the drive and run in velocity mode

The general state machine of the PROFIdrive ("General State Machine" (=> p. 28)) needs to be toggled to enable the drive. You can find in the variable table "TG1_IO_DATA" all necessary input and output parameters described bit-wise.

To enable the drive, write the following sequence in the control world:

- 1. QW 2#0000_0100_0000_0000 -> Remote control over field bus
- 2. QW 2#0000 0100 0000 0110 -> Go to S2 (Switch on inhibited)
- 3. QW 2#0000 0100 0000 1110 -> Go to S3 (Switched on)
- 4. QW 2#0000_0100_0000_1111 -> Go to S4 (Operational)

The drive is enabled, if the corresponding bits in the status word are set. TIP: If WorkBench is connected, you will see the drive is enabled.

Now the set point velocity can be set. In the example (see variable table) the value is QW 258 is 0xA3 (60 rpm ("Units" (=> p. 40))). To start the motion, set Bit 4, 5 and 6 (enable ramp generator, unfreeze ramp generator and enable new set point).

This page intentionally left blank.

Telegram configuration 33 7 Index U Units 40 Α Use as directed **Abbreviations** 7 C **Control word** 29 D **Drive Object** 27 F **Fault** 41 G **General State Machine** 28 17 **GSDML** 39 I/O Telegrams P **Parameter Configuration** 20 **Position Mode** 35 **PROFIDRIVE** 25 **PROFINET Hardware** 12 **Prohibited Use** 9 S **Safety Instructions Electrical Installation** 11 General 9 17 Setup Step 7 Signals 33 Status word 31 Submode "Manual data input (MDI)" 36 Submode "Program mode" 35 Supported PNU's 32 7 Symbols used T Target group 6 39 Telegram 0 telegram 1 39 telegram 350 40 telegram 7 39

39

telegram 9

About KOLLMORGEN

Kollmorgen is a leading provider of motion systems and components for machine builders. Through world-class knowledge in motion, industry-leading quality and deep expertise in linking and integrating standard and custom products, Kollmorgen delivers breakthrough solutions that are unmatched in performance, reliability and ease-of-use, giving machine builders an irrefutable marketplace advantage.

For assistance with your application needs, visit www.kollmorgen.com or contact us at:

North America	Europe	Asia
KOLLMORGEN	KOLLMORGEN Europe GmbH	KOLLMORGEN
203A West Rock Road	Pempelfurtstraße 1	Rm 2205, Scitech Tower, China
Radford, VA 24141 USA	40880 Ratingen, Germany	22 Jianguomen Wai Street
Web: www.kollmorgen.com	Web: www.kollmorgen.com	Web: www.kollmorgen.com
Mail: support@kollmorgen.com	Mail: technik@kollmorgen.com	Mail: sales.asia@kollmorgen.com
Tel.: +1 - 540 - 633 - 3545	Tel.: +49 - 2102 - 9394 - 0	Tel.: +86 - 400 666 1802
Fax: +1 - 540 - 639 - 4162	Fax: +49 - 2102 - 9394 - 3155	Fax: +86 - 10 6515 0263