AKD®, AKD® BASIC, AKD® PDMM

Betriebsanleitung

Ausgabe: T, Dezember 2014

Gültig für AKD, AKD BASIC Hardware Revision E Gültig für AKD BASIC-I/O Hardware Revision EA Gültig für AKD PDMM Hardware Revision EB

Bestellnummer 903-200003-01

Übersetzung des Originaldokumentes

Bewahren Sie alle Anleitungen während der gesamten Nutzungsdauer des Produkts als Produktkomponente auf. Händigen Sie alle Anleitungen künftigen Anwendern/Besitzern des Produkts aus.

KOLLMORGEN

Bisher erschienene Ausgaben:

Ausgabe	Bemerkungen
	Den Lebenslauf dieses Dokuments finden Sie unter "Bisher erschienene Ausgaben:" (→ S. 202)
P, 05/2014	KCM X4 und Ready Kontakte neu, KCM Einschaltreihenfolge, AKD-M-M1 neu, Up/Down umbenannt in CW/CCW, primäres Feedback an X7/X9, ISO Warnsymbole
R, 08/2014	Thermosensor Pinout aktualisiert für alle Feedbacks, "NB" Hinweis für Tamagawa, Hinweise Zwischenkreis-Topology, Absicherung Zwischenkreis
T, 12/2014	48A Gerät neu, CE Zertifikat entfernt, neue HR wegen Export Klassifizierung

Hardware-Revision (HR)

AKD- B/P-NA	AKD- B/P-NB		AKD- T-IC	Firmware/ Workbench	KAS IDE	Export Klassifikation	Bemerkungen
Α	-	-	-	ab 1.3	-	3A225	Startrevision, Export kontrolliert
С	-	-	-	ab 1.5	-	3A225	STO zertifiziert, PROFINET RT freigegeben, Export kon- trolliert
-	D	DB	DA	ab 1.6	ab 2.5	3A225	Steuerkarte Rev. 9, AKD PDMM Startrevision, AKD BASIC-IC Startrevision, Export kontrolliert
D	E	EB	EA	ab 1.13	ab 2.9	-	HR zur Rückverfolgbarkeit wegen der Export Klas- sifizierung

Warenzeichen

- AKD ist ein eingetragenes Warenzeichen der Kollmorgen™ Corporation.
- EnDat ist ein eingetragenes Warenzeichen der Dr. Johannes Heidenhain GmbH.
- EtherCAT ist ein eingetragenes Warenzeichen und patentierte Technologie, lizensiert von der Beckhoff Automation GmbH, Deutschland.
- Ethernet/IP ist ein registriertes Warenzeichen der ODVA, Inc.
- Ethernet/IP Communication Stack: copyright (c) 2009, Rockwell Automation
- sercos[®] ist ein eingetragenesWarenzeichen des sercos[®] international e.V.
- HIPERFACE ist ein eingetragenes Warenzeichen der Max Stegmann GmbH.
- PROFINET ist ein eingetragenes Warenzeichen der PROFIBUS und PROFINET International (PI)
- SIMATIC ist ein eingetragenes Warenzeichen der SIEMENS AG
- Windows® ist ein eingetragenes Warenzeichen der Microsoft Corporation

Aktuelle Patente:

- US Patent 5,162,798 (used in control card R/D)
- US Patent 5,646,496 (used in control card R/D and 1 Vp-p feedback interface)
- US Patent 6,118,241 (used in control card simple dynamic braking)
- US Patent 8,154,228 (Dynamic Braking For Electric Motors)
- US Patent 8,214,063 (Auto-tune of a Control System Based on Frequency Response)

Patente, die sich auf Feldbus Funktionen beziehen, sind im jeweiligen Feldbus Handbuch gelistet.

Technische Änderungen zur Verbesserung der Leistung der Geräte ohne vorherige Ankündigung vorbehalten.

Gedruckt in Deutschland. Dieses Dokument ist geistiges Eigentum von Kollmorgen™. Alle Rechte vorbehalten. Kein Teil dieses Werkes darf in irgendeiner Form (Fotokopie, Mikrofilm oder in einem anderen Verfahren) ohne schriftliche Genehmigung von Kollmorgen™ reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

1 Inhaltsverzeichnis

1	In	haltsverzeichnis	3
2	ΑI	Igemeines	10
	2.1	Über diese Betriebsanleitung	. 11
	2.2	Hinweise für die Online-Ausgabe (PDF-Format)	. 11
	2.3	Verwendete Symbole	. 12
	2.4	Verwendete Abkürzungen	13
	2.5	Verwendete Normen	. 14
3	Si	cherheit	15
	3.1	Das sollten Sie beachten	16
	3.2	Bestimmungsgemäße Verwendung	18
	3.3	Nicht bestimmungsgemäße Verwendung	18
	3.4	Handhabung	19
	3	.4.1 Transport	. 19
	3	.4.2 Verpackung	19
	3	.4.3 Lagerung	19
	3	.4.4 Wartung und Reinigung	20
	3	.4.5 Demontage	20
	3	.4.6 Reparatur und Entsorgung	. 20
4	Zι	ılassungen	21
	4.1	Konformität mit UL/cUL	22
	4	.1.1 UL Markings	22
	4.2	CE-Konformität	. 23
	4	.2.1 Europäische Richtlinien und Normen für Maschinenkonstrukteure	24
	4.3	Safe Torque Off (STO)	. 25
5	Pr	oduktidentifizierung	26
	5.1	Lieferumfang	. 27
	5.2	Typenschild	. 27
	5.3	Typenschlüssel	. 28
6	Te	echnische Beschreibung und Daten	. 29
	6.1	Die digitalen Servoverstärker der AKD Reihe	30
	6.2	Umgebungsbedingungen, Belüftung und Einbaulage	32
	6.3	Mechanische Daten	. 32
	6.4	Ein-/Ausgänge	. 33
	6.5	Elektrische Daten AKD-xzzz06	34
	6.6	Elektrische Daten AKD-xzzz07	35
	6.7	Leistungsdaten	36
	6.8	Empfohlene Anzugsmomente	36
	6.9	Massesystem	36
	6.10) Sicherungen	. 37
	6	.10.1 Sicherungen für Leistungsversorgung	. 37
	6	.10.2 Sicherung für 24 V-Spannungsversorgung	. 37
	6	.10.3 Sicherung für externen Bremswiderstand	. 37

6	5.10.4 Sicherung für verbundene Zwischenkreise	37
	1 Stecker	
	2 Anforderungen für Kabel und Verdrahtung	
	5.12.1 Allgemeines	
	5.12.2 Kabelquerschnitte und -anforderungen	
	3 Dynamisches Bremsen	
	5.13.1 Brems-Chopper	
	5.13.2 Funktionsbeschreibung	
	5.13.3 Technische Daten für AKD-xzzz06	
	5.13.4 Technische Daten für AKD-xzzz07	
	4 Ein- und Ausschaltverhalten	
	5.14.1 Einschaltverhalten im Standardbetrieb	
	5.14.2 Ausschaltverhalten	
	6.14.2.1 Ausschaltverhalten unter Verwendung des Befehls DRV.DIS	45
	6.14.2.2 Ausschaltverhalten unter Verwendung eines digitalen Eingang (kontrollierter Stopp)	
	6.14.2.3 Ausschaltverhalten unter Verwendung des HW-Enable-Eingangs	
	6.14.2.4 Ausschaltverhalten bei Auftreten eines Fehlers	47
6.1	5 Stopp/Not-Halt/ Not-Aus	50
6	5.15.1 Stopp	50
6	6.15.2 Not-Halt	51
6	3.15.3 NOT-AUS	51
6.16	6 Safe Torque Off (STO)	52
6	3.16.1 Sicherheitstechnische Kennzahlen	52
6	3.16.2 Sicherheitshinweise	53
6	6.16.3 Bestimmungsgemäße Verwendung	54
6	6.16.4 Nicht bestimmungsgemäße Verwendung	54
6	3.16.5 Technische Daten und Anschluss	54
6	5.16.6 Einbauraum, Verdrahtung	56
6	5.16.7 Funktionsbeschreibung	56
	6.16.7.1 Signaldiagramm	57
	6.16.7.2 Anschlussbeispiele	58
	6.16.7.3 Funktionstest	60
	7 Berührungsschutz	
	5.17.1 Ableitstrom	
	5.17.2 Fehlerstromschutzschalter (RCD)	
	S.17.3 Schutztrenntransformatoren	
7 M	echanische Installation	
7.1	Wichtige Hinweise	
7.2		
7.3		
	7.3.1 Schaltschrankeinbau AKD-xzzz06, Standard Breite	
	7.3.2 Schaltschrankeinbau AKD-xzzz07, Standard Breite	
	7.3.3 Maße AKD-xzzz06, Standard Breite	
	7.3.4 Maße AKD-xzzz07, Standard Breite	
	Mechanische Zeichnungen erhöhte Breite 7.4.1 Schaltschrankeinhau, Beispiel mit AKD-M00306	69
/	4 Laccianschiankennan Deisolechii AND-MUU300	nЧ

	7.	.4.2 Schaltschrankeinbau, Beispiel mit AKD-M00307	70
	7.	.4.3 Maße AKD-xzzz06, erhöhte Breite	71
	7.	.4.4 Maße AKD-xzzz07, erhöhte Breite	72
8	Εl	ektrische Installation	73
	8.1	Wichtige Hinweise	74
	8.2	Anleitung für die elektrische Installation	75
		Verdrahtung	
	8.4	Komponenten eines Servosystems	77
	8.5	Anschlüsse AKD-B, AKD-P, AKD-T	79
	8.	.5.1 Steckerzuordnung AKD-x00306, AKD-x00606	79
	8.	.5.2 Anschlussbild AKD-x00306, AKD-x00606	80
	8.	.5.3 Steckerzuordnung AKD-x01206	81
	8.	.5.4 Anschlussbild AKD-x01206	82
	8.	.5.5 Steckerzuordnung AKD-x02406 und AKD-x00307 bis 02407	83
	8.	.5.6 Anschlussbild AKD-x02406 und AKD-x00307 bis 02407	84
	8.	.5.7 Steckerzuordnung AKD-x04807	85
	8.	.5.8 Anschlussbild AKD-x04807	86
	8.6	Anschlüsse AKD-M	87
	8.	.6.1 Steckerzuordnung AKD-M00306, AKD-M00606	87
	8.	.6.2 Anschlussbild AKD-M00306, AKD-M00606	88
	8.	.6.3 Steckerzuordnung AKD-M01206	89
	8.	.6.4 Anschlussbild AKD-M01206	90
	8.	.6.5 Steckerzuordnung AKD-M02406, AKD-M00307 bis AKD-M02407	91
	8.	.6.6 Anschlussbild AKD-M02406, AKD-M00307 bis AKD-M02407	92
	8.7	EMV Störunterdrückung	93
	8.	.7.1 Empfehlungen für die Reduktion von Störungen	93
	8.	.7.2 Schirmung mit externer Schirmschiene	94
		8.7.2.1 Schirmungskonzept	94
		8.7.2.2 Schirmschiene	95
	8.	.7.3 Schirmanschluss an den Verstärker	96
		8.7.3.1 Schirmbleche	96
		8.7.3.2 Schirmanschlussklemmen	96
		8.7.3.3 Motorstecker X2 mit Schirmanschluss	96
	8.8	Anschluss der Spannungsversorgung	97
	8.	.8.1 Anschluss an verschiedene Versorgungsnetze AKD-xzzz06 (120 V bis 240 V)	97
	8.	.8.2 Anschluss an verschiedene Versorgungsnetze AKD-xzzz07 (240 V bis 480 V)	98
	8.	.8.3 24 V-Hilfsspannungsversorgung (X1)	99
		8.8.3.1 AKD-x003 bis 024, Stecker X1	99
		8.8.3.2 AKD-x048, Stecker X1	99
	8.	.8.4 Anschluss an die Netzversorgung (X3, X4)	100
		8.8.4.1 Dreiphasiger Anschluss (alle AKD Typen)	
		8.8.4.2 Ein-/Zweiphasiger Anschluss (nur AKD-x00306 bis AKD-x01206)	
		DC-Bus-Zwischenkreis (X3, X14)	
	8.	.9.1 Zwischenkreis Topologie mit Y-Steckern	103
	8.	9.2 Zwischenkreis Topologie mit Stromschiene	103
	8.	.9.3 Externer Bremswiderstand (X3)	104

8.9.3.1 AKD-x003 bis 024, Stecker X3	104
8.9.3.2 AKD-x048, Stecker X3	
8.9.4 Kondensator Module (X3)	
8.9.4.1 Technische Daten	
8.9.4.2 Anschlussbeispiel mit KCM-S und KCM-E	
8.9.4.3 Anschlussbeispiel mit KCM-P und KCM-E	
8.9.4.4 KCM Module entladen	
8.10 Motor Leistungsanschluss (X2)	110
8.10.1 AKD-x003 bis 024, Leistungsstecker X2	111
8.10.2 AKD-x048, Leistungsstecker X2	
8.11 Motorbremse Anschluss (X2, X15, X16)	
8.11.1 AKD-x003 bis 024, Stecker X2	112
8.11.2 AKD-x048, Stecker X15, X16	
8.11.3 Funktionalität	114
8.12 Feedback Anschluss (X10, X9, X7)	115
8.12.1 Feedback Stecker (X10)	116
8.12.2 Feedback Stecker (X9)	117
8.12.3 Feedback Stecker (X7)	117
8.12.4 Resolver	118
8.12.5 SFD	119
8.12.6 SFD3	120
8.12.7 Hiperface DSL	121
8.12.8 Encoder mit BiSS	122
8.12.8.1 BiSS (Mode B) Analog	122
8.12.8.2 BiSS (Mode C) Digital	123
8.12.9 Sinus Encoder mit EnDat 2.1	124
8.12.10 Encoder mit EnDat 2.2	125
8.12.11 Sinus Encoder mit Hiperface	126
8.12.12 Sinus-Encoder mit Hall	127
8.12.13 Inkrementalgeber	128
8.12.14 Tamagawa Smart Abs Encoder	129
8.13 Elektronisches Getriebe, Master-Slave Betrieb (X9, X7)	130
8.13.1 Technische Eigenschaften und Pinbelegung	130
8.13.1.1 Stecker X7 Eingänge	130
8.13.1.2 Stecker X9 Eingänge	131
8.13.1.3 Stecker X9 Ausgänge	131
8.13.2 Encoder als zweites Feedback	132
8.13.2.1 Inkrementalgeber Eingang 5 V (X9)	132
8.13.2.2 Inkrementalgeber Eingang 24 V (X7)	132
8.13.2.3 Encoder mit EnDat 2.2 Eingang 5 V (X9)	133
8.13.3 Impuls / Richtung	
8.13.3.1 Impuls / Richtung Eingang 5 V (X9)	
8.13.3.2 Impuls / Richtung Eingang 5 V bis 24 V (X7)	
8.13.4 CW / CCW	
8.13.4.1 CW / CCW Eingang 5 V (X9)	135
8 13 4 2 CW / CCW Fingang 24 V (X7)	135

8.13.5 Encoder Emulation (EEO)	136
8.13.6 Master-Slave-Steuerung	137
8.14 I/O-Anschluss	138
8.14.1 Übersicht	138
8.14.1.1 I/O-Stecker X7 und X8 (alle AKD Varianten)	138
8.14.1.2 I/O Stecker X21, X22, X23 und X24 (nur AKD-T mit I/O Optionskarte)	139
8.14.1.3 I/O Stecker X35 und X36 (nur AKD-M)	141
8.14.2 Analoge Eingänge (X8, X24)	142
8.14.3 Analoge Ausgänge (X8, X23)	143
8.14.4 Digitale Eingänge (X7/X8)	144
8.14.4.1 Digitale Eingänge 1 und 2	146
8.14.4.2 Digitale Eingänge 3 bis 7	146
8.14.4.3 Digitaler Eingang 8 (ENABLE)	146
8.14.5 Digitale Eingänge mit I/O Optionskarte (X21, X22)	147
8.14.6 Digitale Eingänge (X35/X36) bei AKD-M	149
8.14.7 Digitale Ausgänge (X7/X8)	151
8.14.7.1 Digitale Ausgänge 1 und 2	151
8.14.7.2 Fehlerrelais	152
8.14.8 Digitale Ausgänge mit I/O Optionskarte (X23/X24)	153
8.14.8.1 Digitale Ausgänge 21 bis 24 und 26 bis 29	153
8.14.8.2 Digitale Relaisausgänge 25, 30	154
8.14.9 Digitale Ausgänge (X35/X36) bei AKD-M	155
8.14.9.1 Digitale Ausgänge 21 und 22	155
8.15 LED-Anzeige	156
8.15 LED-Anzeige 8.16 Drehschalter (S1, S2, RS1)	
_	157
8.16 Drehschalter (S1, S2, RS1)	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3)	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T 8.17.2 Taster B1, B2, B3 bei AKD-M	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T 8.17.2 Taster B1, B2, B3 bei AKD-M 8.18 SD Speicherkarte, -M oder I/O Optionskarte	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T 8.17.2 Taster B1, B2, B3 bei AKD-M 8.18 SD Speicherkarte, -M oder I/O Optionskarte 8.18.1 SD Karte mit I/O Optionskarte	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T 8.17.2 Taster B1, B2, B3 bei AKD-M 8.18 SD Speicherkarte, -M oder I/O Optionskarte 8.18.1 SD Karte mit I/O Optionskarte 8.18.2 SD Karte mit AKD-M	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T 8.17.2 Taster B1, B2, B3 bei AKD-M 8.18 SD Speicherkarte, -M oder I/O Optionskarte 8.18.1 SD Karte mit I/O Optionskarte 8.18.2 SD Karte mit AKD-M 8.19 Ethernet Schnittstelle (X11, X32)	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T 8.17.2 Taster B1, B2, B3 bei AKD-M 8.18 SD Speicherkarte, -M oder I/O Optionskarte 8.18.1 SD Karte mit I/O Optionskarte 8.18.2 SD Karte mit AKD-M 8.19 Ethernet Schnittstelle (X11, X32) 8.19.1 Pinbelegung X11, X32	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T 8.17.2 Taster B1, B2, B3 bei AKD-M 8.18 SD Speicherkarte, -M oder I/O Optionskarte 8.18.1 SD Karte mit I/O Optionskarte 8.18.2 SD Karte mit AKD-M 8.19 Ethernet Schnittstelle (X11, X32) 8.19.1 Pinbelegung X11, X32 8.19.2 Bus Protokolle X11, X32	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T 8.17.2 Taster B1, B2, B3 bei AKD-M 8.18 SD Speicherkarte, -M oder I/O Optionskarte 8.18.1 SD Karte mit I/O Optionskarte 8.18.2 SD Karte mit AKD-M 8.19 Ethernet Schnittstelle (X11, X32) 8.19.1 Pinbelegung X11, X32 8.19.2 Bus Protokolle X11, X32 8.19.3 Mögliche Netzwerkkonfigurationen	
 8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T 8.17.2 Taster B1, B2, B3 bei AKD-M 8.18 SD Speicherkarte, -M oder I/O Optionskarte 8.18.1 SD Karte mit I/O Optionskarte 8.18.2 SD Karte mit AKD-M 8.19 Ethernet Schnittstelle (X11, X32) 8.19.1 Pinbelegung X11, X32 8.19.2 Bus Protokolle X11, X32 8.19.3 Mögliche Netzwerkkonfigurationen 8.19.4 Festlegen der IP Adresse AKD-B, AKD-P, AKD-T 	
 8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T 8.17.2 Taster B1, B2, B3 bei AKD-M 8.18 SD Speicherkarte, -M oder I/O Optionskarte 8.18.1 SD Karte mit I/O Optionskarte 8.18.2 SD Karte mit AKD-M 8.19 Ethernet Schnittstelle (X11, X32) 8.19.1 Pinbelegung X11, X32 8.19.2 Bus Protokolle X11, X32 8.19.3 Mögliche Netzwerkkonfigurationen 8.19.4 Festlegen der IP Adresse AKD-B, AKD-P, AKD-T 8.19.5 Festlegen der IP Adresse AKD-M 	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T 8.17.2 Taster B1, B2, B3 bei AKD-M 8.18 SD Speicherkarte, -M oder I/O Optionskarte 8.18.1 SD Karte mit I/O Optionskarte 8.18.2 SD Karte mit AKD-M 8.19 Ethernet Schnittstelle (X11, X32) 8.19.1 Pinbelegung X11, X32 8.19.2 Bus Protokolle X11, X32 8.19.3 Mögliche Netzwerkkonfigurationen 8.19.4 Festlegen der IP Adresse AKD-B, AKD-P, AKD-T 8.19.5 Festlegen der IP Adresse AKD-M 8.19.6 Modbus TCP	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T 8.17.2 Taster B1, B2, B3 bei AKD-M 8.18 SD Speicherkarte, -M oder I/O Optionskarte 8.18.1 SD Karte mit I/O Optionskarte 8.18.2 SD Karte mit AKD-M 8.19 Ethernet Schnittstelle (X11, X32) 8.19.1 Pinbelegung X11, X32 8.19.2 Bus Protokolle X11, X32 8.19.3 Mögliche Netzwerkkonfigurationen 8.19.4 Festlegen der IP Adresse AKD-B, AKD-P, AKD-T 8.19.5 Festlegen der IP Adresse AKD-M 8.19.6 Modbus TCP 8.20 CAN-Bus-Schnittstelle (X12/X13)	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T 8.17.2 Taster B1, B2, B3 bei AKD-M 8.18 SD Speicherkarte, -M oder I/O Optionskarte 8.18.1 SD Karte mit I/O Optionskarte 8.18.2 SD Karte mit AKD-M 8.19 Ethernet Schnittstelle (X11, X32) 8.19.1 Pinbelegung X11, X32 8.19.2 Bus Protokolle X11, X32 8.19.3 Mögliche Netzwerkkonfigurationen 8.19.4 Festlegen der IP Adresse AKD-B, AKD-P, AKD-T 8.19.5 Festlegen der IP Adresse AKD-M 8.19.6 Modbus TCP 8.20 CAN-Bus-Schnittstelle (X12/X13) 8.20.1 CAN-Bus Aktivierung bei AKD-CC Modellen	
8.16 Drehschalter (S1, S2, RS1) 8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T 8.16.2 Drehschalter RS1 mit AKD-M 8.17 Taster (B1, B2, B3) 8.17.1 Taster B1 bei AKD-B, -P, -T 8.17.2 Taster B1, B2, B3 bei AKD-M 8.18 SD Speicherkarte, -M oder I/O Optionskarte 8.18.1 SD Karte mit I/O Optionskarte 8.18.2 SD Karte mit AKD-M 8.19 Ethernet Schnittstelle (X11, X32) 8.19.1 Pinbelegung X11, X32 8.19.2 Bus Protokolle X11, X32 8.19.3 Mögliche Netzwerkkonfigurationen 8.19.4 Festlegen der IP Adresse AKD-B, AKD-P, AKD-T 8.19.5 Festlegen der IP Adresse AKD-M 8.19.6 Modbus TCP 8.20 CAN-Bus-Schnittstelle (X12/X13) 8.20.1 CAN-Bus Aktivierung bei AKD-CC Modellen 8.20.2 Baudrate für CAN-Bus	

8.20.6 CAN-Bus Anschlussbild	
8.21 Motion-Bus-Schnittstelle (X5/X6/X11)	171
8.21.1 Pinbelegung X5/X6/X11	171
8.21.2 Bus-Protokolle X5/X6/X11	171
8.21.3 EtherCAT	172
8.21.3.1 EtherCAT Aktivierung bei AKD-CC Modellen	172
8.21.4 SynqNet	173
8.21.5 PROFINET	173
8.21.6 Ethernet/IP	173
8.21.7 sercos® III	174
9 Inbetriebnahme	175
9.1 Wichtige Hinweise	176
9.2 Setup AKD-B, AKD-P, AKD-T	177
9.2.1 Setup-Software WorkBench	177
9.2.2 Bestimmungsgemäße Verwendung	177
9.2.3 Beschreibung der Software	178
9.2.4 Hardware-Anforderungen	178
9.2.5 Betriebssysteme	178
9.2.6 Installation unter Windows 2000/XP/VISTA/7	179
9.2.7 Verstärkerschnelltest AKD-B, AKD-P, AKD-T	180
9.2.7.1 Auspacken, Montieren und Verdrahten des AKD	180
9.2.7.2 Mindestverdrahtung zum Testen des Verstärkers ohne Last	180
9.2.7.3 IP-Adresse einstellen	180
9.2.7.4 Verbindungen überprüfen	181
9.2.7.5 WorkBench Installieren und starten	181
9.2.7.6 IP-Adresse des Servoverstärkers in WorkBench eingeben	182
9.2.7.7 Servoverstärker mit dem Setup-Assistenten freigeben	182
9.3 Setup AKD-M	183
9.3.1 Setup-Software KAS IDE	183
9.3.2 Bestimmungsgemäße Verwendung	183
9.3.3 Beschreibung der Software	184
9.3.4 Hardware-Anforderungen	184
9.3.5 Betriebssysteme	184
9.3.6 Installation unter Windows XP/7	185
9.3.7 Verstärkerschnelltest AKD-M	186
9.3.7.1 Auspacken, Montieren und Verdrahten des AKD PDMM	186
9.3.7.2 Mindestverdrahtung zum Testen des Verstärkers ohne Last	186
9.3.7.3 IP-Adresse einstellen	187
9.3.7.4 Verbindungen überprüfen	187
9.3.7.5 KAS IDE Installieren und starten	188
9.3.7.6 IP-Adresse des Servoverstärkers in KAS IDE eingeben	189
9.3.7.7 Ein neues Projekt starten	190
9.4 Fehler und Warnmeldungen	193
9.4.1 Fehler und Warnmeldungen AKD	193
9.4.2 Zusätzliche Fehlermeldungen AKD-T	198
9.4.3 Zusätzliche Fehler- und Wammeldungen AKD-M	199

0.4.2.1 Warnungan	100
9.4.3.1 Warnungen	198
9.4.3.2 Fehler	200
9.5 Fehlersuche und -behebung beim AKD	201
10 Bisher erschienene Ausgaben:	202
11 Stichwortverzeichnis	203

2 Allgemeines

2.1	Über diese Betriebsanleitung	11
2.2	Hinweise für die Online-Ausgabe (PDF-Format)	11
2.3	Verwendete Symbole	12
2.4	Verwendete Abkürzungen	13
2.5	Verwendete Normen	14

2.1 Über diese Betriebsanleitung

Die vorliegende *AKD Betriebsanleitung* beschreibt die digitalen AKDServoverstärker und enthält Informationen zur sicheren Installation eines AKD. Eine digitale Version dieser Betriebsanleitung (PDF Format) befindet sich auf der mit dem Servoverstärker gelieferten DVD. Aktualisierungen der Betriebsanleitung können Sie von der Kollmorgen™ Website (www.-kollmorgen.com) herunterladen.

Weitere Dokumente auf der beiliegenden DVD:

- Benutzerhandbuch: Beschreibt, wie Sie Ihren Verstärker in gängigen Applikationen benutzen. Es bietet auch Tipps zur Optimierung der Systemleistung mit dem AKD. Das Benutzerhandbuch beinhaltet den Parameter and Command Reference Guide mit der Dokumentation zu den Parametern und Befehlen, die für die Programmierung des AKD verwendet werden.
- CAN-BUS Kommunikation: Beschreibt die Verwendung des Servoverstärkers in CANopen Applikationen.
- EtherCAT Kommunikation: Beschreibt die Verwendung des Servoverstärkers in EtherCAT Applikationen.
- Ethenet/IP Kommunikation: Beschreibt die Verwendung des Servoverstärkers in Ethenet/IP Applikationen.
- sercos[®] III Kommunikation: Beschreibt die Verwendung des Servoverstärkers in sercos[®] Applikationen.
- *PROFINET RT Kommunikation*: Beschreibt die Verwendung des Servoverstärkers in PROFINET RT Applikationen.
- SynqNet Kommuniation: Beschreibt die Verwendung des Servoverstärkers in SynqNet Applikationen.
- Zubehör Handbuch. Dieses Handbuch enthält technische Daten und Maßzeichnungen von Zubehör wie Kabeln und Bremswiderständen, die mit AKD benutzt werden. Von diesem Handbuch existieren regional unterschiedliche Versionen.

2.2 Hinweise für die Online-Ausgabe (PDF-Format)

Das Dokument bietet verschiedene Funktionen, um die Navigation zu vereinfachen.

Lesezeichen	Das Inhaltsverzeichnis und der Index enthalten aktive Lesezeichen.
Inhaltsverzeichnis und Index im Text	Die Zeilen im Inhaltsverzeichnis und Index sind aktive Querverweise. Klicken Sie auf eine Zeile, um zur entsprechenden Seite zu gelangen.
Seitennummern im Text	Seitennummern im Text mit Querverweisen sind aktive Verknüpfungen.

2.3 Verwendete Symbole

Warnsymbole

Symbol	Bedeutung
GEFAHR	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zum Tode oder zu schweren, irreversiblen Verletzungen führen wird.
WARNUNG	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zum Tode oder zu schweren, irreversiblen Verletzungen führen kann.
VORSICHT	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zu leichten Verletzungen führen kann.
HINWEIS	Dieses Symbol weist auf eine Situation hin, die, wenn sie nicht vermieden wird, zu Beschädigung von Sachen führen kann.
INFO	Dieses Symbol weist auf wichtige Informationen hin.
	Warnung vor einer Gefahr (allgemein). Die Art der Gefahr wird durch den nebenstehenden Warntext spezifiziert.
4	Warnung vor gefährlicher elektrischer Spannung und deren Wirkung.
	Warnung vor hängender Last.

Zeichnungssymbole

Symbol	Beschreibung	Symbol	Beschreibung
	Signalmasse	¥	Diode
/////	Gehäusemasse	片	Relais
(Schutzerde	-	Abschaltverzögertes Relais
¢	Widerstand	\	Arbeitskontakt
ļ ţ	Sicherung	7	Ruhekontakt

2.4 Verwendete Abkürzungen

Abkürzung	Bedeutung
AGND	Analoge Masse
CE	Europäische Gemeinschaft
COM	Serielle Schnittstelle für einen PC
DCOMx	Kommunikationsleitung für digitale Eingänge (mit x=7 oder 8)
Disk	Speichermedium (Festplatte, CDRom, DVD)
EEPROM	Elektrisch löschbarer programmierbarer Speicher
EMV	Elektromagnetische Verträglichkeit
F-SMA	Stecker für Lichtwellenleiter gemäß EN 60874-2
KAS	Kollmorgen Automation Suite
KAS IDE	Entwicklungsumgebung (Kollmorgen Automation Suite Integrated Development Environment) benötigt für AKD PDMM Gerätevarianten
LED	Leuchtdiode
LSB	Niederwertiges Byte (oder Bit)
MSB	Höchstwertiges Byte (oder Bit)
NI	Nullimpuls
PC	Personal Computer
PE	Schutzerde
SPS	Speicherprogrammierbare Steuerung
PWM	Pulsweitenmodulation
RAM	Arbeitsspeicher (flüchtiger Speicher)
R _{Brems-} /R _B	Bremswiderstand
RBext	Externer Bremswiderstand
RBint	Interner Bremswiderstand
RCD	Fehlerstromschutzschalter (FI-Schalter)
RES	Resolver
ROD	Inkrementalgeber (A quad B)
S1	Dauerbetrieb
Safe Torque Off	Safe Torque Off (STO; sicher abgeschaltetes Moment)
V AC	Volt, Wechselstrom
V DC	Volt, Gleichstrom

2.5 Verwendete Normen

Standard	Inhalt
EN 4762	Zylinderschrauben mit Innensechskant
ISO 11898	Strassenfahrzeuge — Controller area network (CAN)
EN 12100	Sicherheit von Maschinen: Grundbegriffe, allgemeine Gestaltungsleitsätze
EN 13849	Sicherheit von Maschinen: Sicherheitsrelevante Teile von Steuerungen
EN 60085	Elektrische Isolierung – Thermische Bewertung und Bezeichnung
EN 60204	Sicherheit von Maschinen: Elektrische Ausrüstung von Maschinen
EN 60364	Errichten von Niederspannungsanlagen
EN 60439	Niederspannungs-Schaltgerätekombinationen
EN 60529	Schutzarten durch Gehäuse (IP-Code)
EN 60664	Isolationskoordination in Niederspannungsbetriebsmitteln
EN 60721	Klassifizierung von Umweltbedingungen
EN 61000	Elektromagnetische Verträglichkeit (EMV)
EN 61131	Speicherprogrammierbare Steuerungen
EN 61491	Ausrüstung von Industriemaschinen – Serielle Datenverbindung für Echtzeit-
EN 04500	Kommunikation zwischen Steuerungen und Antrieben.
EN 61508	Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme
EN 61800	Elektrische Leistungsantriebe mit einstellbarer Drehzahl
EN 62061	Funktionale Sicherheit sicherheitsbezogener elek-
LIV 02001	trischer/elektronischer/programmierbarer elektronischer Systeme
EN 82079	Erstellen von Anleitungen – Gliederung, Inhalt und Darstellung
UL 840	UL Standard for Safety for Insulation Coordination
UL 508C	UL Standard for Safety Power Conversion Equipment

ANSI - American National Standard Institute, Inc.

EN – European Standard

ISO – Internationale Organisation für Normung

UL – Underwriters Laboratories

3 Sicherheit

3.1	Das sollten Sie beachten	. 16
3.2	Bestimmungsgemäße Verwendung	18
3.3	Nicht bestimmungsgemäße Verwendung	18
3.4	Handhabung	. 19

3.1 Das sollten Sie beachten

Dieses Kapitel hilft Ihnen, Gefährdungen für Personen und Sachen zu erkennen und zu vermeiden.

Dokumentation lesen

Lesen Sie vor der Montage und Inbetriebnahme die vorliegende Dokumentation. Falsches Handhaben des Servoverstärkers kann zu Personen- oder Sachschäden führen. Der Betreiber muss daher sicherstellen, dass alle mit Arbeiten am AKD betrauten Personen das Handbuch gelesen und verstanden haben und dass die Sicherheitshinweise in diesem Handbuch beachtet werden.

Hardware Revision prüfen

Prüfen Sie die Hardware-Revisionsnummer des Produkts (siehe Typenschild). Diese Nummer muss mit den Angaben auf der Titelseite dieses Handbuchs übereinstimmen.

Technische Daten beachten

Halten Sie die technischen Daten und die Angaben zu den Anschlussbedingungen (Typenschild und Dokumentation) ein. Wenn zulässige Spannungswerte oder Stromwerte überschritten werden, können die Servoverstärker geschädigt werden.

Risikobeurteilung erstellen

Der Hersteller der Maschine muss eine Risikobeurteilung für die Maschine erstellen und geeignete Maßnahmen treffen, dass unvorhergesehene Bewegungen nicht zu Verletzungen oder Sachschäden führen können. Aus der Risikobeurteilung leiten sich eventuell weitere Anforderungen an das Fachpersonal ab.

Automatischer Wiederanlauf

Der Antrieb kann abhängig von der Parametereinstellung nach dem Einschalten der Netzspannung, bei Spannungseinbrüchen oder Unterbrechungen automatisch anlaufen. Es besteht die Gefahr von tödlichen oder schweren Verletzungen für Personen, die in der Maschine arbeiten.

Wenn der Parameter DRV.ENDEFAULT auf 1 gesetzt ist, warnen Sie an der Maschine mit einem Warnschild (Warnung: Automatischer Wiederanlauf nach Einschalten!) und stellen Sie sicher, dass ein Einschalten der Netzspannung nicht möglich ist, während sich Personen im gefährdeten Bereich der Maschine aufhalten. Wenn Sie einen Unterspannungsschutz benutzen, beachten Sie Kapitel 7.5 der EN 60204-1:2006.

Fachpersonal erforderlich

Für Arbeiten wie Transport, Installation, Inbetriebnahme und Instandhaltung darf nur qualifiziertes Personal eingesetzt werden. Qualifiziertes Personal sind Personen, die mit Transport, Aufstellung, Montage, Inbetriebnahme und Betrieb von Servoantrieben vertraut sind und über die ihrer Tätigkeit entsprechenden Mindestqualifikationen verfügen:

- Transport: nur durch Personal mit Kenntnissen in der Behandlung elektrostatisch gefährdeter Bauelemente.
- Auspacken: nur durch Fachleute mit elektrotechnischer Ausbildung.
- Installation: nur durch Fachleute mit elektrotechnischer Ausbildung.
- Inbetriebnahme: nur durch Fachleute mit weitreichenden Kenntnissen in den Bereichen Elektrotechnik und Antriebstechnik.

Das Fachpersonal muss ebenfalls IEC 60364 / IEC 60664 und nationale Unfallverhütungsvorschriften kennen und beachten.

Elektrostatisch empfindliche Bauteile

Die Verstärker enthalten elektrostatisch gefährdete Komponenten, die durch unsachgemäßen Gebrauch beschädigt werden können. Entladen Sie Ihren Körper elektrostatisch, bevor Sie den Verstärker berühren. Vermeiden Sie es, hoch isolierende Stoffe zu berühren (Kunstfasern, Plastikfolie usw.). Legen Sie den Verstärker auf eine leitfähige Oberfläche.

Heiße Oberfläche

Die Oberflächen von Verstärkern können im Betrieb sehr heiß werden. Der Kühlkörper kann Temperaturen über 80 °C erreichen. Gefahr leichter Verbennungen. Messen Sie die Temperatur und warten Sie, bis der Kühlkörper auf unter 40 °C abgekühlt ist, bevor Sie ihn berühren.

Erdung

Stellen Sie die ordnungsgemäße Erdung des Servoverstärkers mit der PE-Schiene im Schaltschrank als Bezugspotential sicher. Gefahr durch elektrischen Schlag. Ohne niederohmige Erdung ist keine personelle Sicherheit gewährleistet.

Hohe Spannungen

Die Geräte erzeugen hohe elektrische Spannungen bis zu 900 V. Öffnen oder berühren Sie die Geräte während des Betriebs nicht. Halten Sie während des Betriebs alle Abdeckungen und Schaltschranktüren geschlossen.

Während des Betriebes können Servoverstärker ihrer Schutzart entsprechend spannungsführende, blanke Teile besitzen. Warten Sie nach dem Trennen des Verstärkers von der Versorgungsspannung mindestens 7 Minuten, bevor Sie Geräteteile, die potenziell Spannung führen (z. B. Kontakte), berühren oder Anschlüsse trennen.

Kondensatoren können bis zu 7 Minuten nach Abschalten der Spannungsversorgung gefährliche Spannung führen. Messen Sie stets die Spannung am DC-Bus-Zwischenkreis und warten Sie, bis die Spannung unter 60 V gesunken ist, bevor Sie Komponenten berühren.

Trennen Sie nie die elektrischen Verbindungen zum Verstärker, während dieser Spannung führt. Es besteht die Gefahr von Lichtbogenbildung mit Verletzungsgefahr (Verbennungen oder Erblindung) und Schäden an Kontakten.

Verstärkte Isolierung

Im Motor eingebaute Temperaturfühler, Motorhaltebremsen und Rückführsysteme müssen mit einer verstärkten Isolierung (gem. EN 61800-5-1) gegenüber Systemkomponenten mit Leistungsspannung versehen sein, entsprechend der geforderten Prüfspannung der Applikation. Alle Kollmorgen™ Komponenten entsprechen diesen Anforderungen.

Geräte nicht verändern

Veränderung an den Servoverstärker ohne Erlaubnis des Herstellers sind nicht zulässig. Öffnen der Geräte bedeutet Verlust der Gewährleistung.

3.2 Bestimmungsgemäße Verwendung

Die AKD Servoverstärker sind ausschließlich zum Antrieb von geeigneten Synchron-Servomotoren mit geschlossenem Drehmoment-, Drehzahl- und/oder Positionsregelkreis vorgesehen.

AKD Servoverstärker sind Komponenten, die in elektrische Anlagen oder Maschinen eingebaut werden und nur als integrierte Bestandteile dieser Anlagen oder Maschinen betrieben werden können. Der Hersteller der Maschine muss eine Risikoanalyse der Maschine erstellen. Wenn die Servoverstärker in Maschinen oder Anlagen eingebaut werden, darf der Antrieb nicht verwendet werden, bis sichergestellt wurde, dass die Maschine oder Anlage die regionalen Richtlinien erfüllt.

Schaltschrank und Verkabelung

Servoverstärker dürfen nur in geschlossenen Schaltschränken betrieben werden, die sich für die Umgebungsbedingungen eignen (→ S. 29). Um die Temperatur innerhalb des Schaltschranks unter 40 °C zu halten, ist möglicherweise eine Belüftung oder Kühlung erforderlich.

Verwenden Sie für die Verdrahtung ausschließlich Kupferleiter. Der Leiterquerschnitt kann von der Norm EN 60204 abgeleitet werden (alternativ für AWG-Leiterquerschnitte: NEC-Tabelle 310-16, Spalte 75 °C).

Spannungsversorgung

Die Verstärker der AKD Serie können wie folgt versorgt werden:

- AKD-xzzz06: 1 oder 3 phasiges, industrielles Versorgungsnetz (maximaler symmetrischer Nennstrom bei 120 V und 240 V: 200 kA).
- AKD-xzzz07: 3 phasiges, industrielles Versorgungsnetz (maximaler symmetrischer Nennstrom bei 240 V, 400 V und 480 V: 200 kA).

Der Anschluss an Versorgungsnetze mit anderen Spannungen ist mit einem zusätzlichen Trenntransformator möglich (→ S. 97).

Periodische Überspannungen zwischen Außenleitern (L1, L2, L3) und Gehäuse des Servoverstärkers dürfen 1000V (Amplitude) nicht überschreiten. Gemäß EN 61800 dürfen Spannungsspitzen (< 50μ s) zwischen den Außenleitern 1000V nicht überschreiten. Spannungsspitzen (< 50μ s) zwischen Außenleitern und Gehäuse dürfen 2000V nicht überschreiten.

EMV-Filtermaßnahmen bei AKD-xzzz06 muss der Anwender durchführen.

Motor-Nennspannung

Die Nennspannung der Motoren muss mindestens so hoch sein wie die vom Verstärker erzeugte DC-Zwischenkreisspannung geteilt durch $\sqrt{2}$ (U_{nMotor}>=U_{DC}/ $\sqrt{2}$).

Safe Torque Off (STO; sicher abgeschaltetes Moment)

Lesen Sie den Abschnitt "BestimmungsgemäßeVerwendung" im Kapitel "Safe Torque Off (STO)" (→ S. 54), bevor Sie diese Sicherheitsfunktion verwenden (gemäß EN 13849, PL d).

3.3 Nicht bestimmungsgemäße Verwendung

Eine andere Verwendung als in Kapitel "Bestimmungsgemäße Verwendung" beschrieben ist nicht bestimmungsgemäß und kann zu Schäden bei Personen, Gerät oder Sachen führen. Der Servoverstärker darf nicht mit Maschinen verwendet werden, die nicht den geltenden nationalen Richtlinien oder Normen entsprechen. Die Verwendung des Servoverstärkers in den folgenden Umgebungen ist ebenfalls untersagt:

- explosionsgefährdete Bereiche,
- Umgebungen korrosiven und/oder elektrisch leitenden Säuren, alkalischen Lösungen, Ölen, Dämpfen und Staub,
- Schiffe oder Offshore-Anwendungen.

3.4 Handhabung

3.4.1 Transport

Transportieren Sie den AKD gemäß EN 61800-2 wie folgt:

- Transport nur durch qualifiziertes Personal in der wiederverwertbaren Originalverpackung des Herstellers. Beim Transport Stöße vermeiden.
- Höchstens mit der maximalen Stapelhöhe stapeln, Details siehe Kapitel "Lagerung".
- Nur innerhalb der angegebenen Temperaturbereiche transportieren: -25 bis +70°C, max. Änderungsrate 20 K/Stunde, Klasse 2K3.
- Nur innerhalb der angegebenen Feuchtigkeitsbereiche transportieren: max. 95 % relative Luftfeuchtigkeit, nicht kondensierend, Klasse 2K3.

HINWEIS

Die Servoverstärker enthalten elektrostatisch gefährdete Komponenten, die durch unsachgemäßen Gebrauch beschädigt werden können. Entladen Sie sich elektrostatisch, bevor Sie den Servoverstärker berühren. Vermeiden Sie es, hoch isolierende Stoffe zu berühren (Kunstfasern, Plastikfolie usw.). Legen Sie den Verstärker auf eine leitfähige Oberfläche.

Wenn die Verpackung beschädigt ist, prüfen Sie das Gerät auf sichtbare Schäden. Informieren Sie den Spediteur und den Hersteller über Schäden an der Verpackung oder Produkt.

3.4.2 Verpackung

Die AKD Verpackung besteht aus recyclingfähigem Karton mit Einsätzen und einem Aufkleber auf der Außenseite der Verpackung.

MODELL	Verpackungsmaße (mm) HxBxL	Gewicht (kg) AKD -B, -P, -T (kg)	Gewicht (kg) AKD -M (kg)
bis AKD-x00606	113 x 250 x 222	1,7	1,9
AKD-x01206	158 x 394 x 292	3,4	3,6
AKD-x02406	158 x 394 x 292	5	5,2
AKD-x00307 und AKD-x00607	158 x 394 x 292	4,3	4,5
AKD-x01207	158 x 394 x 292	4,3	4,5
AKD-x02407	158 x 394 x 292	6,7	6,9
AKD-x04807	390 x 600 x 400	15,3	15,5

3.4.3 Lagerung

Lagern Sie den AKD gemäß EN 61800-2 wie folgt:

- Nur in der wiederverwertbaren Originalverpackung des Herstellers lagern.
- Höchstens mit der maximalen stapeln:
 - AKD-x00306 bis 00606: 8 Kartons,
 - AKD-x01206, x02406, x00307 bis x02407: 6 Kartons,
 - AKD-x04807: 3 Kartons.
- Nur innerhalb der angegebenen Temperaturbereiche lagern: -25 bis +55 °C, max. Änderungsrate 20 K/Stunde, Klasse 1K4.
- Nur innerhalb der angegebenen Feuchtigkeitsbereiche lagern: 5 bis 95 % relative Luftfeuchtigkeit, nicht kondensierend, Klasse 1K3.
- Gemäß den folgenden Anforderungen für die Lagerungsdauer lagern:
 - Weniger als 1 Jahr: keine Beschränkungen.
 - Mehr als 1 Jahr: Kondensatoren müssen formiert werden, bevor der Verstärker in Betrieb genommen wird. Um die Kondensatoren zu formieren, trennen Sie alle elektrischen Anschlüsse und legen Sie ca. 30 Minuten einphasigen 240 V AC an L1/L2 an.

3.4.4 Wartung und Reinigung

Der Servoverstärker ist wartungsfrei. Wenn der Servoverstärker geöffnet wird, erlischt die Garantie.

Das Innere des Geräts kann nur vom Hersteller gereinigt werden. So reinigen Sie den Verstärker von außen:

- Gehäuse: Mit Isopropanol oder einer ähnlichen Reinigungslösung reinigen.
- Schutzgitter am Lüfter: Mit einer trockenen Bürste reinigen.

HINWEIS

Den Servoverstärker nicht in Flüssigkeiten tauchen oder besprühen.

3.4.5 Demontage

Wenn ein Verstärker demontiert werden muss (z. B. zum Austausch), gehen Sie folgendermaßen vor:

1. Schalten Sie den Hauptschalter des Schaltschranks aus und trennen Sie die Sicherungen für die Stromversorgung des Systems.

WARNUNG

Kondensatoren können bis zu 7 Minuten nach Abschalten der Stromversorgung gefährliche Spannung führen. Gefahr durch elektrischen Schlag! Warten Sie nach dem Trennen des Verstärkers von der Stromquelle mindestens 7 Minuten, bevor Sie Geräteteile, die potenziell Spannung führen (z. B. Kontakte), berühren oder Anschlüsse trennen. Messen Sie die Spannung am DC-Bus-Zwischenkreis und warten Sie, bis die Spannung unter 60 V gesunken ist, bevor Sie den Verstärker berühren.

- 2. Entfernen Sie die Stecker. Trennen Sie den PE Anschluss zuletzt.
- 3. Prüfen Sie die Temperatur.

VORSICHT

Im Betrieb kann der Kühlkörper Temperaturen über 80 °C erreichen. Gefahr leichter Verbrennungen. Bevor Sie das Gerät berühren, messen Sie die Temperatur und warten Sie, bis der Verstärker auf unter 40 °C abgekühlt ist.

4. Ausbauen: Lösen Sie die Befestigungsschrauben des Servoverstärkers.

3.4.6 Reparatur und Entsorgung

Der Verstärker darf nur vom Hersteller repariert werden. Wenn das Gerät geöffnet wird, erlischt die Garantie. Bauen Sie den Verstärker wie unter "Demontage" (→ S. 20) beschrieben aus und senden Sie ihn in der Originalverpackung an den Hersteller (siehe Tabelle). Gemäß den WEEE-2002/96/EG-Richtlinien u.ä. nimmt der Hersteller Altgeräte und Zubehör zur fachgerechten Entsorgung zurück. Die Transportkosten muss der Versender tragen. Senden Sie die Geräte an die in der folgenden Tabelle aufgeführten Herstelleradressen.

USA	Europa
Kollmorgen™	KOLLMORGEN Europe GmbH
201 West Rock Road	Pempelfurtstr. 1
Radford, VA 24141	D-40880 Ratingen

4 Zulassungen

4.1	Konformität mit UL/cUL	. 22
4.2	CE-Konformität	.23
4.3	Safe Torque Off (STO)	.25

4.1 Konformität mit UL/cUL

Dieser Verstärker ist unter der UL (Underwriters Laboratories Inc.)-Aktennummer **E141084** Vol. 3 Sec. 5 zugelassen.

USL, CNL – Power conversion equipment (NMMS, NMMS7) – Modelle AKD gefolgt von B, P, S, M, T oder F, gefolgt von 003, 006, 012 und 024, gefolgt von 06 oder 07, gefolgt von weiteren Suffixen.

INFO

UL Listing des Typs AKD-x04807 ist in Vorbereitung.

USL

Gibt eine Prüfung nach dem US-Standard für Power conversion equipment, UL 508C, dritte Ausgabe, überarbeitet am 15.Februar 2008 an.

CNI

Gibt eine Prüfung nach dem Kanadischen Standard für Industrial Control Equipment CAN/CSA bis C22.2 No. 14-2005, zweite Ausgabe, überarbeitet im April 2008 an.

Hinweis:

CNL = Zulassung nach nationalen Kanadischen Standards.

USL = Zulassung nach Standards der Vereinigten Staaten.

4.1.1 UL Markings

- Identification of the terminals on the controller are coded so they may be identified in the
 instructions. The instructions shall identify power connections for power supply, load, control, and ground.
- Integral solid state short circuit protection does not provide branch circuit protection.
 Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes.
- This product is suitable for use on a circuit capable of delivering not more than 200,000 ms symmetrical amperes, 240 V (AKD-xzzz06) / 480 V (AKD-xzzz07) volts maximum, when protected by fuses.
- The following fuse types are recommended:

Model	Fuse class	Rating	Max. Fuse Rating
AKD-x00306	J	600 VAC, 200 kA	10 A
AKD-x00606	J	600 VAC, 200 kA	15 A
AKD-x01206	J	600 VAC, 200 kA	15 A
AKD-x02406	J	600 VAC, 200 kA	30 A
AKD-x00307	J	600 VAC, 200 kA	6 A
AKD-x00607	J	600 VAC, 200 kA	10 A
AKD-x01207	J	600 VAC, 200 kA	15 A
AKD-x02407	J	600 VAC, 200 kA	30 A
AKD-x04807	J	600 VAC, 200 kA	60 A

- These drives provide solid state motor overload protection at 125% of the rated FLA Current.
- These devices are intended to be used in a pollution degree 2 environment.
- Maximum surrounding air temperature of 40°C.
- Use minimum 75°C copper wire.
- These devices do not provide over temperature sensing.
- · Use fuses only.

• The following table illustrates the torque requirements for the field wiring connectors:

Model	Mains Connector	Motor Phase Connector	24 VDC Input Connector
AKD-x00306	5-7 in-lbs	5-7 in-lbs	4 in-lbs
AKD-x00606	5-7 in-lbs	5-7 in-lbs	4 in-lbs
AKD-x01206	5-7 in-lbs	7 in-lbs	4 in-lbs
AKD-x02406	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x00307	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x00607	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x01207	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x02407	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x04807	13 in-lbs	13 in-lbs	4 in-lbs

4.2 CE-Konformität

Die Konformität mit der EG-EMV-Richtlinie 2004/108/EG und der Niederspannungsrichtlinie 2006/95/EG ist für die Lieferung von Servoverstärkern in die Europäische Gemeinschaft vorgeschrieben.

Die Servoverstärker wurden von einem zugelassenen Prüflabor in einer definierten Konfiguration anhand der in dieser Dokumentation beschriebenen Systemkomponenten geprüft. Jede Abweichungen von der in dieser Dokumentation beschriebenen Konfiguration und Installation bedeutet, dass der Nutzer für die Durchführung von neuen Messungen verantwortlich ist, um die Konformität mit den gesetzlichen Vorschriften sicherzustellen.

Kollmorgen™ erklärt die Konformität der Geräteserie AKD mit den folgenden Richtlinien:

- EG Richtlinie 2006/95/EC, Niederspannungsrichtlinie Verwendete harmonisierte Norm EN61800-5-1 (2007)
- EG Richtlinie 2004/108/EC, EMV Richtlinie Verwendete harmonisierte Norm EN 61800-3 (2004)

INFO

CE Konformitätserklärungen finden Sie auf der Kollmorgen™ Website.

AKD-xzzz06

HINWEIS

AKD-xzzz06 Servoverstärker verfügen nicht über integrierte EMV-Filter. Diese Servoverstärker können in Wohngebieten hochfrequente Störungen verursachen und erfordem Entstörungsmaßnahmen (externe EMV-Filter).

Mit externen EMV-Filter gegen Störaussendungen erfüllen die AKD-xzzz06 die Störfestigkeitsanforderungen der zweiten Umgebungskategorie (Industrieumgebungen) für Produkte der Kategorie C2 (Motorkabel < 10 m).

Bei einer Motorkabellänge von 10 m oder mehr und externen EMV-Filtern erfüllen die AKDxzzz06 die Anforderungen der Kategorie C3.

AKD-xzzz07

INFO

AKD-xzzz07 Verstärker verfügen über integrierte EMV-Filter.

Die AKD-xzzz07 erfüllen die Störfestigkeitsanforderungen der zweiten Umgebungskategorie (Industrieumgebungen). Für Störaussendungen erfüllen die AKD-xzzz07 die Anforderungen an Produkte der Kategorie C2 (Motorkabel < 10 m).

Bei einer Motorkabellänge von 10 m oder mehr und externen EMV-Filtern erfüllen die AKDxzzz07 die Anforderungen der Kategorie C3.

4.2.1 Europäische Richtlinien und Normen für Maschinenkonstrukteure

Servoverstärker sind Komponenten, die für den Einbau in elektrische Anlagen und Maschinen für den industriellen Einsatz vorgesehen sind. Wenn die Servoverstärker in Maschinen oder Anlagen eingebaut werden, darf der Verstärker nicht verwendet werden, bis sichergestellt wurde, dass die Maschine oder das Gerät die Anforderungen folgender Normen erfüllt:

- EG-Maschinenrichtlinie (2006/42/EG)
- EG-EMV-Richtlinie (2004/108/EG)
- EG-Niederspannungsrichtlinie (2006/95/EG)

Zur Konformität mit der EG-Maschinenrichtlinie (2006/42/EG) anzuwendende Normen

- EN 60204-1 (Sicherheit von Maschinen Elektrische Ausrüstung von Maschinen)
- EN 12100 (Sicherheit von Maschinen)

HINWEIS

Der Hersteller der Maschine muss eine Risikobeurteilung für die Maschine erstellen und adäquate Maßnahmen ergreifen, um sicherzustellen, dass unvorhergesehene Bewegungen nicht zu Verletzungen oder Sachschäden führen können.

Zur Konformität mit der EG-Niederspannungsrichtlinie (2006/95/EG) anzuwendende Normen

- EN 60204-1 (Sicherheit von Maschinen Elektrische Ausrüstung von Maschinen)
- EN 60439-1 (Niederspannungs-Schaltgerätekombinationen)

Zur Konformität mit der EG-EMV-Richtlinie (2004/108/EG) anzuwendende Normen

- EN 61000-6-1/2 (Störfestigkeit für den Wohn- und Industriebereich)
- EN 61000-6-3/4 (Störaussendungen im Wohn- und Industriebereich)

Der Hersteller der Maschine ist dafür verantwortlich, dass diese die Grenzwerte gemäß EMV-Vorschriften erfüllt. Hinweise zum korrekten Einbau im Hinblick auf die EMV (Abschirmung, Erdung, Behandlung von Anschlüssen und Kabelanschlüssen) sind in dieser Anleitung enthalten.

INFO

Der Hersteller der Maschine/Anlage muss prüfen, ob weitere Normen oder EG-Richtlinien für die Maschine/Anlage gelten.

Kollmorgen™ gewährleistet ausschließlich die Konformität des Servosystems mit den in diesem Kapitel genannten Normen, wenn die Komponenten (Motor, Kabel, Drosseln usw.) von Kollmorgen™ geliefert wurden.

4.3 Safe Torque Off (STO)

Ein zusätzlicher digitaler Eingang (STO) gibt die Leistungsendstufe des Verstärkers frei, solange ein 24 V-Signal an diesem Eingang anliegt. Wenn der Schaltkreis des STO-Eingangs geöffnet wird, wird der Motor nicht mehr mit Leistung versorgt. Der Antrieb erzeugt kein Drehmoment mehr und trudelt aus.

Das Schaltungskonzept im AKD wurde von der IFA (Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung) geprüft (AKD-x04807 in Vorbereitung) und abschließend beurteilt. Das Schaltungskonzept zur Realisierung der Sicherheitsfunktion "Safe Torque OFF" in den Servoverstärkern der Baureihe ist demnach geeignet, die Anforderungen an SIL 2 gem. 61508-2 und des PLd, KAT 3 gem. EN 13849-1 zu erfüllen.

INFO

Sicherheitszertifikate finden Sie auf der Kollmorgen™ Website.

Die Teilsysteme (AKD) sind durch die folgenden Kennzahlen sicherheitstechnisch vollständig beschrieben:

Einheit	Betriebs- art	EN 13849-1	EN 61508-2	PFH [1/h]	T _M [Jahre]	SFF [%]
STO	ein- kanalig	PL d, Kat. 3	SIL 2	0	20	100

5 Produktidentifizierung

5.1	Lieferumfang	. 27
5.2	Typenschild	. 27
5.3	Typenschlüssel	28

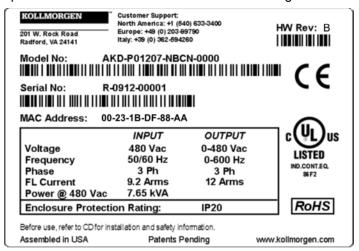
5.1 Lieferumfang

Wenn ein Verstärker der AKD Reihe bestellt wird, sind im Lieferumfang folgende Komponenten enthalten:

- AKD
- Gedrucktes Exemplar des AKDSafety Guide
- DVD mit der *AKDBetriebsanleitung*, der Setup-Software WorkBench und der weiteren Produktdokumentation in elektronischer Form.
- Gegenstecker (falls erforderlich für die Gerätevariante): X1, X2, X3, X4, X7, X8, X14, X15, X16, X21, X22, X23, X24, X35, X36
- Erdungsplatte bei allen AKD

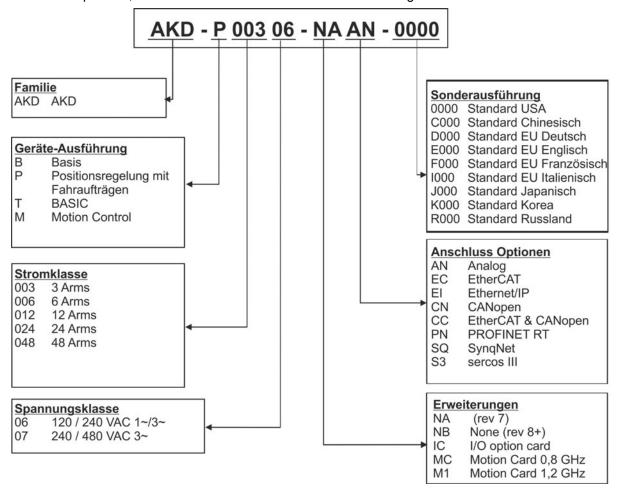
INFO

Die SubD- und RJ45-Gegenstecker sind nicht im Lieferumfang enthalten.


Getrennt erhältliches Zubehör

Zubehör muss bei Bedarf separat bestellt werden. Lesen Sie im Zubehörhandbuch für Ihre Region nach:

- EMV-Filter für 24 V und Netzspannung, Kategorien C2 oder C3
- Externer Bremswiderstand
- Motorkabel. Bereits konfektionierte Motorkabel sind für alle Regionen erhältlich. EU-Kunden können auch Motorkabel mit kundenspezifischen Längen bestellen und das Kabel mit getrennt bestellten Leistungssteckern selbst konfigurieren.
- Rückführkabel. Bereits konfektionierte Rückführkabel sind für alle Regionen erhältlich.
 EU-Kunden können auch Rückführkabel mit kundenspezifischen Längen bestellen und das Kabel mit getrennt bestellten Steckern selbst konfigurieren.
- Motordrossel, für Motorkabel mit einer Länge von über 25 m
- CAN-Terminierungsstecker (nur f
 ür CAN-Verst
 ärker)
- Servicekabel zum Netzwerkanschluss
- Netzkabel, Steuerkabel und Feldbuskabel (Zuschnittlängen)


5.2 Typenschild

Das unten abgebildete Typenschild ist an der Seite des Verstärkers angebracht, die Beispieldaten beziehen sich auf eine 12 A-Ausführung.

5.3 Typenschlüssel

Benutzen Sie den Typenschlüssel zur Produktidentifizierung, jedoch nicht für den Bestellprozess, da nicht alle Merkmalkombination technisch möglich sind.

Sonderausführung: hier werden kundenspezifische Besonderheiten und die Sprachversion des gedruckten Materials kodiert.

Anschluss Optionen: Verstärker mit Anschlussoption CC besitzen sowohl die EtherCAT Stecker (X5 und X6) als auch CANopen Stecker (X12 und X13). Mit dem Software Parameter DRV.TYPE können Sie den gewünschten Feldbus aktivieren; die beiden Feldbusse können nicht gleichzeitig verwendet werden.

6 Technische Beschreibung und Daten

6.1	Die digitalen Servoverstärker der AKD Reihe	30
6.2	Umgebungsbedingungen, Belüftung und Einbaulage	. 32
6.3	Mechanische Daten	.32
6.4	Ein-/Ausgänge	.33
6.5	Elektrische Daten AKD-xzzz06	. 34
6.6	Elektrische Daten AKD-xzzz07	. 35
6.7	Leistungsdaten	. 36
6.8	Empfohlene Anzugsmomente	. 36
6.9	Massesystem	36
6.10	Sicherungen	.37
6.11	Stecker	38
6.12	Anforderungen für Kabel und Verdrahtung	.39
6.13	Dynamisches Bremsen	.40
6.14	Ein- und Ausschaltverhalten	43
6.15	Stopp/Not-Halt/ Not-Aus	50
6.16	Safe Torque Off (STO)	52
6.17	Berührungsschutz	62

6.1 Die digitalen Servoverstärker der AKD Reihe

Verfügbare AKD Varianten

Kurzname	Beschreibung	Strom	Gehäuse	Anschluss
AKD-B***	Der Basisverstärker wird durch analoge Drehmoment- und Geschwindigkeits-Sollwerte gesteuert (elektronisches Getriebe).	3 bis 24 A	Standard	Analog, SynqNet
AKD-P**	Der Positionsindexer-Typ fügt dem Basistyp Fahrsatzsteuerung hinzu, kann Ein- und Ausgänge verarbeiten, Entscheidungen tref- fen, Zeitverzögerungen hin- zufügen und Variablen ändern.	3 bis 48 A	Standard	Analog, CANopen, EtherCAT, PROFINET RT, Ethernet/IP, sercos [®] III
AKD-M***	Motion Controller PDMM- EtherCAT Master für bis zu 8 Ach- sen. Umfasst alle fünf EN 61131- Sprachen, PLC Open und Pipes Network. Diese Variante wird AKD PDMM genannt.	3 bis 24 A	Erhöhte Breite	EtherCAT
AKD-T***	Dieser Verstärker ist eine Erweiterung des Basisverstärkers zur einfachen Programmierung (Basic ähnlich). Diese Variante wird AKD BASIC genannt.	3 bis 24 A	Standard	Analog
AKD-T***-IC	AKD BASIC mit I/O Erweiterung.	3 bis 24 A	Erhöhte Breite	Analog, I/O Erweiterung

Standardmerkmale

- Versorgungsspannungsbereich von 120 bis 480 V ±10 %.
- Verschiedene Gehäusemaße, je nach den Strom- und Hardware-Optionen.
- Integrierter Motion-Bus, integrierter TCP/IP-Servicekanal.
- Integrierte Unterstützung für SFD, Hiperface DSL, Resolver, Comcoder, 1Vp-p Sin-Cos Encoder, Inkrementalgeber, Tamagawa Smart Abs.
- Integrierte Unterstützung für ENDAT 2.1 & 2.2-, BiSS- oder HIPERFACE-Protokoll.
- Integrierte Encoder-Emulation und Unterstützung für zweite Rückführung.
- Integrierte Safe Torque Off (STO)-Funktion gemäß EN 61508 SIL 2.
- Betrieb von Synchron-Servomotoren, Linearmotoren und Asynchronmotoren möglich.

Leistungsteil

- Ein- oder dreiphasige Versorgung, Spannungsbereich 120 bis 480 V ±10%, 50 bis 400 Hz ±5% oder DC. Anschluss an Netze mit höherer Spannung nur über Trenntransformator,
 - → S. 98. Einphasige Stromversorgung mit Minderung der Ausgangsleistung.
- B6 Brückengleichrichter, integrierter Sanftanlaufkreis.
- Sicherungen vom Nutzer bereitzustellen.
- DC-Bus-Zwischenkreisspannungsbereich 170 bis 680 V DC, Parallelschaltung möglich.
- Endstufen-IGBT-Modul mit erdfreier Strommessung.
- Bremskreis mit dynamischer Verteilung der generierten Leistung auf verschiedene Verstärker am selben DC-Zwischenkreis.
- Interner Bremswiderstand in allen AKD Modellen bis auf AKD-x00306, AKD-x00606 und AKD-x04807, externe Bremswiderstände falls erforderlich.

Integrierte Sicherheit

- Ausreichende Isolationsabstände/Kriechstrecken und elektrische Isolation für sichere galvanische Trennung gemäß EN 61800-5-1 zwischen den Versorgungs-/Motoranschlüssen und der Signalelektronik.
- Sanftanlauf, Überspannungserkennung, Kurzschlussschutz, Phasenausfallüberwachung.
- Temperaturüberwachung des Verstärkers und Motors.
- Motorüberlastschutz: Foldback Mechanismus
- SIL 2-Safe Torque Off (Wiederanlaufschutz) gemäß EN 61508, → S. 52.

Hilfsspannungsversorgung 24 V DC

• Von einer externen 24 V ±10 %-Stromversorgung mit Kurzschlussschutz.

Betrieb und Parametereinstellung

 Mit der Setup-Software WorkBench, zur Konfiguration über TCP/IP oder KAS IDE für AKD PDMM Setup.

Volldigitale Steuerung

- Digitaler Stromregler (670 ns)
- Einstellbarer digitaler Drehzahlregler (62,5 µs)
- Softwareoption Positionsregler (250 μs)

Ein-/Ausgänge

- 1 programmierbarer analoger Eingang → S. 142
- 1 programmierbarer analoger Ausgang → S. 143
- 7 programmierbare digitale Eingänge → S. 144
- 2 programmierbare digitale Ausgänge → S. 151
- 1 Enable-Eingang → S. 144
- 1 STO-Eingang → S. 52
- Zusätzliche digitale Eingänge und Ausgänge bei bestimmten Gerätevarianten (z.B. AKD PDMM oder bei Geräten mit I/O Erweiterung).

Optionskarten

Diese Optionen wirken sich auf die Breite des Geräts aus.

- IC: Zusätzliche digitale I/O
- MC/M1: Motion Controller mit zusätzlichen digitalen I/O. Erweitert den AKD zum AKD PDMM (Typenschlüssel: AKD-M), einem Master für mehrachsige, synchronisierte Systeme.

Anschluss

- Ein-/Ausgänge (→ S. 138)
- Encoder Emulation (→ S. 136)
- Service Schnittstelle (→ S. 162)
- CANopen (→ S. 166), optional
- Motion Bus Schnittstelle (→ S. 171)
 - SynqNet (→ S. 173), optional
 - ∘ EtherCAT (→ S. 172), optional
 - ∘ PROFINET RT (→ S. 173), optional
 - ∘ Ethernet/IP (→ S. 173), optional
 - ∘ sercos[®] III (→ S. 174), optional

6.2 Umgebungsbedingungen, Belüftung und Einbaulage

Lagerung	→ S. 19
Transport	→ S. 19
Umgebungstemperatur im Betrieb	0 bis +40 °C unter Nennbedingungen +40 bis +55 °C mit Dauerstromreduzierung von 4 % pro K
Feuchtigkeit im Betrieb	Relative Luftfeuchtigkeit 5 bis 85 %, nicht kondensierend, Klasse 3K3
Einsatzhöhe	Bis zu 1000 Meter über Normalnull ohne Beschränkungen. 1000 bis 2500 Meter über Normalnull mit Stromreduzierung von 1,5 %/100 m.
Verschmutzungsgrad	Verschmutzungsgrad 2 gemäß EN 60664-1
Schwingungen	Klasse 3M1 gemäß EN 60721-3-3
Gehäuseschutzart	IP 20 gemäß EN 60529
Einbaulage	Vertikal, → S. 65
Belüftung	Eingebauter Lüfter (bis auf AKD-x00306)
HINWEIS	Der Verstärker schaltet sich bei übermäßig hohen Temperaturen im Schaltschrank aus (Fehler F234, → S. 193, Motor ohne Drehmoment). Stellen Sie eine ausreichende Zwangsbelüftung im Schaltschrank sicher.

6.3 Mechanische Daten

Mechanische Daten	Einheit	AKD-	AKD-	AKD-x01206	AKD-
		x00306	x00606		x02406
Gewicht, Geräte mit Standard Breite	kg	1,	1	2	3,7
Gewicht, Geräte mit erhöhter Breite	kg	1,3		2,2	4
Höhe, ohne Stecker	mm	168		196	248
Höhe, mit Servicestecker	mm	200		225	280
Standard Breite vorne/hinten	mm	54/59		72/78,4	96/100
Erhöhte Breite vorne/hinten	mm	84/89		91/96	96/100
Tiefe, ohne Stecker	mm	156		187	228
Tiefe, mit Steckern	mm	185		< 215	< 265

Mechanische Daten	Einheit	AKD-	AKD-	AKD-x01207	AKD-	AKD-
		x00307	x00607		x02407	x02407
Gewicht, Geräte mit Standard Breite	kg		2,7	7	5,3	11,5
Gewicht, Geräte mit erhöhter Breite	kg		2,9)	5,5	11,7
Höhe, ohne Stecker	mm		256		306	385
Höhe, mit Servicestecker	mm	290		340	526	
Standard Breite vorne/hinten	mm	65/70		99/105	185/185	
Erhöhte Breite vorne/hinten	mm	95/100		99/105	-	
Tiefe, ohne Stecker	mm	185		228	225	
Tiefe, mit Steckern	mm		< 22	25	< 265	< 265

6.4 Ein-/Ausgänge

Schnittstelle	Elektrische Daten
Analoge Eingänge	 ±12 VDC Gleichtaktunterdrückungen: > 30 dB bei 60 Hz Auflösung 16 Bit, voll monoton Nichtlinearität < 0,1% vom Gesamtbereich Offsetdrift max. 250µV/°C Eingangsimpedanz > 13 kOhm
Analoge Ausgänge	 ±10 VDC max 20mA Auflösung 16 Bit, voll monoton Nichtlinearität < 0,1% vom Gesamtbereich Offsetdrift max. 250µV/°C Kurzschlussfest gegen AGND Ausgangsimpedanz 110 Ohm
Digitale Eingänge	 EIN: 3,5 VDC bis 30 VDC, 2 mA bis 15 mA AUS: -2 VDC bis +2 VDC, max. 15 mA Galvanische Isolation für 250 VDC
Digitale Ausgänge	 max. 30 VDC, 100 mA Kurzschlussfest Galvanische Isolation für 250 VDC
Relaisausgänge	 max. 30 VDC, 1A max. 42 VAC, 1 A Schaltzeit 10ms Isolation für 400 VDC Kontakt/Spule

6.5 Elektrische Daten AKD-xzzz06

Elektrische Daten	Cinhoit	AKD-	AKD-	AKD-	AKD-	
Elektrische Daten	Einheit	x00306	x00606	x01206	x02406	
Nennversorgungsspannung	V		0 V bis 240 V		3 x 240 V ±10%	
Noteforgue	11-			0 V bis 240 V ±10%		
Netzfrequenz	Hz		Hz bis 400 F			
Nenneingangsleistung für Dauerbetrieb	kVA	1,2	2,38	3,82	7,6	
Nenneingangsstrom						
bei 1 x 120 V	а	5,0	9,9	12	_	
bei 1 x 240 V	Α	5,0	9,9	12	_	
bei 3 x 120 V	Α	2,3	4,6	9,2	_	
bei 3 x 240 V	Α	2,3	4,6	9,2	18,3	
Zulässige Ein-/Ausschaltfrequenz	1/h		3	80		
max. Einschaltstrom	Α	10	10	10	20	
Nenn-DC-Bus-Zwischenkreisspannung (Bus-Einschaltverzögerung 3ph 1s)	V		170 b	is 340		
Dauerausgangsstrom (± 3 %)						
bei 120 V	Aeff	3	6	12	_	
bei 240 V	Aeff	3	6	12	24	
Spitzenausgangsstrom (für ca. 5 s, ± 3 %)	Aeff	9	18	30	48	
Dauerausgangsleistung bei Nenneingangsstro	m					
bei 1 x 120 V	VA	312,5	625	1250	_	
bei 1 x 240 V	VA	625	1250	2500	_	
bei 3 x 120 V	VA	312,5	625	1250	_	
bei 3 x 240 V	VA	625	1250	2500	5000	
Spitzenausgangsleistung (für ca. 1 s)						
bei 1 x 120 V	kVA	0,937	1,875	3,125	_	
bei 1 x 240 V	kVA	1,875	3,750	6,250	_	
bei 3 x 120 V	kVA	0,937	1,875	3,125	_	
bei 3 x 240 V	kVA	1,875	3,750	6,250	10	
Technische Daten für Bremschopper		.,	· · ·	6. 40		
Min. Motorinduktivität						
bei 120 V	mH	1,3	0,6	0,5	0,3	
bei 240 V	mH	2,5	1,3	1	0,6	
Max. Motorinduktivität	mH	250	125	100	60	
Wärmeableitung, Endstufe deaktiviert	W	max. 20	max. 20	max. 20	max. 25	
Wärmeableitung bei Nennstrom	W	31	57	137	175	
Schallpegel (Lüfter mit niedriger/hoher Dreh-	dB(A)	_	33/39	37/43	41/56	
zahl)		2417				
Hilfsspannungsversorgung	V		(±10%, Span			
-Strom ohne/mit Motorbremse (B, P, T Typen)	Α	0,5 / 1,7	0,6 / 1,8	0,7 / 1,9	1,0 / 2,5	
-Strom ohne/mit Motorbremse (M Typ)	A	0,8 / 2,0	0,9 / 2,1	1,0 / 2,2	1,3 / 2,8	

6.6 Elektrische Daten AKD-xzzz07

Elektrische Daten	Einheit	AKD- x00307	AKD- x00607	AKD- x01207	AKD- x02407	AKD- x04807
Nennversorgungsspannung	V	3 x 240 V bis 480 V ±10%				X0-1007
Netzfrequenz	Hz					
Nenneingangsleistung für Dauerbetrieb	kVA	2,24	4,49	7,65	15,2	40,9
Nenneingangsstrom		,	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· ·	,
bei 3 x 240 V	Α	2,7	5,4	9,2	18,3	49,3
bei 3 x 400 V	Α	2,7	5,4	9,2	18,3	49,3
bei 3 x 480 V	Α	2,7	5,4	9,2	18,3	49,3
Zulässige Ein-/Ausschaltfrequenz	1/h			30		
max. Einschaltstrom	Α	10	10	10	20	480
Nenn-DC-Bus-Zwischenkreisspannung (Bus-Einschaltverzögerung 3ph 1s)	V=			340 bis 680		
Dauerausgangsstrom (± 3 %)						
bei 240 V	Aeff	3	6	12	24	48
bei 400 V	Aeff	3	6	12	24	48
bei 480 V	Aeff	3	6	12	24	48
Spitzenausgangsstrom (für ca. 5 s, ± 3 %)	Aeff	9	18	30	48	96
Dauerausgangsleistung bei Nenneingangss	strom					
bei 3 x 240 V	kVA	0,6	1,25	2,5	5	10
bei 3 x 400 V	kVA	1	2	4,2	8,3	16,6
bei 3 x 480 V	kVA	1,2	2,5	5	10	20
Spitzenausgangsleistung (für ca. 1 s)						
bei 3 x 240 V	kVA	1,8	3,75	6,25	10	20
bei 3 x 400 V	kVA	3	6,75	10,4	16,7	33
bei 3 x 480 V	kVA	3,6	7,5	12,5	20	40
Technische Daten für Bremschopper	_		→ 9	6. 40		
Min. Motorinduktivität						
bei 240 V	Mh	3,2	1,6	1,3	0,6	i.V.
bei 400 V	Mh	5,3	2,6	2.1	1	i.V.
bei 480 V	Mh	6,3	3,2	2,5	1,2	i.V.
Max. Motorinduktivität	mH	600	300	250	120	i.V.
Wärmeableitung, Endstufe deaktiviert	W	max. 20	max. 20	max. 20	max. 25	i.V.
Wärmeableitung bei Nennstrom	W	102	129	153	237	i.V.
Schallpegel (Lüfter mit niedriger/hoher Drehzahl)	dB(A)	34/43	34/43	44/52	48/58	48/72
Hilfsspannungsversorgung	V=		24 V (±10%,	Spannungs	abfall prüfen)
-Strom ohne/mit Motorbremse (B, P, T Typen)	A=	1 / 2,5	1 / 2,5	1 / 2,5	2/4	2/*
-Strom ohne/mit Motorbremse (M Typ)	A=	1,3 / 2,8	1,3 / 2,8	1,3 / 2,8	2,3 / 4,3	-

^{* =} Motorhaltebremse wird mit separater 24 V ±10% Spannung versorgt (→ S. 111).

6.7 Leistungsdaten

AKD-xzzz06

Leistungsdaten	Einheit	bis AKD- x00606	AKD- x01206	AKD- x02406
Schaltfrequenz der Endstufe	kHz	10	8	8
Spannungsanstiegsgeschwindigkeit dU/dt	kV/µs	2,	4,3	
Bandbreite des Stromreglers	kHz	2,5 bis 4	2 bis 3	
Bandbreite des Drehzahlreglers (skalierbar)	Hz	0 bis 1000	0 0 bis 800 0 bis 600	
Bandbreite des Positionsreglers (skalierbar)	Hz	1 bis 250		

AKD-xzzz07

Leistungsdaten	Einheit		AKD- x00607	AKD- x01207	AKD- x02407	AKD- x04807
Schaltfrequenz der Endstufe	kHz	8	8	6	8	6
Spannungsanstiegsgeschwindigkeit dU/dt	kV/µs	7,2				
Bandbreite des Stromreglers	kHz	2,5 l	5 bis 4 2 bis 3 i.\		i.V.	
Bandbreite des Drehzahlreglers (skalierbar)	Hz	0 bis 800	0 bis 600 i.V		i.V.	
Bandbreite des Positionsreglers (skalierbar)	Hz	1 bis 250				

6.8 Empfohlene Anzugsmomente

	Anzugsmoment/Nm (Werte in in-lbs siehe → S. 23)							
Stecker	AKD-x00306,	AKD-x01206	AKD-x02406,	AKD-x04807				
	AKD-x00606		AKD-x00307 bis					
			AKD-x02407					
X1	0,2 bis 0,25	0,2 bis 0,25	0,2 bis 0,25	0,2 bis 0,25				
X2	0,5 bis 0,6	0,7 bis 0,8	0,7 bis 0,8	0,7 bis 0,8				
X3	0,5 bis 0,6	0,5 bis 0,6	0,7 bis 0,8	0,7 bis 0,8				
X4	-	-	0,7 bis 0,8	0,7 bis 0,8				
X7, X8, X21, X22,	0,2 bis 0,25	0,2 bis 0,25	0,2 bis 0,25	0,2 bis 0,25				
X23, X24, X35, X36								
X14	-	-	1,7 bis 1,8	1,7 bis 1,8				
X15, X16	-	-	0,2 bis 0,25	0,2 bis 0,25				
PE-Block	1,7	1,7	1,7	1,7				

6.9 Massesystem

AGND	Analoge Masse
DCOM7/8	Gemeinsamer für digitale Eingänge an I/O-Stecker X7/8
DCOM21.x/22.x	Gemeinsamer für digitale Eingänge an I/O-Stecker X21/22 (AKD-T-IC)
DCOM35/36	Gemeinsamer für digitale Eingänge an E/A-Stecker X35/36 (AKD-M)
GND	24 V Versorgung, STO Eingang (bis AKD-x024, Haltebremse
STO-GND	STO-Enable Eingänge(AKD-x048
0 V	Interne Masse, Encoder-Emulationsausgang, Servicekanal

6.10 Sicherungen

EU Sicherungen	US Sicherungen
Typen gRL oder gL, 400 V/500 V, zeit-	Klasse J, 600 V AC 200 kA, zeitverzögert. Die
verzögert.	Sicherung muss UL und CSA gelistet sein.

Sicherungshalter: In Kombination mit den Standard-Sicherungsblöcken müssen gemäß EN 60529 fingersichere Sicherungshalter verwendet werden.

Beispiele:

Bussmann: Modulare Sicherungshalter der CH-Reihe, Bemessung 0 bis 30 A, Klasse J, 3-

polig: CH30J3

Ferraz: Ultrasafe Sicherungshalter, Bemessung 0 bis 30 A, Klasse J, 3-polig: US3J3I

6.10.1 Sicherungen für Leistungsversorgung

Verstärker- Modell	Max. Strom-Nennwert	Beispiel Klasse J Bussmann	Beispiel Klasse J Ferraz Shawmut
AKD-x00306	10A (zeitverzögert)	LPJ10SP/DFJ10	AJT10/HSJ10
AKD-x00606	15A (zeitverzögert)	LPJ15SP/DFJ15	AJT15/HSJ15
AKD-x01206	15A (zeitverzögert)	LPJ15SP/DFJ15	AJT15/HSJ15
AKD-x02406	30A (zeitverzögert)	LPJ30SP/DFJ30	AJT30/HSJ30
AKD-x00307	6A (zeitverzögert)	LPJ6SP/DFJ6	AJT6/HSJ6
AKD-x00607	10A (zeitverzögert)	LPJ10SP/DFJ10	AJT10/HSJ10
AKD-x01207	15A (zeitverzögert)	LPJ15SP/DFJ15	AJT15/HSJ15
AKD-x02407	30A (zeitverzögert)	LPJ30SP/DFJ30	AJT30/HSJ30
AKD-x04807	60A (zeitverzögert)	LPJ60SP/DFJ60	AJT60/HSJ60

6.10.2 Sicherung für 24 V-Spannungsversorgung

Verstärker-	Max.	Beispiel Klasse J	Beispiel Klasse J
Modell	Strom-Nennwert	Bussmann	Ferraz Shawmut
alle AKD	8A (zeitverzögert)	LPJ8SP/DFJ8	AJT8

6.10.3 Sicherung für externen Bremswiderstand

Verstärkermodell	Strom- nennwert @230V	Strom- nennwert @480V	UL Region Beispiel:	CE Region Beispiel:	
AKD-x003 bis 012	10A	40A	Bussmann	Siba 110V400V:	
AKD-x024	15A	50A	FWP-xxA14F		gRL(gS) Siba 400V480V:
AKD-x048	-	125A		aR	

6.10.4 Sicherung für verbundene Zwischenkreise

Verstärkermodell	Strom- Nennwert	UL Region Beispiel:	CE Region Beispiel:
AKD-x003 bis 024	50A	Bussmann FWP-50A14F	Siba 110V400V: gRL 50A (gS) 400V480V: aR 50A
AKD-x048	125A	Bussmann FWP-125A14F	Siba 400V480V: aR 125A

6.11 Stecker

Die angegebenen Spannungs- und Stromdaten sind die niedrigsten zulässigen Werte gemäß UL und CE.

AKD-xzzz06 und AKD-xzzz07 Typen

Stecker	Тур	max. Leiter- querschnitt ¹	Strom 2	Spannung 3
Steuersignale X7/X8	Steckerklemmen, 10 polig	1,5 mm², 16 AWG	10 A	250 V
Steuersignale X21/X22*	Steckerklemmen, 8 polig	1,5 mm², 16 AWG	10 A	250 V
Steuersignale X23/X24*	Steckerklemmen, 14 polig	1,5 mm², 16 AWG	10 A	250 V
Steuersignale X35/X36**	Steckerklemmen, 8 polig	1,5 mm², 16 AWG	10 A	250 V
Rückführung X10	SubD 15-polig HD (Buchse)	0,5 mm², 21 AWG	1 A	< 100 V
Service X11	RJ-45	0,5 mm², 21 AWG	1 A	< 100 V
Service X11, X32*	RJ-45	0,5 mm², 21 AWG	1 A	< 100 V
Motion-Bus X5, X6	RJ-45	0,5 mm², 21 AWG	1 A	< 100 V
CAN I/O X12/13	RJ-25	0,5 mm², 21 AWG	1 A	< 100 V
Encoder-Emulation X9	SubD 9-polig (Stift)	0,5 mm², 21 AWG	1 A	< 100 V

^{*} nur mit I/O Optionskarte "IC", ** nur bei AKD-M Variante

AKD-xzzz06 Typen (120 V bis 240 V Netzspannung)

Stecker	Тур	Max. Leiter- querschnitt ¹	Strom 2	Spannung ³
24V/STO X1 (03 to 24A)	Steckerklemmen, 3 polig	1,5 mm², 16 AWG	8 A	160 V
Motor X2 (3 bis 6 A)	Steckerklemmen, 6 polig	2,5 mm², 14 AWG	10 A	300 V
Motor X2 (12 bis 24 A)	Steckerklemmen, 6 polig	10 mm², 8 AWG	30 A	600 V
Versorgung/Brems-R X3 (3 bis 6A)	Steckerklemmen, 7 polig	2,5 mm², 14 AWG	10 A	300 V
Versorgung/Brems-R X3 (12A)	Steckerklemmen, 8 polig	2,5 mm², 14 AWG	16 A	300 V
Versorgung X4 (24 A)	Steckerklemmen, 4 polig	10 mm², 8 AWG	30 A	600 V
Brems-R X3 (24 A)	Steckerklemmen, 4 polig	10 mm², 8 AWG	30 A	600 V

AKD-xzzz07 Typen (240V bis 480 V Netzspannung)

Stecker	Тур	Max. Leiter- querschnitt ¹	Strom 2	Spannung 3
24V/STO X1 (03 bis 24A)	Steckerklemmen, 3 polig	1,5 mm², 16 AWG	8 A	160 V
24V/STO X1 (48A)	Steckerklemmen, 8 polig	1,5 mm², 16 AWG	8 A	160 V
Motor X2 (03 bis 24A)	Steckerklemmen, 6 polig	10 mm², 8 AWG	30 A	600 V
Motor X2 (48A)	Steckerklemmen, 4 polig	16 mm², 6 AWG	54 A	600 V
Brems-R X3 (03 bis 24 A)	Steckerklemmen, 4 polig	10 mm², 8 AWG	30 A	600 V
Brems-R X3 (48 A)	Steckerklemmen, 3 polig	16 mm², 6 AWG	54 A	600 V
Versorgung X4 (3 bis 24A)	Steckerklemmen, 4 polig	10 mm², 8 AWG	30 A	600 V
Versorgung X4 (48 A)	Steckerklemmen, 4 polig	16 mm², 6 AWG	54 A	600 V
DC-Bus X14 (48A)	Steckerklemmen, 3 polig	16 mm², 6 AWG	54 A	600 V
24V Motorbremse X15 (48A)	Steckerklemmen, 2 polig	1,5 mm², 16 AWG	8 A	160 V
Motorbremse X16 (48A)	Steckerklemmen, 2 polig	1,5 mm², 16 AWG	8 A	160 V

¹Anschluss mit einer Leitung

²Anschluss mit einer Leitung mit empfohlenem Leiterquerschnitt (→ S. 39)

³Nennspannung bei Verschmutzungsgrad 2

6.12 Anforderungen für Kabel und Verdrahtung

6.12.1 Allgemeines

Informationen zu den chemischen, mechanischen und elektrischen Merkmalen der Kabel finden Sie im Zubehörhandbuch, oder wenden Sie sich an den Kundendienst.

INFO

Um die maximal zulässige Kabellänge zu erreichen, müssen Sie Kabelmaterial verwenden, das die folgenden Kapazitätsanforderungen erfüllt (Phase zu Schirm):

- Motorkabel: weniger als 150 pF/m
- Feedback-Kabel: weniger als 120 pF/m

Motorkabel mit einer Länge > 25 m können den Einsatz einer Motordrossel erfordern.

6.12.2 Kabelquerschnitte und -anforderungen

Die folgende Tabelle enthält die empfohlenen Leiterquerschnitte und Kabelanforderungen für Schnittstellen von einachsigen Systemen gemäß EN 60204. Bei Mehrachsensystemen beachten Sie bitte die spezifischen Betriebsbedingungen für Ihr System.

Schnittstelle	Querschnitt	Kabelanforderungen
AC-Anschluss	bis zu AKD-x006: 1,5 mm² (16 AWG) AKD-x012: 2,5 mm² (14 AWG) AKD-x 024: 4 mm² (12 AWG) AKD-x048: 16 mm² (6 AWG)	600 V, min. 75°C
DC-Zwischenkreis, Bremswiderstand	AKD-x006: 1,5 mm² (16 AWG) AKD-x01224: 2,5 mm² (14 AWG) AKD-x048: 16 mm² (6 AWG)	1000 V, min. 75 °C, geschirmt für Längen >0,20 m
Motorkabel ohne Drossel, max. 25 m	bis zu AKD-x006: 1,5 mm² (16 AWG) AKD-x012: 2,5 mm² (14 AWG) AKD-x 024: 4 mm² (12 AWG) AKD-x048: 16 mm² (6 AWG)	600 V, min. 75 °C, geschirmt, Kapazität < 150 pF/m
Motorkabel mit Drossel, 25 bis 50 m	bis zu AKD-x006: 1,5 mm² (16 AWG) AKD-x012: 2,5 mm² (14 AWG) AKD-x 024: 4 mm² (12 AWG) AKD-x048: 16 mm² (6 AWG)	600 V, min. 75 °C, geschirmt, Kapazität < 150 pF/m
Resolver, max. 100 m	4 x 2 x 0,25 mm ² (24 AWG)	paarweise verdrillt, geschirmt, Kapazität < 120 pF/m
SFD, max. 50 m	1 x 2 x 0,25 mm ² (24 AWG) 1 x 2 x 0,50 mm ² (21 AWG)	paarweise verdrillt, geschirmt
SFD3/DSL, max. 25 m	1 x 2 x 0,50 mm ² (21 AWG)	paarweise verdrillt, geschirmt
Encoder, max. 50 m	7 x 2 x 0,25 mm ² (24 AWG)	paarweise verdrillt, geschirmt
ComCoder, max. 25 m	8 x 2 x 0,25 mm ² (24 AWG)	paarweise verdrillt, geschirmt
Analoge E/A, max. 30 m	0,25 mm² (24 AWG)	paarweise verdrillt, geschirmt
Digitale E/A, max. 30 m	0,5 mm² (21 AWG)	Einzelleitung
Haltebremse (Motor)	min. 0,75 mm² (19 AWG)	600 V, min. 75 °C, geschirmt
+24 V/GND, max. 30 m	max. 2,5 mm² (14 AWG)	Einzelleitung

6.13 Dynamisches Bremsen

Die dynamische Bremsung ist eine Methode zum Abbremsen eines Servosystems durch Abbau der mechanischen Energie über die Gegen-EMK des Motors. Der AKD verfügt über einen dynamischen Bremsmodus, der vollständig in die Hardware integriert ist. Bei Aktivierung schließt der AKD die Motorklemmen in Phase mit der Gegen-EMK kurz. Dies wandelt den rückgespeisten Strom in Bremsstrom um und gewährleistet den schnellstmöglichen Stopp des Motors.

- Wird der Strom nicht begrenzt, dann wird die mechanische Energie in die Motorwicklungen abgeleitet.
- Wird der Strom begrenzt, dann wird die Energie in die Bus-Kondensatoren geleitet.
- Der Verstärker begrenzt auch den maximalen dynamischen Bremsstrom an der Motorklemme über den Parameter DRV.DBILIMIT, um übermäßige Ströme/Kräfte an Verstärker, Motor und Last zu vermeiden.

Ob und wie der AKD den dynamischen Bremsmodus nutzt, hängt von DRV.DISMODE ab.

6.13.1 Brems-Chopper

Wenn die rückgespeiste Energie zu einem ausreichend hohen Anstieg der Bus-Kondensatorspannung führt, gibt der Servoverstärker den Brems-Chopper frei und die rückgespeiste Energie wird an den Bremswiderstand ausgegeben. Je nach Verstärkertyp und Verdrahtung des Servoverstärkers ein interner oder externer Widerstand.

AKD-x00306 bis AKD-x00606, AKD-x04807

Kein interner Bremswiderstand. Ein externer Widerstand kann angeschlossen werden.

AKD-x01206 bis AKD-x02406 und AKD-x00307 bis AKD-x02407

Interner Bremswiderstand, zusätzlich kann ein externer Widerstand angeschlossen werden. Geeignete externe Bremswiderstände sind im *AKDZubehörhandbuch* beschrieben.

6.13.2 Funktionsbeschreibung

Übersteigt die vom Motor rückgespeiste Energie die Spannungsschwelle des DC-Busses, wird der Brems-Chopper freigegeben, und die überschüssige Energie wird an den Bremswiderstand ausgegeben.

Einzelne Verstärker, nicht über den DC-Bus-Zwischenkreis (+DC, -DC) gekoppelt

Wenn die durchschnittliche oder Spitzenleistung der vom Motor zurückgespeisten Energie den eingestellten Wert für die Nennbremsleistung übersteigt, gibt der Verstärker die Warnung "n521 Regen Over power" aus. Steigt die Leistung über die Fehlerschwelle, schaltet sich der Brems-Chopper aus.

Bei ausgeschaltetem Brems-Chopper wird die DC-Busspannung des Verstärkers überwacht. Wenn der DC-Bus-Schwellenwert überschritten wird, meldet der Verstärker einen Überspannungsfehler. Die Leistungsstufe des Verstärkers wird deaktiviert und die Last trudelt aus. Die Fehlermeldung "F501 Bus Überspannung" wird ausgegeben (→ S. 193). Der Fehlerkontakt (Klemmen X8/9-10) ist geöffnet (→ S. 152).

2. Mehrere Verstärker, über den DC-Bus-Zwischenkreis (+DC, -DC) gekoppelt

Über den integrierten Bremskreis können mehrere Verstärker derselben Baureihe ohne weitere Maßnahmen über einen gemeinsamen DC-Bus betrieben werden (→ S. 102). 90 % der kombinierten Leistung aller gekoppelten Verstärker steht permanent für die Spitzen- und Dauerleistung zur Verfügung. Das Abschalten bei Überspannung erfolgt wie oben unter 1. beschrieben für den Verstärker mit der niedrigsten Ausschaltschwelle.

INFO

Beachten Sie die Regenerierungszeit (einige Minuten) nach voller Belastung mit Spitzenbremsleistung.

6.13.3 Technische Daten für AKD-xzzz06

Die technischen Daten für die Bremskreise hängen von Verstärkertyp und Netzspannung ab. Netzspannung, Kapazitäten und Einschaltspannungen sind sämtlich Nennwerte.

Bremskreis			Netz-
Тур	Nenndaten	Finheit	spannung 120 V / 240 V
7.	Einschaltschwelle des Bremskreises	V	380
alle Typen	Überspannungsgrenze	V	420
	Maximaler Bremsauslastungsgrad	%	15*
AKD-x00306	Externer Bremswiderstand	Ohm	33
	Maximale Dauerbremsleistung, externer Widerst.	kW	0,77
	Spitzenbremsleistung, externer Widerstand (1 s)	kW	5,4
	Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	60 / 20
	Zwischenkreis-Kapazität	μF	940
AKD-x00606	Externer Bremswiderstand	Ohm	33
	Maximale Dauerbremsleistung, externer Widerst.	kW	1,5
	Spitzenbremsleistung, externer Widerstand (1 s)	kW	5,4
	Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	60 / 20
	Zwischenkreis-Kapazität	μF	940
AKD-x01206	Interner Bremswiderstand	Ohm	15
	Dauerleistung, interner Widerstand	W	100
	Spitzenbremsleistung, interner Widerstand (0,5 s)	kW	11,7
	Externer Bremswiderstand	Ohm	15
	Maximale Dauerbremsleistung, externer Widerst.	kW	3
	Spitzenbremsleistung, externer Widerstand (1 s)	kW	5,4
	Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	160 / 55
	Zwischenkreis-Kapazität	μF	2460
AKD-x02406	Interner Bremswiderstand	Ohm	8
	Dauerleistung, interner Widerstand	W	200
	Spitzenbremsleistung, interner Widerstand (0,5 s)	kW	22
	Externer Bremswiderstand	Ohm	15
	Maximale Dauerbremsleistung, externer Widerst.	kW	6
	Spitzenbremsleistung, externer Widerstand (1 s)	kW	11,8
	Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	180 / 60
	Zwischenkreis-Kapazität	μF	2720

^{*} hängt von der Leistung des angeschlossenen Bremswiderstandes ab

6.13.4 Technische Daten für AKD-xzzz07

Die technischen Daten für die Bremskreise hängen von Verstärkertyp und Netzspannung ab. Netzspannung, Kapazitäten und Einschaltspannungen sind sämtlich Nennwerte.

Bremskreis			Netzsp	annung
Тур	Nenndaten	Einheit	240V	400V/
				480V
AKD-xzzz07	Einschaltschwelle des Bremskreises	V	380	760
alle Typen	Überspannungsgrenze	V	420	840
	Maximaler Bremsauslastungsgrad	%	1	5*
AKD-x00307	Interner Bremswiderstand	Ohm	33	
	Dauerleistung, interner Widerstand	W	3	30
	Spitzenbremsleistung, interner Widerstand (0,5 s)	kW	5,5	22,1
	Externer Bremswiderstand	Ohm	3	33
	Maximale Dauerbremsleistung, externer Widerst.	kW	0,77	1,5
	Spitzenbremsleistung, externer Widerstand (1 s)	kW	5,4	21,4
	Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	5	35 / 20
	Zwischenkreis-Kapazität	μF	2	35
AKD-x00607	Interner Bremswiderstand	Ohm	3	33
	Dauerleistung, interner Widerstand	W	1	00
	Spitzenbremsleistung, interner Widerstand (0,5 s)	kW	5,4	21,4
	Externer Bremswiderstand	Ohm	3	33
	Maximale Dauerbremsleistung, externer Widerst.	kW	1,5	3
	Spitzenbremsleistung, externer Widerstand (1 s)	kW	5,4	21,4
	Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	5	35 / 20
	Zwischenkreis-Kapazität	μF	2	35
AKD-x01207	Interner Bremswiderstand	Ohm	3	33
	Dauerleistung, interner Widerstand	W	1	00
	Spitzenbremsleistung, interner Widerstand (0,5 s)	kW	5,4	21,4
	Externer Bremswiderstand	Ohm	3	33
	Maximale Dauerbremsleistung, externer Widerst.	kW	3	6
	Spitzenbremsleistung, externer Widerstand (1 s)	kW	5,4	21,4
	Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	10	70 / 40
	Zwischenkreis-Kapazität	μF	4	70
AKD-x02407	Interner Bremswiderstand	Ohm	2	23
	Dauerleistung, interner Widerstand	W	2	00
	Spitzenbremsleistung, interner Widerstand (0,5 s)	kW	7,7	30,6
	Externer Bremswiderstand	Ohm	2	23
	Maximale Dauerbremsleistung, externer Widerst.	kW	6	12
	Spitzenbremsleistung, externer Widerstand (1 s)	kW	7,7	30,6
	Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	15	110 / 60
	Zwischenkreis-Kapazität	μF	6	80
AKD-x04807	Externer Bremswiderstand	Ohm	1	0
	Maximale Dauerbremsleistung, externer Widerst.	kW	6	12
	Spitzenbremsleistung, externer Widerstand (1 s)	kW	17,6	70,5
	Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	20	146 / 80
	Zwischenkreis-Kapazität	μF	9	00

^{*} hängt von der Leistung des angeschlossenen Bremswiderstandes ab

6.14 Ein- und Ausschaltverhalten

Dieses Kapitel beschreibt das Ein- und Ausschaltverhalten des AKD.

Verhalten der "Haltebremsen"-Funktion

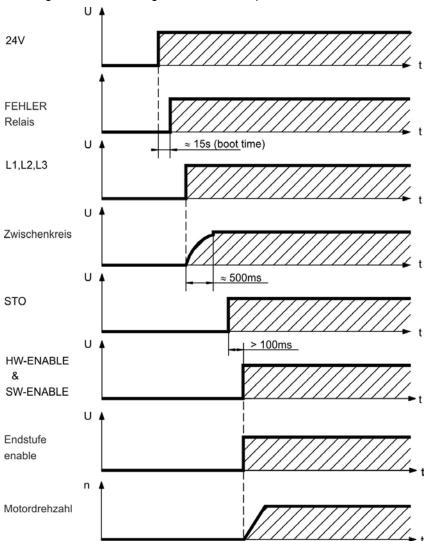
Verstärker mit freigegebener Haltebremsenfunktion besitzen ein spezielles Timing für das Ein- und Ausschalten der Endstufe (→ S. 112). Ereignisse, die das DRV.ACTIVATE Signal abschalten, lösen die Haltebremse aus. Bei Deaktivierung des ENABLE-Signals (Freigabesignal) wird die elektrische Bremsung ausgelöst. Wie bei allen elektronischen Schaltungen gilt die allgemeine Regel, dass das interne Haltebremsenmodul ausfallen kann.

Die funktionale Sicherheit, z.B. bei hängenden Lasten (vertikale Lasten), erfordert eine zusätzliche mechanische Bremse, die sicher betätigt werden muss, z.B. durch eine Sicherheitssteuerung.

Wenn die Geschwindigkeit unter den Schwellenwert *CS.VTHRESH* abfällt oder es während eines Stopp-Vorgangs zu einer Zeitüberschreitung kommt, wird die Bremse geschlossen. Setzen Sie bei vertikalen Achsen den Parameter MOTOR.BRAKEIMM auf 1, damit die Motorhaltebremse (→ S. 112) nach Fehler oder Hardware Disable ohne Verzögerung einfällt.

Verhalten bei Unterspannung

Das Verhalten bei Unterspannung hängt von der Einstellung VBUS. UVMODE ab.


VBUS.UVMODE	DC-Bus-Unterspannungsmodus. Hinweise zur Konfiguration des Parameters finden Sie im <i>AKD Benutzerhandbuch</i> .
0	Der Verstärker meldet bei jedem Auftreten eines Unterspannungszustands einen F502-Unterspannungsfehler.
1 (Standard)	Der Verstärker gibt eine n502-Warnung aus, wenn er nicht freigegeben ist. Der Verstärker meldet einen Fehler, wenn der Verstärker bei Auftreten des Zustands freigegeben ist oder versucht wird, ihn freizugeben, während ein Unterspannungszustand auftritt.

STO-Sicherheitsfunktion

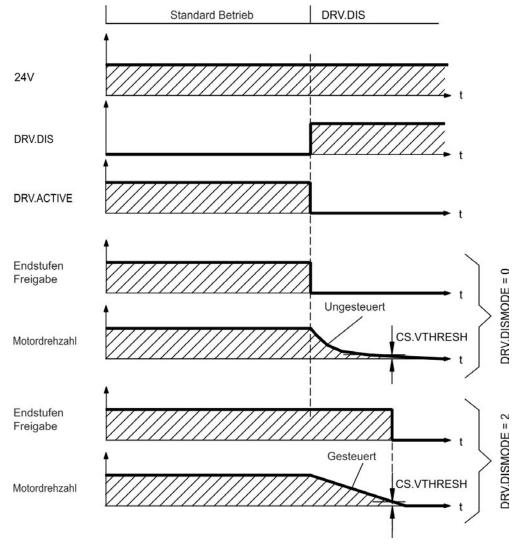
Mit der STO-Sicherheitsfunktion kann der Verstärker mithilfe seiner internen Elektronik im Stillstand gesichert werden, so dass die Antriebswelle auch bei anliegender Stromversorgung gegen unbeabsichtigtes Wiederanlaufen gesichert ist. Im Kapitel "Safe Torque Off (STO)" wird die Verwendung der STO-Funktion beschrieben (→ S. 52).

6.14.1 Einschaltverhalten im Standardbetrieb

Das folgende Schema zeigt die korrekte Sequenz zum Einschalten des Verstärkers.

Fehler F602 tritt auf, wenn STO nicht angesteuert wird, wenn die HW-Freigabe aktiviert wird. Weitere Informationen zur STO-Funktion → S. 52).

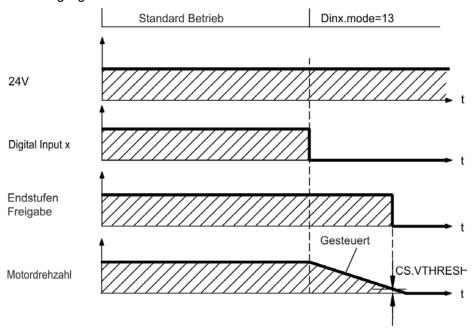
6.14.2 Ausschaltverhalten


INFO

Die 24 V-Versorgung des Verstärkers muss konstant aufrecht erhalten werden. Der HW-Enable-Eingang deaktiviert die Endstufe sofort. Konfigurierte digitale Eingänge und Feldbusbefehle können verwendet werden, um kontrollierte Stopps auszuführen.

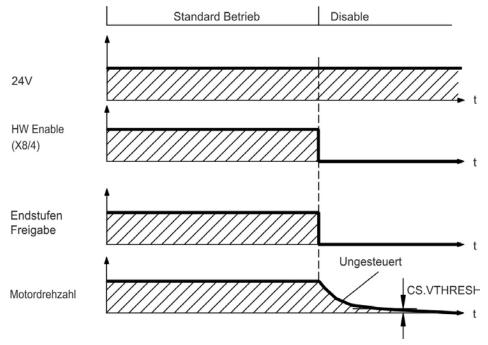
6.14.2.1 Ausschaltverhalten unter Verwendung des Befehls DRV.DIS

Die Taste Enable/Disable in WorkBench gibt intern einen *drv.dis*-Befehl an den Verstärker aus. Hinweise zur Konfiguration der Eingänge und Softwarebefehle finden Sie in der Onlinehilfe. Dieses Enable-Signal wird auch "Softwarefreigabe" genannt.


DRV. DISMODE	DRV.DISMODE steuert das Verhalten des <i>drv.dis-</i> Befehls, der über WorkBench, eine Klemme oder über den Feldbus ausgegeben wird. Hinweise zur Konfiguration finden Sie im <i>AKDBenutzerhandbuch</i> .
0	Achse sofort deaktivieren. Wenn die Geschwindigkeit unter den Schwellenwert <i>CS.VTHRESH</i> abfällt oder es zu einer Zeitüberschreitung kommt, wird die Bremse geschlossen. Stopp der Kategorie 0 gemäß EN 60204 (→ S. 50).
2	Kontrollierten Stopp verwenden, um den Verstärker sofort zu deaktivieren. Wenn die Geschwindigkeit unter den Schwellenwert <i>CS.VTHRESH</i> abfällt oder es zu einer Zeitüberschreitung kommt, wird die Bremse geschlossen. Stopp der Kategorie 1 gemäß EN 60204 (→ S. 50).

Wenn die Geschwindigkeit unter den Schwellenwert *CS.VTHRESH* abfällt oder es zu einer Zeitüberschreitung kommt, wird die Motorhaltebremse geschlossen (→ S. 112).

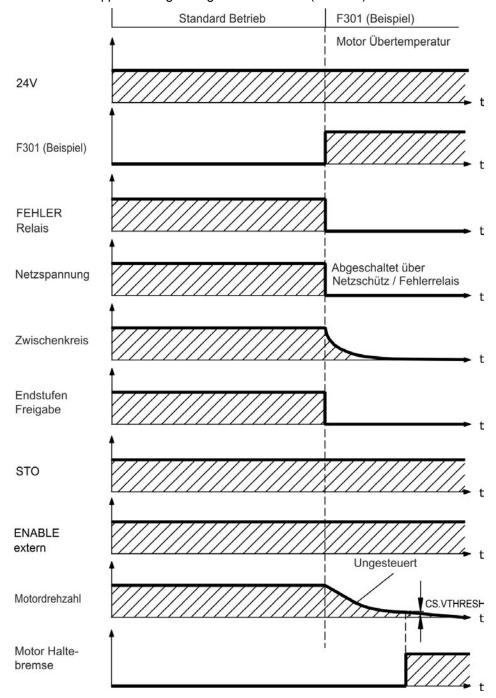
6.14.2.2 Ausschaltverhalten unter Verwendung eines digitalen Eingang (kontrollierter Stopp)


Dies ist ein Stopp der Kategorie 2 gemäß EN 60204 (→ S. 50). Ein digitaler Eingang wird konfiguriert, um den Motor zu einem kontrollierten Stopp zu bringen und dann den Verstärker zu deaktivieren und die Haltebremse zu aktivieren (falls vorhanden). Die Konfiguration von digitalen Eingängen ist im *AKDBenutzerhandbuch* beschrieben.

Wenn die Geschwindigkeit unter den Schwellenwert *CS.VTHRESH* abfällt oder es zu einer Zeitüberschreitung kommt, wird die Motorhaltebremse geschlossen (→ S. 112).

6.14.2.3 Ausschaltverhalten unter Verwendung des HW-Enable-Eingangs

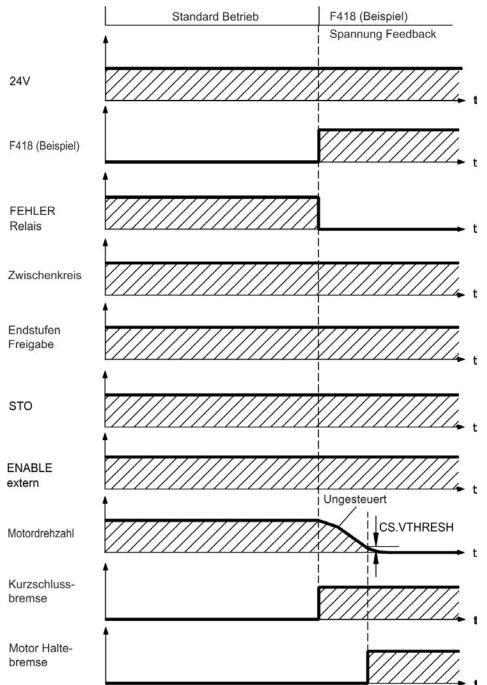
Dies ist ein Stopp der Kategorie 0 gemäß EN 60204 (→ S. 50). Der Hardware-Enable-Eingang deaktiviert die Leistungsstufe sofort.



Wenn die Geschwindigkeit unter den Schwellenwert *CS.VTHRESH* abfällt oder es zu einer Zeitüberschreitung kommt, wird die Motorhaltebremse geschlossen (→ S. 112). Setzen Sie bei vertikalen Achsen den Parameter MOTOR.BRAKEIMM auf 1, damit die Motorhaltebremse nach Hardware Disable ohne Verzögerung einfällt.

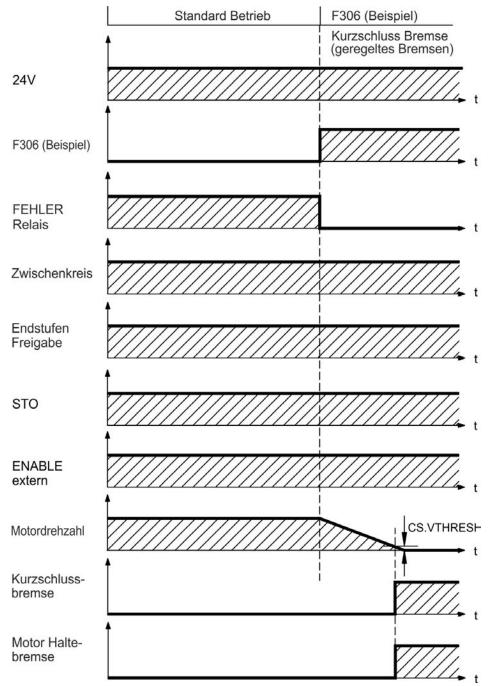
6.14.2.4 Ausschaltverhalten bei Auftreten eines Fehlers

Das Verhalten des Verstärkers hängt stets vom Fehlertyp und der Einstellung einer Reihe verschiedener Parameter ab (DRV.DISMODE, VBUS.UVFTHRESH, CS.VTHRESH und weitere; nähere Informationen siehe *AKDBenutzerhandbuch* oder Hilfe zu WorkBench). Eine Tabelle mit Beschreibungen des spezifischen Verhaltens bei jedem Fehler finden Sie im Abschnitt *Verstärker Fehler- und Warnmeldungen* des *AKDBenutzerhandbuchs*. Die folgenden Seiten zeigen Beispiele für mögliches Verhalten bei Fehlern.


Ausschaltverhalten bei Fehlern, die eine Deaktivierung der Endstufe bewirken Dies ist ein Stopp der Kategorie 0 gemäß EN 60204 (→ S. 50).

Wenn die Geschwindigkeit unter den Schwellenwert *CS.VTHRESH* abfällt oder es zu einer Zeitüberschreitung kommt, wird die Motorhaltebremse geschlossen (→ S. 112). Setzen Sie bei vertikalen Achsen den Parameter MOTOR.BRAKEIMM auf 1, damit die Motorhaltebremse nach Fehler ohne Verzögerung einfällt.

Ausschaltverhalten bei Fehlern, die eine dynamische Bremsung bewirken


Dies ist ein Stopp der Kategorie 0 gemäß EN 60204 (→ S. 50).

Wenn die Geschwindigkeit unter den Schwellenwert *CS.VTHRESH* abfällt oder es zu einer Zeitüberschreitung kommt, wird die Motorhaltebremse geschlossen (→ S. 112).

Ausschaltverhalten bei Fehlern, die einen kontrollierten Stopp bewirken

Dies ist ein Stopp der Kategorie 1 gemäß EN 60204 (→ S. 50).

Wenn die Geschwindigkeit unter den Schwellenwert *CS.VTHRESH* abfällt oder es zu einer Zeitüberschreitung kommt, wird die Motorhaltebremse geschlossen (→ S. 112).

6.15 Stopp/Not-Halt/ Not-Aus

Die Steuerfunktion Stopp, Not-Halt und Not-Aus sind in der Norm EN 60204 definiert. Angaben für die sicherheitsbezogenen Aspekte dieser Funktionen finden Sie in den Normen EN 13849 und EN 62061.

INFO

Der Parameter DRV.DISMODE muss auf 2 gesetzt sein, um die verschiedenen Stopp-Kategorien zu implementieren. Hinweise zur Konfiguration dieses Parameters finden Sie im *AKD Benutzerhandbuch*.

WARNUNG

Bei senkrechten Achsen kann die Last herunterfallen. Wenn die Last nicht sicher blockiert ist, kann dies zu schweren Verletzungen führen. Die funktionale Sicherheit, z.B. bei hängenden Lasten (vertikale Lasten), erfordert eine zusätzliche mechanische Bremse, die sicher betätigt werden muss, z. B. durch eine Sicherheitssteuerung.

Setzen Sie bei vertikalen Achsen den Parameter MOTOR.BRAKEIMM auf 1, damit die Motorhaltebremse (→ S. 112) nach Fehler oder Hardware Disable ohne Verzögerung einfällt.

6.15.1 Stopp

Die Stopp-Funktion hält den Antrieb im Normalbetrieb an. Die Stopp Funktion ist in der Norm EN 60204 definiert.

INFO

Die Stopp-Kategorie muss durch eine Risikobewertung der Maschine bestimmt werden.

Stopp-Funktionen müssen Priorität gegenüber zugewiesenen Anlauffunktionen besitzen. Die folgenden Stopp-Kategorien sind definiert:

Stopp-Kategorie 0

Stillsetzen durch sofortiges Unterbrechen der Energiezufuhr zu den Antriebselemente (dies ist ein ungesteuertes Stillsetzen). Mit der zugelassenen STO-Sicherheitsfunktion (→ S. 52) kann der Servoverstärker mit seiner internen Elektronik sicher gestoppt werden (IEC 62061 SIL2).

Stopp-Kategorie 1

Ein gesteuertes Stillsetzen, wobei die Energiezufuhr zu den Antriebselemente aufrechterhalten wird, um die Abschaltung durchzuführen. Die Energiezufuhr wird erst unterbrochen, wenn der Stillstand erreicht ist.

Stopp-Kategorie 2

Ein gesteuertes Stillsetzen, wobei die Energiezufuhr zu den Antriebselemente aufrechterhalten wird.

Stopps der Kategorie 0 und der Kategorie 1 müssen unabhängig von der Betriebsart ausgelöst werden können, wobei ein Stopp der Kategorie 0 Priorität besitzen muss.

Bei Bedarf sind Vorkehrungen für den Anschluss von Schutzvorrichtungen und Verriegelungen zu treffen. Falls notwendig, muss die Stopp-Funktion ihren Status an die Steuerlogik melden. Ein Zurücksetzen der Stopp-Funktion darf nicht zu einer Gefahrensituation führen.

6.15.2 Not-Halt

Die Not-Halt-Funktion wird zum schnellstmöglichen Anhalten der Maschine in einer Gefahrensituation verwendet. Die Not-Halt-Funktion ist durch die Norm EN 60204 definiert. Prinzipien der Not-Halt Ausrüstung und funktionale Gesichtspunkte sind in ISO 13850 festgelegt.

Der Steuerbefehl für den Not-Halt wird durch eine einzelne menschliche Handlung manuell ausgelöst, z.B. über einen zwangsöffnenden Druckschalter (roter Taster auf gelbem Hintergrund). Die Not-Halt-Funktion muss stets voll funktionsfähig und verfügbar sein. Der Bediener muss sofort verstehen, wie dieser Mechanismus bedient wird (ohne eine Anleitung zu lesen).

INFO

Die Stopp-Kategorie für den Not-Halt muss durch eine Risikobewertung der Maschine bestimmt werden.

Zusätzlich zu den Anforderungen für Stopps muss der Not-Halt die folgenden Anforderungen erfüllen:

- Der Not-Halt muss Priorität gegenüber allen anderen Funktionen und Betätigungen in allen Betriebsarten besitzen.
- Die Energiezufuhr zu allen Antriebselementen, die zu Gefahrensituationen führen könnten, muss entweder so schnell wie möglich unterbrochen werden, ohne dass es zu anderen Gefahren kommt (Stopp Kategorie 0, z.B. mit STO), oder so gesteuert werden, dass die gefahrbringende Bewegung so schnell wie möglich angehalten wird (Stopp-Kategorie 1).
- Das Zurücksetzen darf kein Wiederanlaufen bewirken.

6.15.3 NOT-AUS

Die Not-Aus Funktion wird zum Abschalten der elektrischen Energieversorgung der Maschine verwendet, um Gefährdungen durch elektrische Energie (z.B. einen elektrischen Schlag) auszuschließen. Funktionale Gesichtspunkte für Not-Aus sind in IEC 60364-5-53 festgelegt.

Der Not-Aus wird durch eine einzelne menschliche Handlung manuell ausgelöst, z.B. über einen zwangsöffnenden Druckschalter (roter Taster auf gelbem Hintergrund).

INFO

Die Ergebnisse einer Risikobewertung der Maschine bestimmen, ob ein Not-Aus notwendig ist.

Not-Aus wird erreicht durch Abschalten der Energieeinspeisung mit elektromechanischen Schaltgeräten. Das führt zu einem Stopp der Kategorie 0. Wenn diese Stopp Kategorie für die Maschine nicht zulässig ist, muss der Not-Aus durch andere Maßnahmen (z.B. Schutz gegen direktes Berühren) ersetzt werden.

6.16 Safe Torque Off (STO)

Die Sicherheitsfunktion STO im AKD ist zertifiziert (AKD-x04807 in Vorbereitung). Das Schaltungskonzept zur Realisierung der Sicherheitsfunktion "Safe Torque OFF" in den Servoverstärkern ist demnach geeignet, die Anforderungen an SIL 2 gem. EN 61508-2 und des PLd, Kat. 3 gem. EN 13849-1 zu erfüllen. Mit AKD-x04807 Servoverstärkern kann SIL3/PLe erreicht werden, wenn beide STO-Enable Eingänge und die korrespondierenden STO-Status Ausgänge genutzt werden.

AKD-x003 bis AKD-x024

Ein zusätzlicher digitaler Eingang (STO) gibt die Leistungsendstufe des Verstärkers frei, solange ein 24 V-Signal an diesem Eingang anliegt. Wenn der Schaltkreis des STO-Eingangs geöffnet wird, wird der Motor nicht mehr mit Leistung versorgt. Der Antrieb erzeugt kein Drehmoment mehr und trudelt aus.

INFO

Dieser Eingang ist nicht konform mit EN 61131-2 . Sie können einen Stopp der Kategorie 0 (→ S. 50) mit dem STO Eingang erreichen, ohne das Netzschütz zu betätigen.

AKD-x048

Zwei zusätzliche digitale Eingänge (STO-Enable1 und STO-Enable2) geben die Leistungsendstufe des Verstärkers frei, solange 24 V an beiden Eingängen anliegt. Wenn einer der STO-Enable Eingänge geöffnet wird, wird der Motor nicht mehr mit Leistung versorgt. Der Antrieb erzeugt kein Drehmoment mehr und trudelt aus.

INFO

Diese Eingänge sind nicht konform mit EN 61131-2. Sie können einen Stopp der Kategorie 0 (→ S. 50) mit den STO Eingängen erreichen, ohne das Netzschütz zu betätigen.

6.16.1 Sicherheitstechnische Kennzahlen

Die Teilsysteme (AKD) sind durch die Kennzahlen sicherheitstechnisch vollständig beschrieben:

AKD-x003 bis AKD-x024

Funktion	Betriebsart	EN 13849-1	EN 61508-2	PFH [1/h]	T _M [Jahre]	SFF [%]
STO	einkanalig	PL d, Kat. 3	SIL 2	0	20	100

AKD-x048 (in Vorbereitung)

Funktion	Betriebsart	EN 13849-1	EN 61508-2	PFH [1/h]	T _M [Jahre]	SFF [%]
STO	einkanalig	i.V.	i.V.	i.V.	i.V.	i.V.
STO	zweikanalig	i.V.	i.V.	i.V.	i.V.	i.V.
STO	zweikanalig mit periodischem Test	i.V.	i.V.	i.V.	i.V.	i.V.

6.16.2 Sicherheitshinweise

WARNUNG

Der Verstärker kann eine hängende Last nicht halten, wenn die STO-Funktion aktiviert ist. Wenn die Last fällt, kann dies zu schweren Verletzungen führen. Antriebe mit hängenden Lasten müssen über eine zusätzliche sichere mechanische Sperre verfügen (z. B. sichere Bremse).

WARNUNG

Der Antrieb kann abhängig von der Parametereinstellung nach dem Einschalten der Netzspannung, bei Spannungseinbrüchen oder Unterbrechungen automatisch anlaufen. Es besteht die Gefahr von tödlichen oder schweren Verletzungen für Personen, die in der Maschine arbeiten. Wenn der Parameter DRV.ENDEFAULT 1 gesetzt ist, warnen Sie an der Maschine mit einem Warnschild (Warnung: Automatischer Wiederanlauf nach Einschalten!) und stellen Sie sicher, dass ein Einschalten der Netzspannung nicht möglich ist, während sich Personen im gefährdeten Bereich der Maschine aufhalten. Wenn Sie einen Unterspannungsschutz benutzen, beachten Sie Kapitel 7.5 der EN 60204-1:2006.

VORSICHT

Die Funktion STO gewährleistet keine elektrische Trennung am Leistungsausgang. Es besteht Stromschlag- und Verletzungsgefahr. Wenn ein Zugang zu den Motoranschlüssen erforderlich ist, muss der Verstärker von der Netzspannung getrennt werden. Beachten Sie die Entladungszeit des Zwischenkreises.

HINWEIS

Bei einkanaliger Ansteuerung: Wenn die Funktion STO von einer Steuerung automatisch einkanalig angesteuert wird, muss sichergestellt sein, dass der Ausgang der Steuerung gegen Fehlfunktion überwacht wird. Damit kann verhindert werden, dass durch einen fehlerhaften Ausgang der Steuerung die Funktion STO ungewollt angesteuert wird. Ein irrtümliches Einschalten wird bei einkanaliger Ansteuerung nicht erkannt.

HINWEIS

Wenn der STO-Enable abgeschaltet ist, kann der Antrieb nicht kontrolliert gebremste werden. Wenn eine kontrollierte Bremsung vor Verwendung der STO Funktion nötig ist, muss der Verstärker gebremst werden und der STO-Eingang verzögert von der +24 V-Versorgung getrennt werden.

HINWEIS

Die folgende Funktionsreihenfolge muss unbedingt eingehalten werden, wenn der Antrieb kontrolliert gebremst werden soll:

- 1. Bremsen Sie den Verstärker kontrolliert ab (Geschwindigkeits-Sollwert = 0 V).
- 2. Wenn Geschwindigkeit = 0 U/min, deaktivieren Sie den Verstärker (Enable = 0 V).
- 3. Bei hängender Last den Antrieb zusätzlich mechanisch blockieren
- 4. STO ansteuern

6.16.3 Bestimmungsgemäße Verwendung

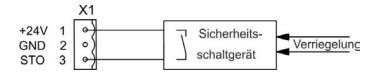
Die Funktion STO ist ausschließlich dazu bestimmt, einen Antrieb funktional sicher anzuhalten und gegen Wiederanlauf zu sichern. Um die funktionale Sicherheit zu erreichen, muss die Schaltung des Sicherheitskreises die Sicherheitsanforderungen der EN 60204, EN 12100 und EN 13849-1 erfüllen.

6.16.4 Nicht bestimmungsgemäße Verwendung

Die STO Funktion darf nicht verwendet werden, wenn der Verstärker aus den folgenden Gründen stillgesetzt werden muss:

- Reinigungs-, Wartungs- und Reparaturarbeiten, längere Außerbetriebnahme. In diesen Fällen muss die gesamte Anlage vom Personal spannungsfrei geschaltet und gesichert werden (Hauptschalter).
- Not-Aus: im Not-Aus Fall wird das Netzschütz abgeschaltet (Not-Aus Taster).

6.16.5 Technische Daten und Anschluss


AKD-x003 bis AKD-x024

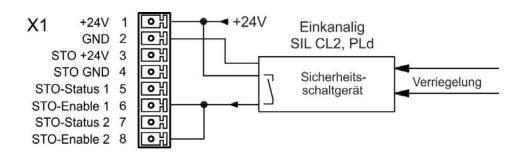
STO-Eingang (X1/3)

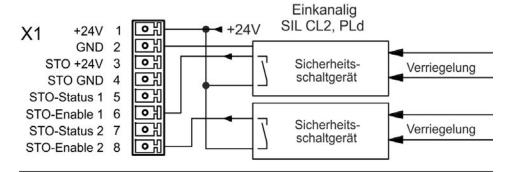
- · Massebezug ist GND
- 24 V ±10%, 20 m
- Galvanische Isolation für 250 VDC

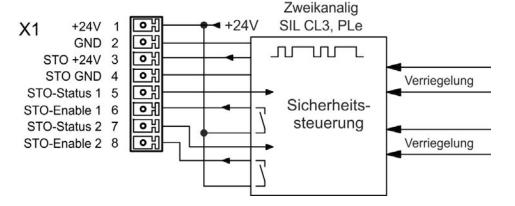
Pin	Signal	Beschreibung			
1	+24	+24 V DC Hilfsspannungsversorgung			
2	GND	24 V Versorgungs-GND			
3	STO	STO Enable (Safe Torque Off)			

AKD-x048

Eingänge STO-Enable 1/2 (X1)


- · Massebezug ist STO GND
- 24 V ±10%, 20 m
- Galvanische Isolation für 250 VDC


Ausgänge STO-Status 1/2 (X1)


- · Massebezug ist STO GND
- gemäß EN61131-2 Typ 1
- max. 30 VDC, max. 100mA
- Galvanische Isolation f
 ür 250 VDC

Pin	Beschreibung	Pin	Beschreibung
1	+24 V DC Hilfss-	5	STO-Status 1
	pannungsversorgung		
2	24 V Versorgungs-GND	6	STO-Enable 1
3	STO +24 VDC Versorgung	7	STO-Status 2
4	STO GND	8	STO-Enable 2

6.16.6 Einbauraum, Verdrahtung

Da der Verstärker die Schutzart IP20 besitzt, müssen Sie einen Einbauraum wählen, der den sicheren Betrieb des Verstärkers ermöglicht. Der Einbauraum muss mindestens die Schutzart IP54 besitzen. Die Verdrahtung im spezifizierten Einbauraum muss die Anforderungen der EN 60204-1 und ISO 13849-2 (Tabelle D.4) erfüllen.

Wenn Sie Leitungen verdrahten, die sich außerhalb des spezifizierten Einbauraumes befinden, müssen die Kabel fest verlegt werden, vor äußeren Beschädigungen geschützt (z. B. durch Verlegung in einem Kabelkanal), in verschiedenen ummantelten Kabeln oder einzeln durch einen geerdeten Anschluss geschützt.

6.16.7 Funktionsbeschreibung

Wenn die STO Funktion (Safe Torque Off) nicht benötigt wird, muss STO-Enable direkt an +24 V angeschlossen werden. Die STO Funktion ist dann überbrückt und kann nicht verwendet werden. Wenn die STO Funktion verwendet wird, muss der STO-Enable an den Ausgang einer Sicherheitssteuerung oder eines Sicherheitsrelais angeschlossen werden, das mindestens die Anforderungen von PLd, Kategorie 3 gemäß EN 13849 erfüllt (Anschlussdiagramm: → S. 58).

SIL2/PLd Einkanalige Ansteuerung

Bei der einkanaligen Ansteuerung der STO Sicherheitsfunktion (SIL2/PLd), wird der STO Eingang von einem Ausgang eines Sicherheitsgerätes geschaltet (z.B. von einem Sicherheitsrelais). Irrtümliches Ansteuern wird nicht erkannt. Daher muss der Ausgang des Sicherheitsgerätes überwacht werden, um Fehlfunktionen zu bemerken.

STO	ENABLE Anzeige		Motor hat Drehmoment	Sicherheit
0 V	0 V	0 V n602 nein		ja
0 V	/ +24 V F602		nein	ja
+24 V	0 V	OPMODE	nein	nein
+24 V	+24 V	opmode mit 'Punkt'	ja	nein

Wenn die STO Funktion im Betrieb durch Trennung des STO-Eingangs von der 24 V-Versorgung aktiviert ist, trudelt der Motor ohne Kontrolle aus und der Verstärker zeigt den Fehler F602 an.

SIL2/PLd zweikanalige Ansteuerung (nur mit AKD-x048, in Vorbereitung)

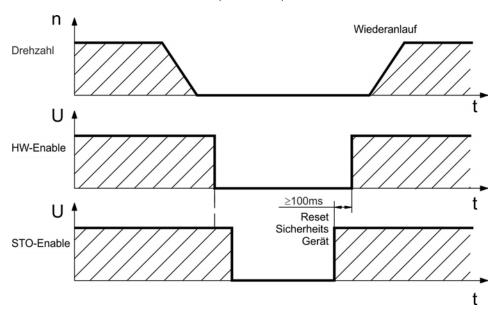
Bei der zweikanaligen Ansteuerung der STO Sicherheitsfunktion (SIL2/PLd), werden die Abschaltpfade STO-Enable1 und STO-Enable2 von zwei unabhängigen Ausgängen eines Sicherheitsgerätes geschaltet (z.B. von einem Sicherheitsrelais).

STO-Enable1	STO-Enable2	ENABLE	Anzeige	Motodrehmoment	Sicherheit
0 V	0 V	0 V	n602	nein	ja
0 V	0 V	+24 V	F602	nein	ja
+24 V	+24 V	0 V	opmode	nein	nein
+24 V	+24 V	+24 V	opmode mit 'Punkt'	ja	nein
+24 V	0 V	0 V	n602	nein	nein
+24 V	0 V	+24 V	F602	nein	nein
0 V	+24 V	0 V	n602	nein	nein
0 V	+24 V	+24 V	F602	nein	nein

SIL3/PLe zweikanalige Ansteuerung (nur mit AKD-x048, in Vorbereitung)

Bei der zweikanaligen Ansteuerung der STO Sicherheitsfunktion, werden die Abschaltpfade STO-Enable1 und STO-Enable2 von zwei unabhängigen Ausgängen eines Sicherheitsgerätes geschaltet (Logik siehe Tabelle oben).

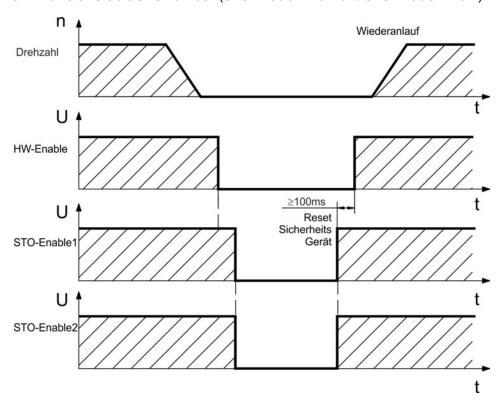
INFO


Um PL e / SIL CL3 zu erreichen, muss das sichere Schalten der Impulssperre durch Auswerten der STO-Status Signale periodisch getestet werden.

6.16.7.1 Signaldiagramm

Einkanalig, mit AKD-x003 bis AKD-x024

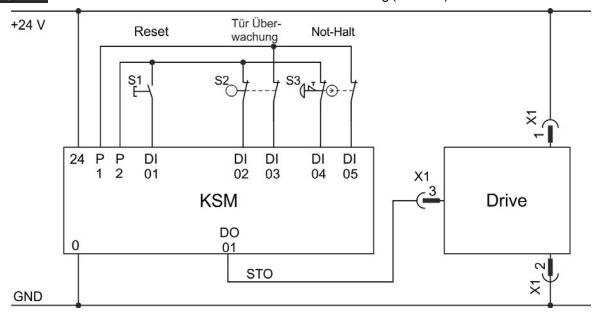
Das folgende Diagramm zeigt die Verwendung der einkanaligen STO Funktion für ein sicheres Stoppen und den störungsfreien Betrieb des Verstärkers.


- 1. Bremsen Sie den Verstärker kontrolliert ab (Geschwindigkeits-Sollwert = 0 V).
- 2. Wenn Geschwindigkeit = 0 U/min, deaktivieren Sie den Verstärker (Enable = 0 V).
- 3. Aktivieren Sie die STO Funktion (STO = 0 V).

Zweikanalig, mit AKD-x048

Das folgende Diagramm zeigt die Verwendung der zweikanaligen STO Funktion für ein sicheres Stoppen und den störungsfreien Betrieb des Verstärkers.

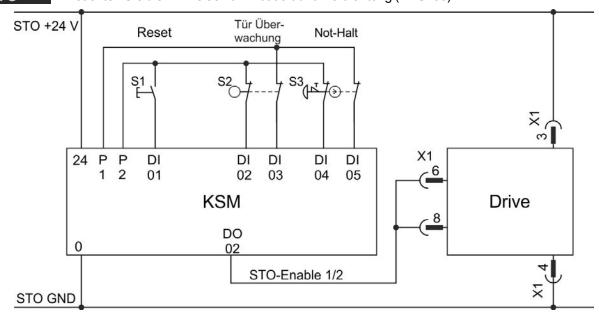
- 1. Bremsen Sie den Verstärker kontrolliert ab (Geschwindigkeits-Sollwert = 0 V).
- 2. Wenn Geschwindigkeit = 0 U/min, deaktivieren Sie den Verstärker (Enable = 0 V).
- 3. Aktivieren Sie die STO Funktion (STO-Enable 1 = 0 V und STO-Enable 2 = 0 V)



6.16.7.2 Anschlussbeispiele

Einkanalig SIL2/PLd mit AKD-x003 bis 024

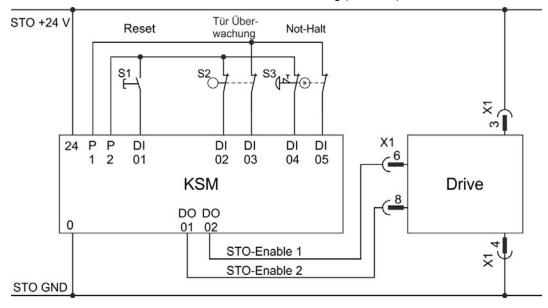
Die Beispielanwendung unten zeigt eine Tür-Überwachung und Not-Halt, angesteuert von einem Kollmorgen™ KSM Sicherheitsmodul, das den STO-Enable Eingang eines AKD-x gem. SIL2/PLd schaltet.


INFO Beachten Sie die Hinweise zu Einbauort und Verdrahtung (→ S. 56).

Einkanalig, SIL2/PLd mit AKD-x048

Die Beispielanwendung unten zeigt eine Tür-Überwachung und Not-Halt, angesteuert von einem Kollmorgen™ KSM Sicherheitsmodul, das die STO-Enable Eingänge eines AKD-x048 gem. SIL2/PLd schaltet. STO-Status Signal müssen nicht ausgewertet werden.

INFO Beachten Sie die Hinweise zu Einbauort und Verdrahtung (→ S. 56).

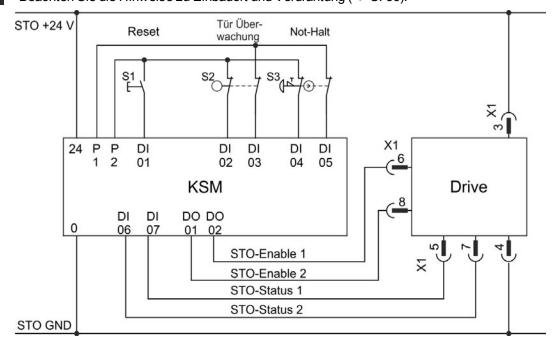


Zweikanalig, SIL2/PLd nur mit AKD-x048

Die Beispielanwendung unten zeigt eine Tür-Überwachung und Not-Halt, angesteuert von einem Kollmorgen™ KSM Sicherheitsmodul, das die STO-Enable Eingänge eines AKD-x048 gem. SIL2/PLd schaltet. STO-Status Signal müssen nicht ausgewertet werden.

INFO

Beachten Sie die Hinweise zu Einbauort und Verdrahtung (→ S. 56).



Zweikanalig, SIL3/PLe nur mit AKD-x048

Die Beispielanwendung unten zeigt eine Tür-Überwachung und Not-Halt, angesteuert von einem Kollmorgen™ KSM Sicherheitsmodul, das die STO-Enable Eingänge eines AKD-x048 gem. SIL3/PLe schaltet. Das sichere Schalten der Impulssperre muss durch Auswerten der STO-Status Signale in der Sicherheitssteuerung periodisch getestet werden.

INFO

Beachten Sie die Hinweise zu Einbauort und Verdrahtung (→ S. 56).

6.16.7.3 Funktionstest

Einkanalige Ansteuerung, SIL CL2 / PLd

HINWEIS

Bei der ersten Inbetriebnahme und nach jeder Störung in der Verkabelung des Verstärkers oder nach dem Austausch von einer oder mehreren Komponenten des Antriebs muss die STO-Funktion geprüft werden.

Methode 1, Verstärker bleibt freigegeben

- Antrieb mit Sollwert 0V stoppen. Verstärker bleibt freigegeben.
 - GEFAHR: Betreten Sie nicht den Gefahrenbereich!
- 2. Aktivieren Sie die STO Funktion, z.B. durch Öffnen der Schutztür.
- Das Fehlerrelais öffnet, das Netzschütz wird geöffnet und der Verstärker zeigt den Fehler F602 an.

Methode 2, Verstärker gesperrt

- Alle Antrieben mit Sollwert 0V stoppen, Verstärker sperren (Enable=0V).
- Aktivieren Sie die STO Funktion, z.B. durch Öffnen der Schutztür.
- 3. Der Verstärker zeigt die Warnung n602 an.

Zweikanalige Ansteuerung, SIL CL2 / PLd

HINWEIS

Bei der ersten Inbetriebnahme und nach jeder Störung in der Verkabelung des Verstärkers oder nach dem Austausch von einer oder mehreren Komponenten des Antriebs muss die STO-Funktion geprüft werden.

Methode 1, Verstärker bleibt freigegeben

- 1. Antrieb mit Sollwert 0V stoppen. Verstärker bleibt freigegeben.
 - **GEFAHR:** Betreten Sie nicht den Gefahrenbereich!
- 2. Aktivieren Sie die STO Funktion, z.B. durch Öffnen der Schutztür.
- Das Fehlerrelais öffnet, das Netzschütz wird geöffnet und der Verstärker zeigt den Fehler F602 an.

Methode 2, Verstärker gesperrt

- Alle Antrieben mit Sollwert 0V stoppen, Verstärker sperren (Enable=0V).
- Aktivieren Sie die STO Funktion, z.B. durch Öffnen der Schutztür.
- 3. Der Verstärker zeigt die Warnung n602 an.

Zweikanalige Ansteuerung, SIL CL3 / PLe

HINWEIS

Um PL e / SIL CL3 zu erreichen, muss das sichere Schalten der Impulssperre durch Auswerten der STO-Status Signale periodisch getestet werden:


- Beim Anlauf einer Anlage.
- Beim Wiederanlauf nach Auslösen einer Schutzeinrichtung.
- Mindestens alle 8 Stunden durch den Bediener.

Die Eingänge STO-ENABLE1 und STO-ENABLE2 werden nach einer definierten Testsequenz abwechselnd geschaltet. Der Schaltzustand der Impulssperre wird über die STO-Status Ausgänge des AKD gemeldet und von der Sicherheitssteuerung ausgewertet.

Die Testsequenz für die Funktionsprüfung der sicheren Impulssperre muss wie im folgenden Ablaufdiagramm dargestellt durchgeführt werden.

Startbedingungen für die Testsequenz:

- Betriebsbereit BTB/RTO = "1"
- Freigabesignal ENABLE = "0"
- STO-ENABLE1 = "0" und STO-ENABLE2 = "0"

Legende:

STO-ENABLE1: Eingang, 1. Abschaltweg STO-ENABLE2: Eingang, 2. Abschaltweg

STO-STATUS1: Ausgang, Zustand des 1. Abschaltweges STO-STATUS2: Ausgang, Zustand des 2. Abschaltweges

T1 ... T5: Testsequenz Start: Start der Testsequenz End: Ende der Testsequenz

6.17 Berührungsschutz

6.17.1 Ableitstrom

Der Ableitstrom über den Schutzleiter PE entsteht aus der Summe der Geräte- und Kabelableitströme. Der Frequenzverlauf des Ableitstromes setzt sich aus einer Vielzahl von Frequenzen zusammen, wobei die Fehlerstromschutzschalter maßgeblich den 50Hz Strom bewerten. Der Ableitstrom kann daher nicht mit einem konventionellen Multimeter gemessen werden. Mit kapazitätsarmen Leitungen kann als Faustformel bei 400 V Netzspannung abhängig von der Taktfrequenz der Endstufe der Ableitstrom angenommen werden zu: $I_{Abl} = n \times 20 \text{ mA} + L \times 1 \text{ mA/m}$ bei einer Taktfrequenz von 8 kHz an der Endstufe $I_{Abl} = n \times 20 \text{ mA} + L \times 2 \text{ mA/m}$ bei einer Taktfrequenz von 16 kHz an der Endstufe (wobei IAbl = Ableitstrom, n = Anzahl von Verstärkern, L = Länge des Motorkabels) Bei anderen Nennnetzspannungen variiert der Ableitstrom proportional zur Spannung.

Beispiel: 2 x Verstärker + ein Motorkabel mit 25 m Länge bei einer Taktfrequenz von 8 kHz: 2 x 20 mA + 25 m x 1 mA/m = 65 mA Ableitstrom.

INFO

Da der Ableitstrom zu PE mehr als 3,5 mA beträgt, muss in Übereinstimmung mit der Norm EN61800-5-1 der PE-Anschluss entweder doppelt ausgeführt oder ein Anschlusskabel mit einem Querschnitt von >10 mm² verwendet werden. Verwenden Sie die PE-Klemme und die PE-Anschlussschrauben, um diese Anforderung zu erfüllen.

Zur Minimierung von Ableitströmen können die folgenden Maßnahmen getroffen werden:

- Verringern Sie die Länge des Motorkabels.
- Verwenden Sie Kabel mit geringer Kapazität (→ S. 39).

6.17.2 Fehlerstromschutzschalter (RCD)

In Übereinstimmung mit EN 60364-4-41 (Errichten von Niederspannungsanlagen) und EN 60204 (Elektrische Ausrüstung von Maschinen) können Fehlerstromschutzschalter (RCDs) verwendet werden, sofern die erforderlichen Vorschriften erfüllt werden. Der AKD ist ein 3-phasiges System mit einer B6 Gleichrichterbrücke. Es müssen daher RCDs verwendet werden, die auf alle Ströme ansprechen, um jeden DC-Fehlerstrom zu erkennen. Die Faustregel zur Bestimmung des Ableitstroms finden Sie im vorigen Kapitel.

Bemessungsfehlerströme in den RCDs:

10 bis 30 mA	Schutz gegen indirekte Berührung (Personen-Brandschutz) für fest installierte und bewegliche Geräte sowie gegen direkten Kontakt.
50 bis 300 mA	Schutz gegen indirekte Berührung (Personen-Brandschutz) für fest installierte Geräte.

INFO

Empfehlung: Zum Schutz gegen direkte Berührung (bei Motorkabellänge von bis zu 5m) empfiehlt Kollmorgen™, jeden Servoverstärker einzeln durch einen allstromsensitiven 30mA RCD abzusichern.

Wenn Sie einen selektiven RCD verwenden, beugt der intelligentere Bewertungsprozess einem fehlerhaften Ansprechen des RCD vor.

6.17.3 Schutztrenntransformatoren

Wenn Schutz gegen direkte Berührung trotz höherer Ableitströme absolut erforderlich ist oder wenn eine alternative Form des Berührungsschutzes gewünscht wird, kann der AKD auch über einen Trenntransformator betrieben werden (Anschlussschema → S. 97). Zur Überwachung auf Kurzschlüsse kann ein Isolationswächter verwendet werden.

INFO

Halten Sie die Länge der Verdrahtung zwischen dem Transformator und dem Verstärker so kurz wie möglich.

7 Mechanische Installation

7.1	Wichtige Hinweise	.64
7.2	Anleitung für die mechanische Installation	64
7.3	Mechanische Zeichnungen Standard Breite	.65
7.4	Mechanische Zeichnungen erhöhte Breite	.69

7.1 Wichtige Hinweise

VORSICHT

Es besteht Stromschlaggefahr durch hohe EMV-Ströme, die zu Verletzungen führen können, wenn der Verstärker (oder der Motor) nicht EMV-gerecht geerdet ist. Verwenden Sie keine lackierten (d. h. keine nichtleitenden) Montageplatten.

HINWEIS

Schützen Sie den Verstärker vor unzulässigen Belastungen. Achten Sie insbesondere darauf, dass durch den Transport oder die Handhabung keine Komponenten verbogen oder Isolationsabstände verändert werden. Berühren Sie keine elektronischen Komponenten und Kontakte.

HINWEIS

Der Verstärker schaltet sich bei Überhitzung selbsttätig aus. Sorgen Sie für ausreichende, gefilterte Kaltluftzufuhr von unten im Schaltschrank oder verwenden Sie einen Wärmetauscher ("Umgebungsbedingungen, Belüftung und Einbaulage" (→ S. 32)).

HINWEIS

Montieren Sie keine Geräte, die Magnetfelder erzeugen, direkt neben den Verstärker. Starke Magnetfelder können interne Bauteile direkt beeinflussen. Montieren Sie Geräte, die Magnetfelder erzeugen, in großem Abstand zu den Verstärkern und/oder schirmen Sie die Magnetfelder ab.

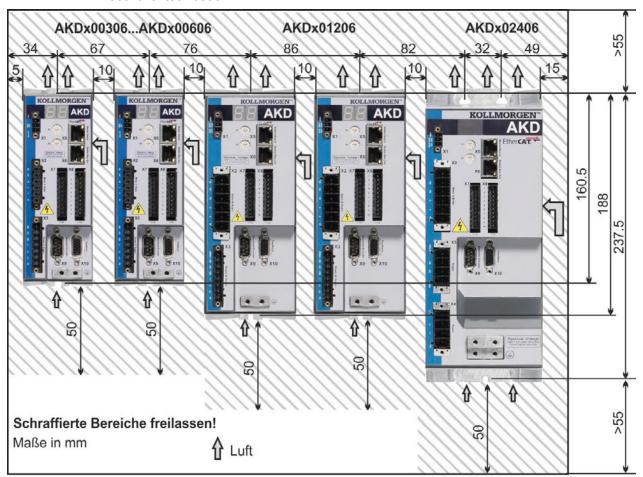
7.2 Anleitung für die mechanische Installation

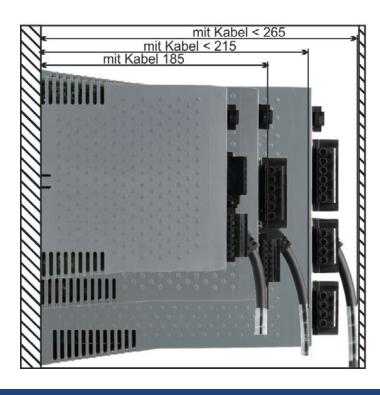
Zum Einbau des AKD werden (mindestens) die folgenden Werkzeuge benötigt; für Ihre spezifische Anlage sind möglicherweise weitere Werkzeuge erforderlich:

- M4-Zylinderschrauben mit Innensechskant (EN 4762)
- 3 mm Innensechskantschlüssel mit T-Griff
- Nr. 2 Kreuzschlitzschraubendreher
- Kleiner Schlitzschraubendreher

Maße und Bohrplan hängen ab von der Gerätevariante:

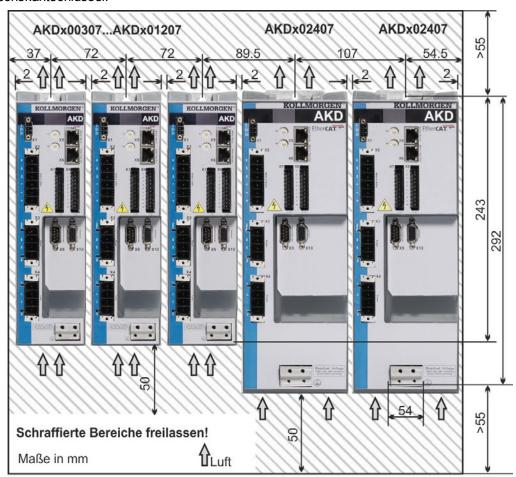
Gerätevariante	Gehäuse
AKD-B, -P, -T	Standardbreite, → S. 65
AKD-T-IC, -M-MC, -M-M1	Erhöhte Breite, → S. 69

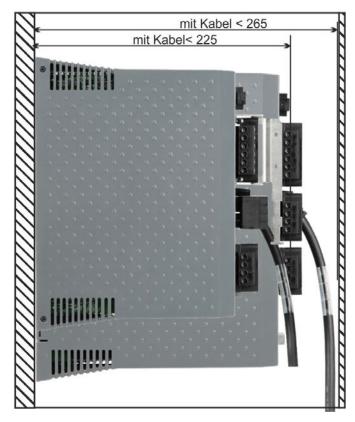

Bauen Sie den Verstärker wie folgt ein:

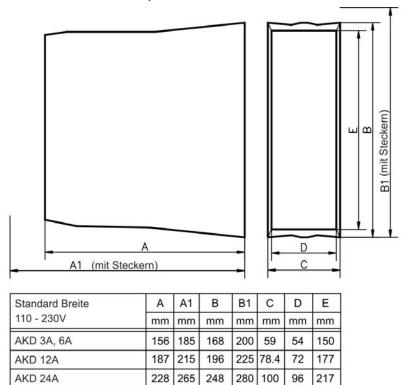

- 1. Bereiten Sie den Einbauort vor.
 - Montieren Sie den Verstärker in einem geschlossenem Schaltschrank (→ S. 32). Der Einbauort muss frei von leitenden und korrosiven Materialien sein. Hinweise zur Einbaulage im Schaltschrank → S. 65ff bzw. → S. 69ff.
- 2. Prüfen Sie die Belüftung.
 - Stellen Sie sicher, dass die Belüftung des Verstärkers nicht beeinträchtigt ist, und halten Sie die zulässige Umgebungstemperatur ein, → S. 32. Halten Sie den benötigten Freiraum über und unter dem Verstärker ein, → S. 65ff bzw. → S. 69ff.
- 3. Prüfen Sie das Kühlsystem.
 - Wenn für den Schaltschrank Kühlsysteme verwendet werden, platzieren Sie das Kühlsystem so, dass kein Kondenswasser in den Verstärker tropfen kann.
- 4. Montieren Sie den Verstärker.
 - Platzieren Sie den Verstärker und die Stromversorgung nahe beieinander auf der leitfähigen, geerdeten Montageplatte im Schaltschrank.
- 5. Erden Sie den Verstärker.
 - Hinweise zur EMV-gerechten Schirmung und Erdung → S. 93. Erden Sie die Montageplatte, das Motorgehäuse und den CNC-GND der Steuerung.

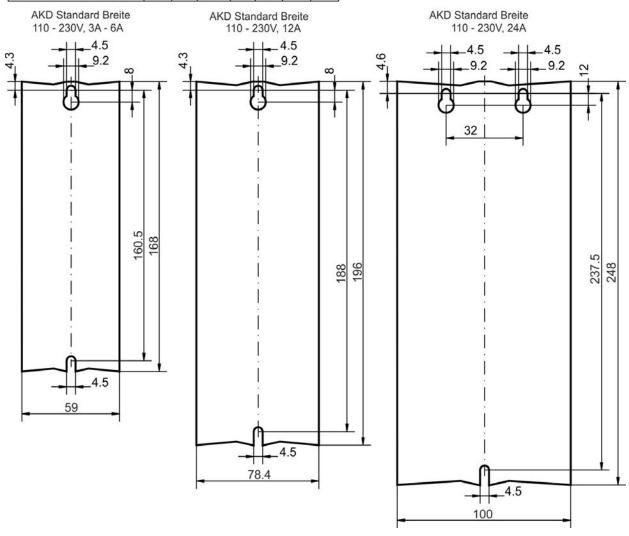
7.3 Mechanische Zeichnungen Standard Breite

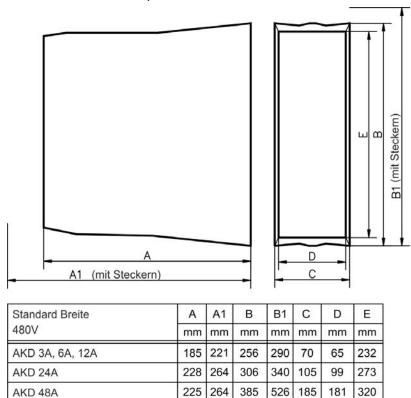
7.3.1 Schaltschrankeinbau AKD-xzzz06, Standard Breite

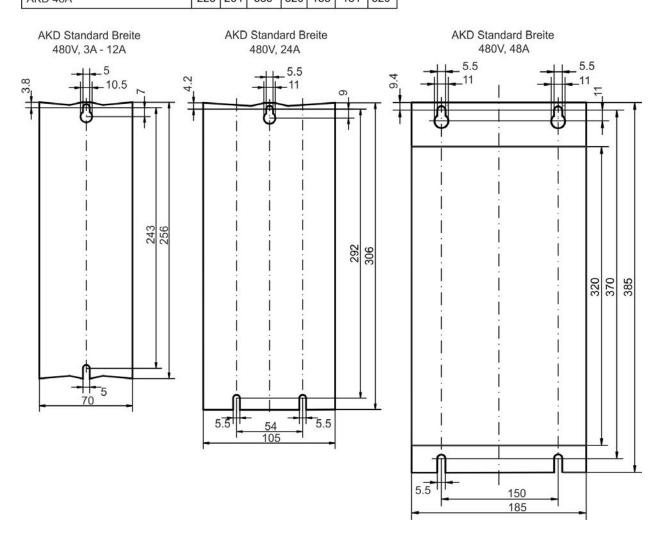

Material: M4-Zylinderschrauben mit Innensechskant gemäß EN 4762, 3 mm Innensechskantschlüssel.



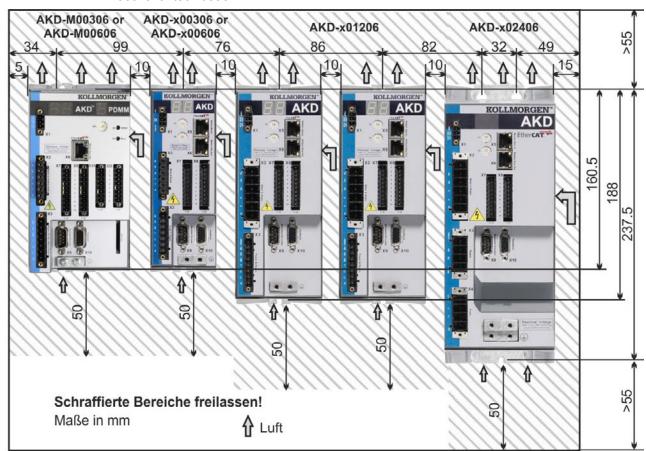

7.3.2 Schaltschrankeinbau AKD-xzzz07, Standard Breite

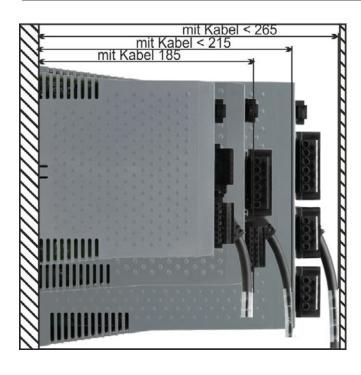

Material: M4-Zylinderschrauben mit Innensechskant gemäß EN 4762, 3 mm Innensechskantschlüssel.




7.3.3 Maße AKD-xzzz06, Standard Breite

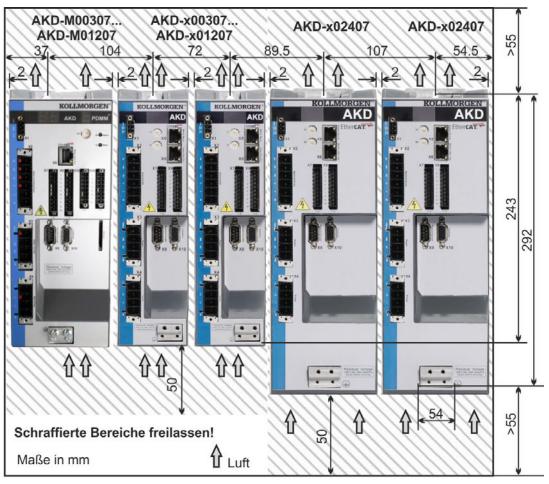
7.3.4 Maße AKD-xzzz07, Standard Breite

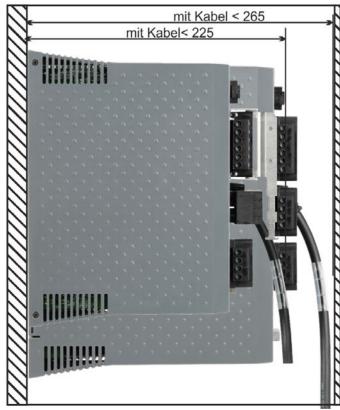


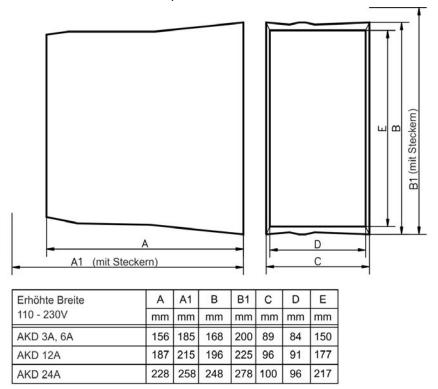


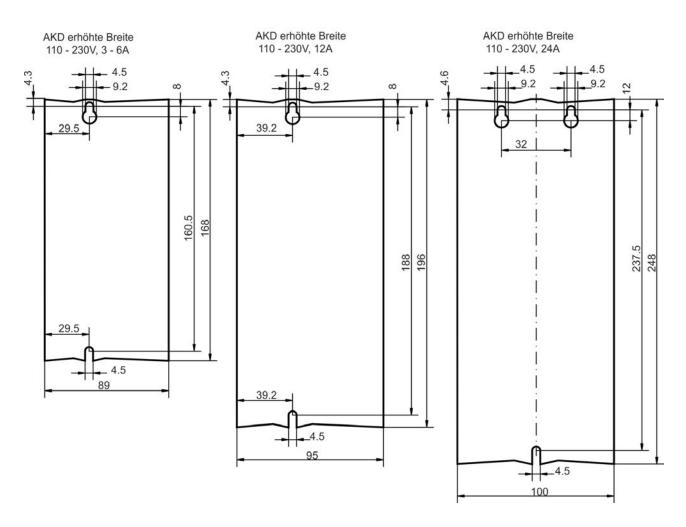
7.4 Mechanische Zeichnungen erhöhte Breite

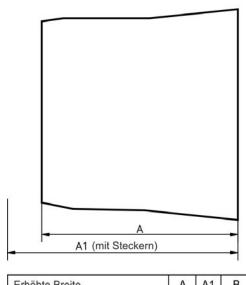
7.4.1 Schaltschrankeinbau, Beispiel mit AKD-M00306

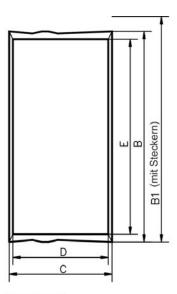

Material: M4-Zylinderschrauben mit Innensechskant gemäß EN 4762, 3 mm Innensechskantschlüssel.

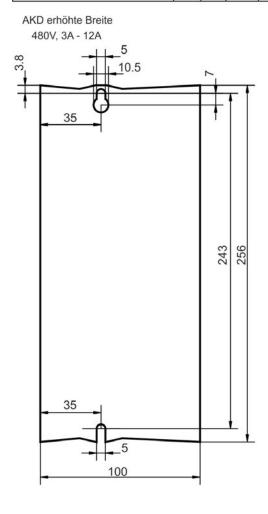


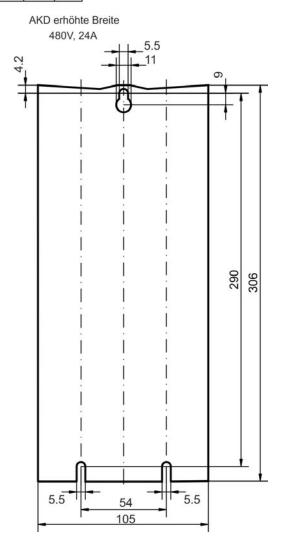

7.4.2 Schaltschrankeinbau, Beispiel mit AKD-M00307


Material: M4-Zylinderschrauben mit Innensechskant gemäß EN 4762, 3 mm Innensechskantschlüssel.




7.4.3 Maße AKD-xzzz06, erhöhte Breite




7.4.4 Maße AKD-xzzz07, erhöhte Breite

Erhöhte Breite	А	A1	В	B1	С	D	E
480V	mm	mm	mm	mm	mm	mm	mm
AKD 3A, 6A, 12A	185	221	256	290	100	95	232
AKD 24A	228	264	306	340	105	99	273

8 Elektrische Installation

8.1 V	Vichtige Hinweise	74
8.2 A	Anleitung für die elektrische Installation	75
8.3 V	/erdrahtung	76
8.4 K	Komponenten eines Servosystems	77
8.5 A	Anschlüsse AKD-B, AKD-P, AKD-T	79
8.6 A	Anschlüsse AKD-M	87
8.7 E	EMV Störunterdrückung	93
8.8 A	Anschluss der Spannungsversorgung	97
8.9 D	DC-Bus-Zwischenkreis (X3, X14)	102
8.10	Motor Leistungsanschluss (X2)	110
8.11	Motorbremse Anschluss (X2, X15, X16)	112
8.12	Feedback Anschluss (X10, X9, X7)	115
8.13	Elektronisches Getriebe, Master-Slave Betrieb (X9, X7)	130
8.14	I/O-Anschluss	138
8.15	LED-Anzeige	156
8.16	Drehschalter (S1, S2, RS1)	157
8.17	Taster (B1, B2, B3)	158
8.18	SD Speicherkarte, -M oder I/O Optionskarte	160
8.19	Ethernet Schnittstelle (X11, X32)	162
8.20	CAN-Bus-Schnittstelle (X12/X13)	166
8.21	Motion-Bus-Schnittstelle (X5/X6/X11)	171

8.1 Wichtige Hinweise

GEFAHR

Trennen Sie nie die elektrischen Verbindungen zum Servoverstärker, während dieser Spannung führt. Es besteht die Gefahr von Lichtbogenbildung mit Schäden an Kontakten und erhebliche Verletzungsgefahr. Warten Sie nach dem Trennen des Servoverstärkers von der Stromquelle mindestens 7 Minuten, bevor Sie Geräteteile, die potenziell Spannung führen (z. B. Kontakte), berühren oder Anschlüsse trennen.

Kondensatoren können bis zu 7 Minuten nach Abschalten der Stromversorgung gefährliche Spannung führen. Messen Sie zur Sicherheit die Spannung am DC-Bus-Zwischenkreis, und warten Sie, bis die Spannung unter 60 V gesunken ist.

Steuer- und Leistungsanschlüsse können auch bei nicht aktivem Motor unter Spannung stehen.

HINWEIS

Falsche Netzspannung, ein ungeeigneter Motor oder fehlerhafte Verdrahtung beschädigen den Verstärker. Prüfen Sie die Kombination aus Verstärker und Motor. Gleichen Sie die Nennspannung und den Nennstrom der Komponenten ab. Führen Sie die Verdrahtung gemäß dem Anschlussbild aus : → S. 80.

Stellen Sie sicher, dass die maximal zulässige Nennspannung an den Klemmen L1, L2, L3 oder +DC, –DC auch unter den ungünstigsten Umständen um nicht mehr als 10 % überschritten wird (siehe EN 60204-1).

HINWEIS

Überdimensionierte externe Sicherungen gefährden Kabel und Geräte. Installieren Sie die Sicherungen des AC-Versorgungseingangs und der 24 V-Versorgung, empfohlene Werte → S. 37. Hinweise zu Fehlerstromschutzschaltern (RCD) → S. 62.

HINWEIS

Der Status des Verstärkers muss durch die Steuerung überwacht werden, um kritische Situationen zu erkennen. Verdrahten Sie den FEHLER-Kontakt in Reihe zur Not-Aus-Schaltung der Anlage. Die Not-Aus-Schaltung muss das Netzschütz betätigen.

INFO

Die Setup-Software kann verwendet werden, um die Einstellungen des Verstärkers zu ändern. Jede weitere Veränderung führt zum Erlöschen der Garantie.

8.2 Anleitung für die elektrische Installation

Installieren Sie das elektrische Antriebssystem wie folgt:

- 1. Wählen Sie die Kabel gemäß EN 60204 → S. 39.
- Montieren Sie die Schirmung und erden Sie den Verstärker.
 Hinweise zur EMV-gerechten Schirmung und Erdung → S. 93→ S. 80 ff.
 Erden Sie die Montageplatte, das Motorgehäuse und den CNC-GND der Steuerung.
- Verdrahten Sie den Verstärker und die Stecker.
 Beachten Sie die "Empfehlungen für die Störunterdrückung": → S. 93
 - Verdrahten Sie den FEHLER-Kontakt im Not-Halt-Kreis des Systems.
 - o Schließen Sie die digitalen Steuereingänge und -ausgänge an.
 - Schließen Sie die analoge Masse an (auch wenn Feldbusse verwendet werden).
 - Schließen Sie bei Bedarf die analoge Eingangsquelle an.
 - Schließen Sie das Rückführsystem an.
 - Schließen Sie die Hardware-Option an.
 - Schließen Sie das Motorleistungskabel an.
 - Schließen Sie die Schirmung an beiden Enden an. Verwenden Sie eine Motordrossel, wenn das Kabel länger als 25 m ist.
 - o Schließen Sie die Motor-Haltebremse und die Schirmung an beiden Enden an.
 - o Schließen Sie ggf. den externen Bremswiderstand (mit Sicherung) an.
 - Schließen Sie die Hilfsspannungsversorgung an (maximal zulässige Spannungswerte siehe elektrische Daten (→ S. 34 oder → S. 35).
 - Schließen Sie bei AKD-xzzz06 die Netzfilter an (geschirmte Leitungen zwischen Filter und Verstärker).
 - Schließen Sie die Netzversorgung an.
 Prüfen Sie den max. zulässigen Spannungswert (→ S. 34 oder → S. 35).
 - Prüfen Sie die ordnungsgemäße Funktion der Fehlerstromschutzschalter (RCD); →
 S. 62
 - ∘ Schließen Sie den PC an (→ S. 162), um den Verstärker zu konfigurieren.
- 4. Prüfen Sie die Verdrahtung anhand der Anschlussbilder.

8.3 Verdrahtung

Das Installationsverfahren ist beispielhaft beschrieben. Je nach Applikation kann ein abweichendes Verfahren erforderlich sein. Kollmorgen™ bietet auf Anfrage Schulungen an.

GEFAHR

Es besteht die Gefahr von Lichtbogenbildung, die zu schweren Verletzungen führen kann. Installieren und verdrahten Sie die Geräte nur im abgeschalteten Zustand, d. h. es darf weder die Netzspannung noch die 24 V Hilfsspannung oder die Netzspannung anderer angeschlossener Geräte eingeschaltet sein.

Achten Sie darauf, dass das Gehäuse des Schaltschranks sicher isoliert ist (Absperrung, Warnzeichen usw.). Die einzelnen Spannungen werden zum ersten Mal während der Konfiguration eingeschaltet.

HINWEIS

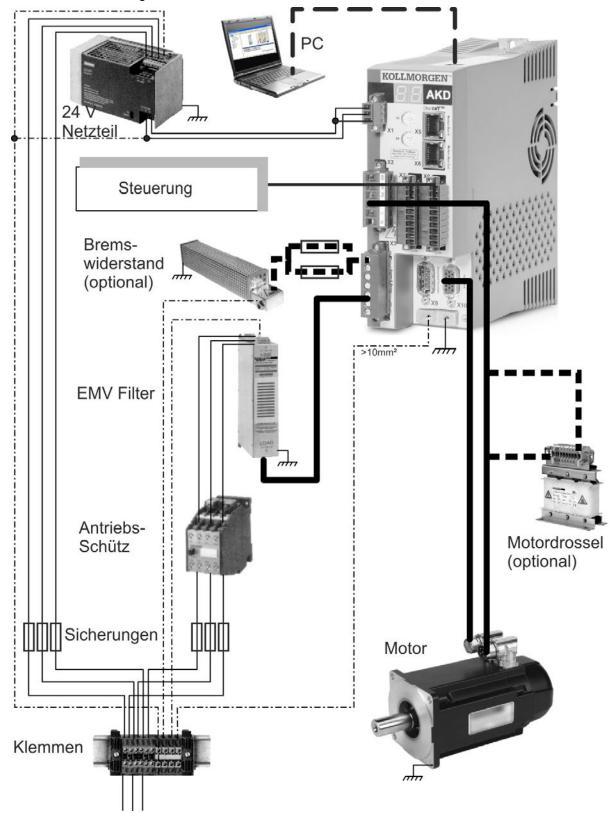
Der Verstärker darf nur von Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik installiert werden. Grüne Drähte mit gelben Streifen dürfen nur für die Verdrahtung der Schutzerde (PE) verwendet werden.

INFO

Das Massezeichen, das in allen Anschlussplänen enthalten ist, deutet an, dass Sie für eine möglichst großflächige, elektrisch leitende Verbindung zwischen dem gekennzeichneten Gerät und der Montageplatte im Schaltschrank sorgen müssen. Diese Verbindung soll die Ableitung von HF-Störungen ermöglichen und darf nicht mit dem PE-Zeichen (PE = Schutzerde, Sicherheitsmaßnahme gemäß EN 60204) verwechselt werden.

Verwenden Sie die folgenden Anschlusspläne:

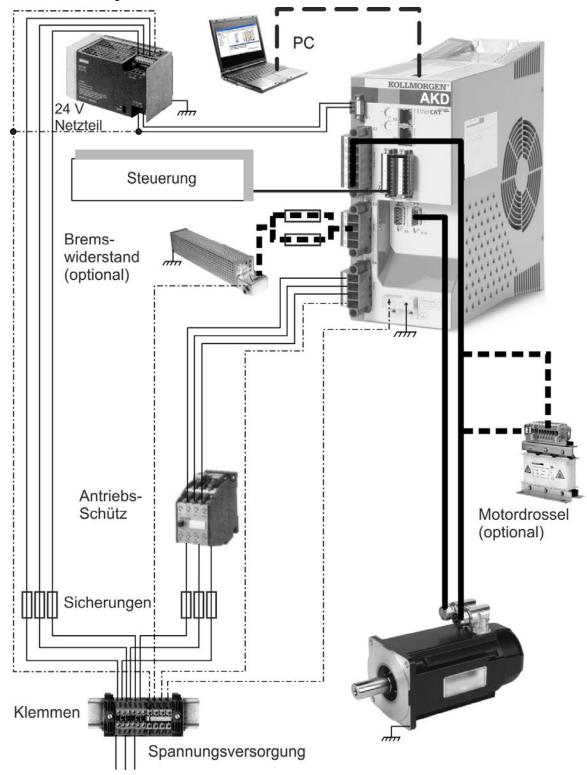
Übersicht (alle Anschlüsse):


- AKD-B/P/T Varianten	→ S. 80 ff
- AKD-M Variante	→ S. 88 ff
Abschirmung:	→ S. 93
Netzspannung:	→ S. 100
DC-Zwischenkreis:	→ S. 102
Motor:	→ S. 110
Feedback:	→ S. 115
Elektronisches Getriebe:	→ S. 130
Encoder-Emulation:	→ S. 132
Digitale und analoge Ein- und Ausgänge:	→ S. 138
Serviceschnittstelle:	→ S. 162
CAN-Bus-Schnittstelle:	→ S. 166
Motion-Bus-Schnittstelle:	→ S. 171

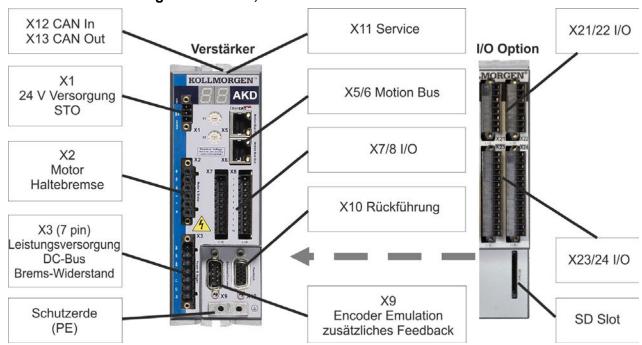
8.4 Komponenten eines Servosystems

Mit AKD-xzzz06

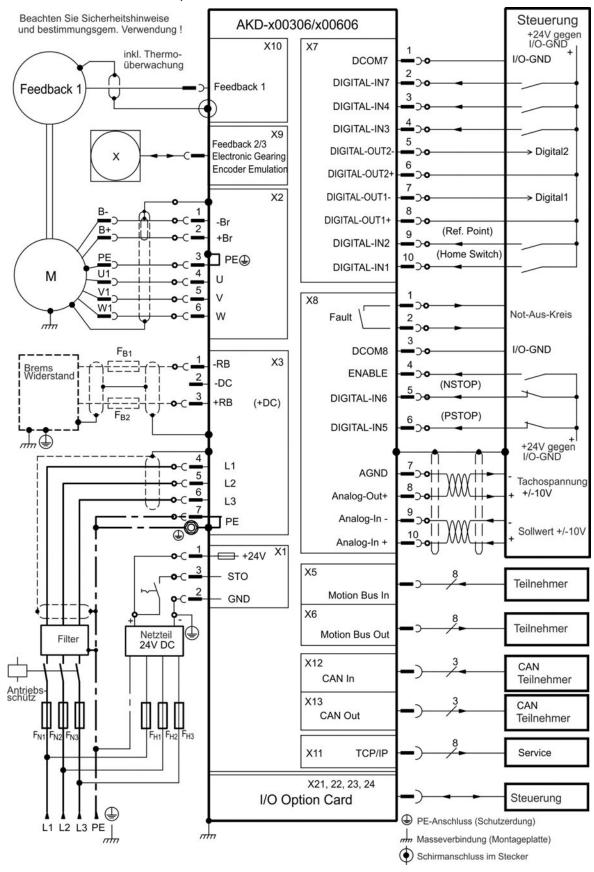
INFO


In Fettdruck dargestellte Kabel sind geschirmt. Die elektrische Erdung ist mit strichpunktierten Linien dargestellt. Optionale Geräte sind mit gestrichelten Linien an den Verstärker angeschlossen. Das erforderliche Zubehör ist im Zubehörhandbuch beschrieben.

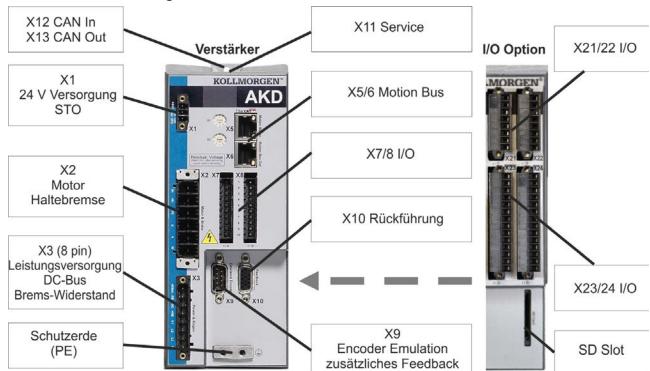
Mit AKD-xzzz07


INFO

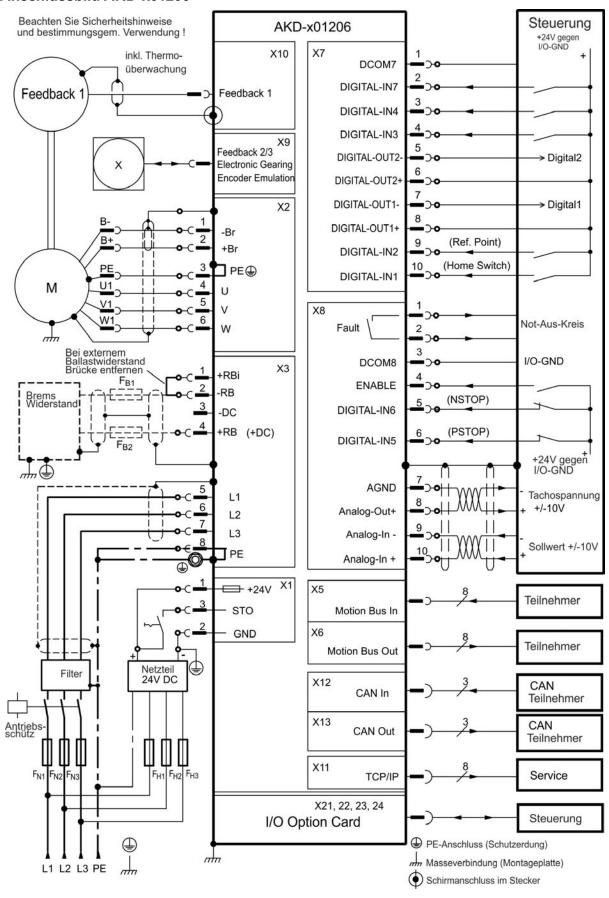
In Fettdruck dargestellte Kabel sind geschirmt. Die elektrische Schutzerdung ist mit strichpunktierten Linien dargestellt. Optionale Geräte sind mit gestrichelten Linien an den Verstärker angeschlossen. Das erforderliche Zubehör ist im Zubehörhandbuch beschrieben.


8.5 Anschlüsse AKD-B, AKD-P, AKD-T

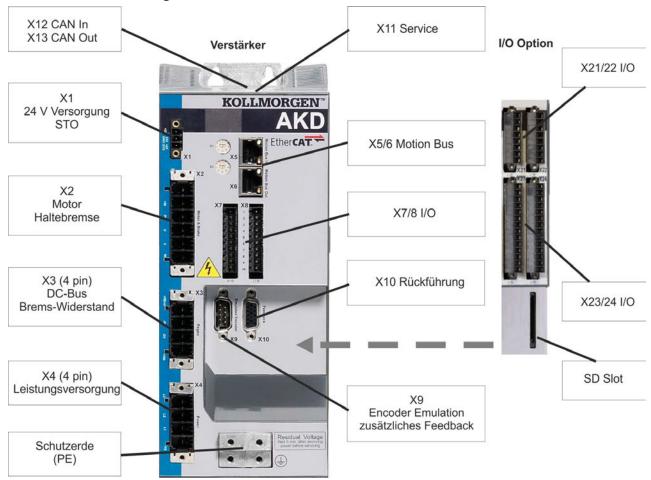
8.5.1 Steckerzuordnung AKD-x00306, AKD-x00606


Die I/O Option ist nur verfügbar für AKD-T Verstärker.

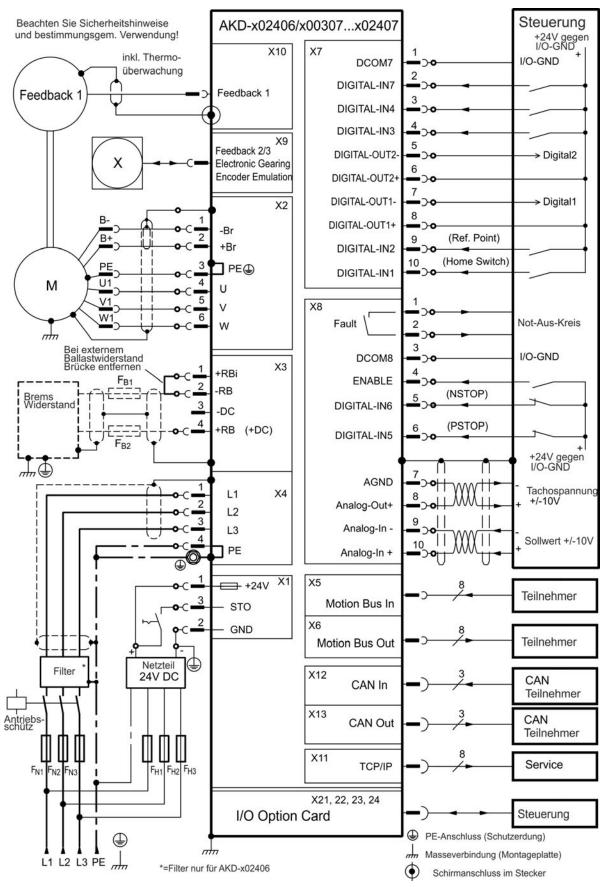
8.5.2 Anschlussbild AKD-x00306, AKD-x00606


Die I/O Option ist nur verfügbar für AKD-T Verstärker.

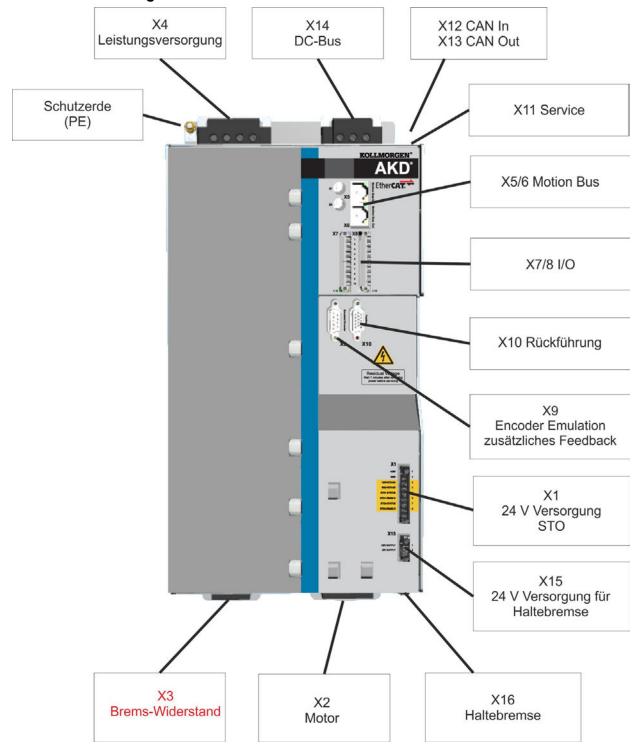
8.5.3 Steckerzuordnung AKD-x01206


Die I/O Option ist nur verfügbar für AKD-T Verstärker.

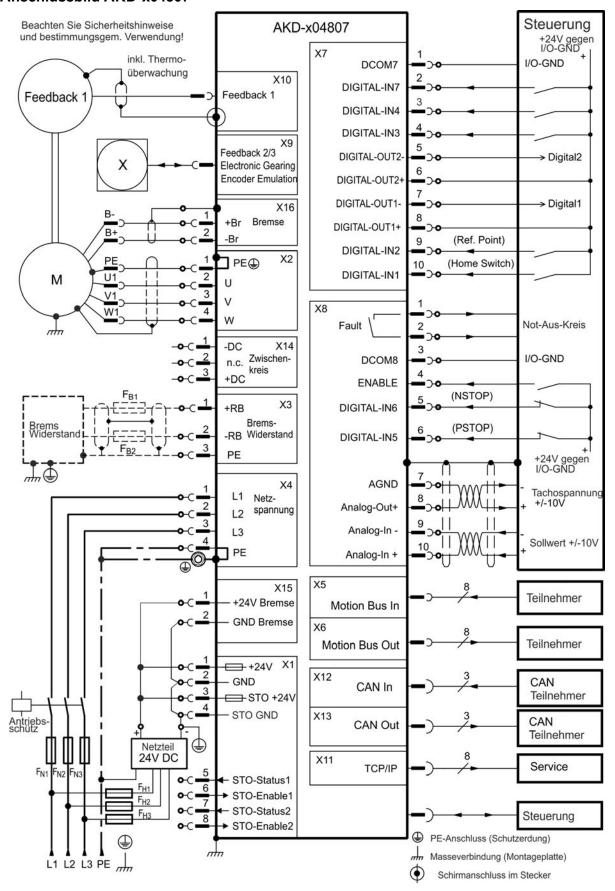
8.5.4 Anschlussbild AKD-x01206


Die I/O Option ist nur verfügbar für AKD-T Verstärker.

8.5.5 Steckerzuordnung AKD-x02406 und AKD-x00307 bis 02407

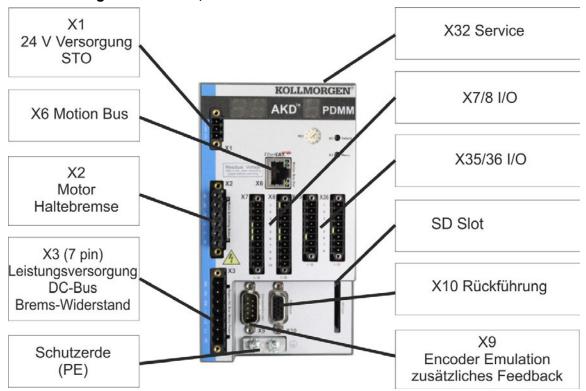

Die I/O Option ist nur verfügbar für AKD-T Verstärker.

8.5.6 Anschlussbild AKD-x02406 und AKD-x00307 bis 02407

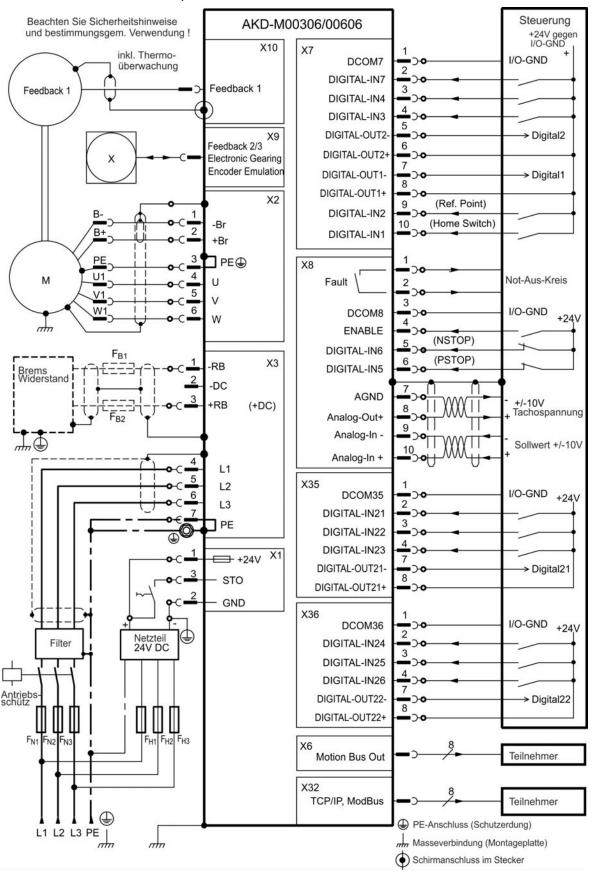


Die I/O Option ist nur verfügbar für AKD-T Verstärker.

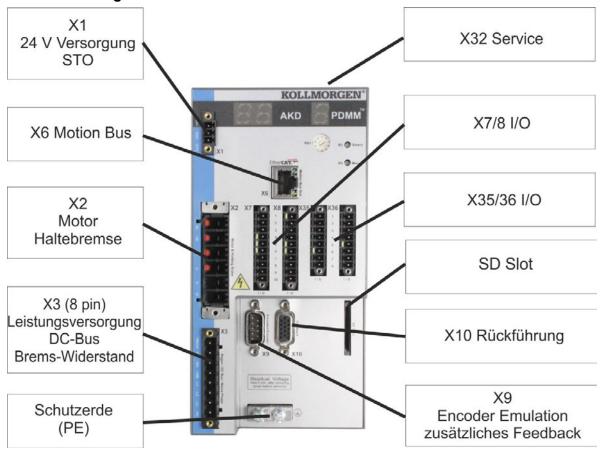
8.5.7 Steckerzuordnung AKD-x04807

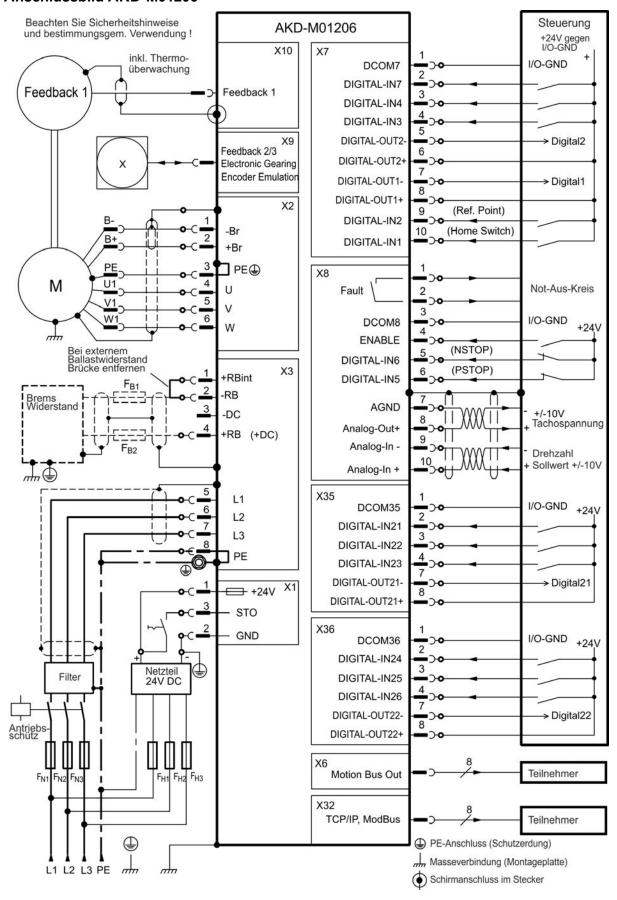


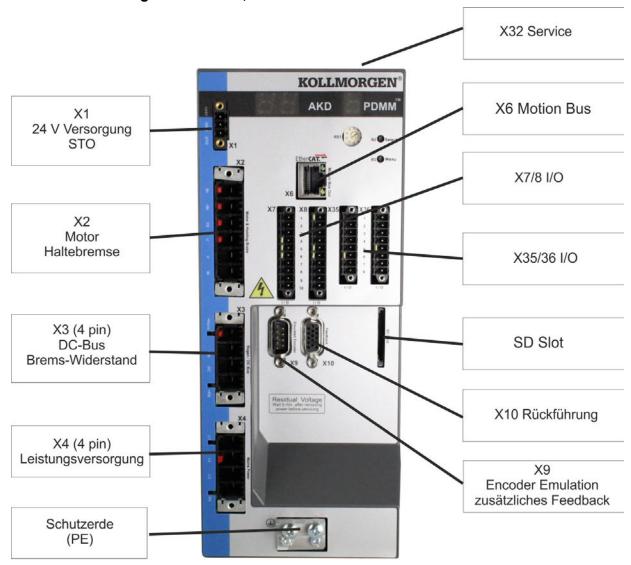
8.5.8 Anschlussbild AKD-x04807

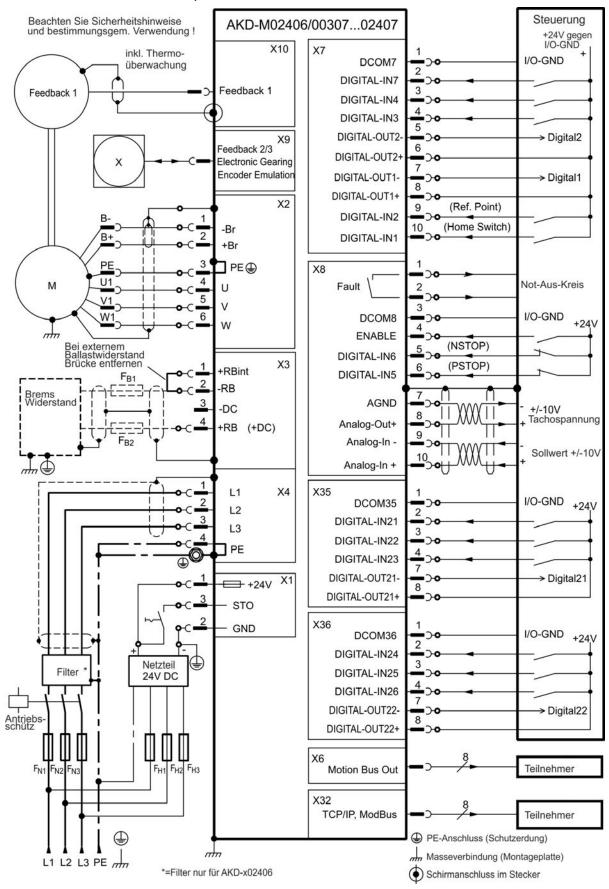


8.6 Anschlüsse AKD-M


8.6.1 Steckerzuordnung AKD-M00306, AKD-M00606


8.6.2 Anschlussbild AKD-M00306, AKD-M00606


8.6.3 Steckerzuordnung AKD-M01206


8.6.4 Anschlussbild AKD-M01206

8.6.5 Steckerzuordnung AKD-M02406, AKD-M00307 bis AKD-M02407

8.6.6 Anschlussbild AKD-M02406, AKD-M00307 bis AKD-M02407

8.7 EMV Störunterdrückung

8.7.1 Empfehlungen für die Reduktion von Störungen

Die folgenden Hinweise helfen elektrischen Störungen in der Anwendung zu reduzieren.

 Stellen Sie leitende Verbindungen zwischen den Komponenten des Schaltschranks sicher.

(Seitenwände, Rückwand und Schaltschranktür mit Kupfergeflechten verbinden). Keine Scharniere oder Montageschrauben für Erdungsanschlüsse verwenden. Die gesamte Auflagefläche des Verstärkers muss elektrisch leitend auf der Montageplatte aufliegen. Elektrisch leitende Platten verwenden, z. B. aus Aluminium oder galvanisiertem Stahl. Entfernen Sie bei lackierten und anderen beschichteten Metallplatten die gesamte Beschichtung hinter dem Verstärker.

Stellen Sie eine gute (niederohmige) Erdverbindung sicher.
 Schließen Sie den Schaltschrank an eine gute (niederohmige) Erdung an. Verwenden Sie Erdungsleitungen mit großem Querschnitt.

Verwenden Sie Kollmorgen™ Kabel.

Verlegen Sie Leistungs- und Steuerungskabel getrennt. Kollmorgen™ empfiehlt einen Abstand von mindestens 200 mm, um die Störfestigkeit zu verbessern. Wenn Sie ein Motorleistungskabel mit integrierten Bremsadern verwenden, müssen Sie die Adern für die Bremse separat schirmen.

• Erden Sie die Schirmung an beiden Enden.

Erden Sie Schirmungen an großen Flächen (geringe Impedanz), möglichst mit metallisierten Steckergehäusen oder geschirmten Anschlussklemmen. Kabel, die in einen Schaltschrank führen, benötigen eine 360° Schirmung. Verwenden Sie keine ungeschirmten Zwischenstücke. Weitere Informationen zu Schirmungskonzepten → S. 94.

• Bei separaten Netzfiltern eingehende und ausgehende Leitungen räumlich trennen.

Installieren Sie den Netzfilter so nah wie möglich an der Stelle, an der die Eingangs-Spannung in den Schaltschrank eintritt. Wenn die Leitungen für die Eingangs-Spannung und die Motorleitungen gekreuzt werden müssen, kreuzen Sie sie im 90°-Winkel.

• Rückführungsleitungen dürfen nicht verlängert werden, da dies die Schirmung unterbrechen würde.

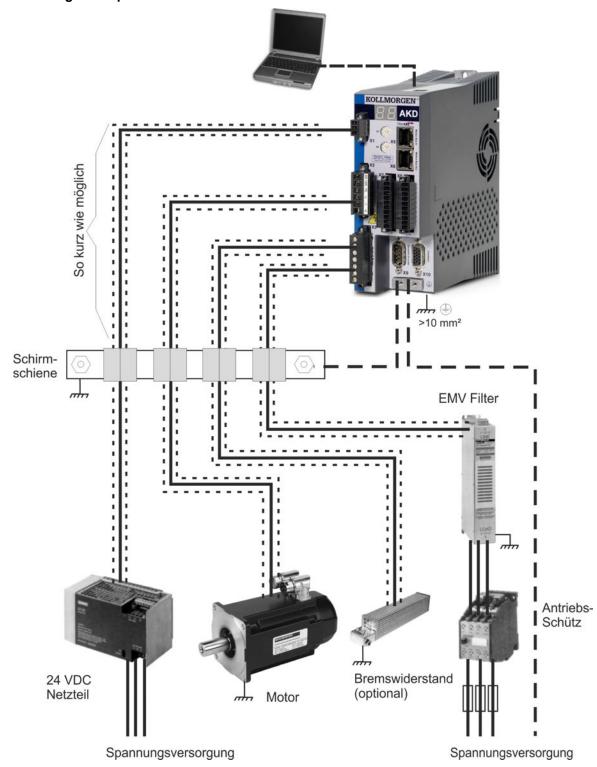
Montieren Sie alle Rückführkabel mit einem Querschnitt gemäß EN 60204 (→ S. 39) und verwenden Sie die vorgeschriebene Kabelqualität, um die maximale Kabellänge zu erreichen.

Spleißen Sie Kabel ordnungsgemäß.

Wenn Sie Kabel teilen müssen, verwenden Sie Stecker mit Endgehäusen aus Metall. Stellen Sie sicher, dass beide Gehäuse mit dem vollen Umfang der Schirmungen verbunden sind. Kein Teil der Verkabelung darf ungeschirmt sein. Unterbrechen Sie nie ein Kabel mit einer Klemmenleiste.

• Verwenden Sie für analoge Signale Differenzeingänge.

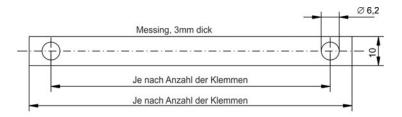
Die Störanfälligkeit von analogen Signalen wird durch Verwendung von Differenz Eingängen deutlich vermindert. Verwenden Sie paarweise verdrillte, geschirmte Signalleitungen und schließen Sie Schirmungen an beiden Enden an.

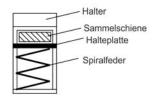

Leitungen zwischen Servoverstärker und Filter / externem Bremswiderstand müssen abgeschirmt sein.

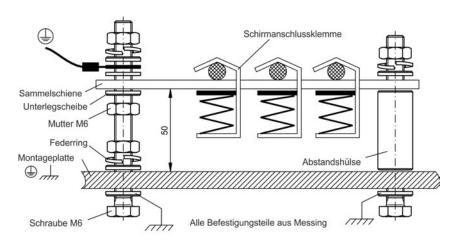
Montieren Sie alle Rückführkabel mit einem Querschnitt gemäß EN 60204 (→ S. 39) und verwenden Sie die vorgeschriebene Kabelqualität, um die maximale Kabellänge zu erreichen.

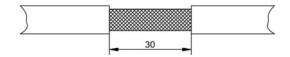
8.7.2 Schirmung mit externer Schirmschiene

Wenn EMV-Filterung extern vorgenommen wird, werden geschirmte Kabel benötigt.Kollmorgen™ empfiehlt einen Anschluss der Schirmung mit Sternpunkt, z. B. mit einer Schirmschiene.


8.7.2.1 Schirmungskonzept




8.7.2.2 Schirmschiene



Die Abschirmungen des Netzkabels (Eingang, Motorkabel, externer Bremswiderstand) können über Schirmklemmen zu einer zusätzlichen Sammelschiene geführt werden. Kollmorgen™ empfiehlt, KLBÜ-Schirmklemmen von Weidmüller zu verwenden. Ein möglicher Aufbau der Sammelschiene für die oben genannten Schirmklemmen ist unten beschrieben.

1. Schneiden Sie eine Sammelschiene mit der benötigten Länge aus einer Messingschiene (Querschnitt 10 x 3 mm) und bohren Sie die angegeben Löcher. Alle benötigten Schirmklemmen müssen zwischen die Bohrungen passen.

VORSICHT

Verletzungsgefahr durch die Federkraft der Schraubenfeder. Verwenden Sie eine Zange.

- 2. Drücken Sie zusammen mit der Halteplatte die Schrauben-feder zusammen und schieben Sie die Sammelschiene durch die Öffnung im Halter.
- 3. Montieren Sie die Sammelschiene mit den aufgesteckten Schirmklemmen auf der Montageplatte. Verwenden Sie entweder Abstandshülsen aus Metall oder Schrauben mit Muttern, um den Abstand von 50 mm einzuhalten. Erden Sie die Sammelschiene mit einem Draht von mindestens 2,5 mm² Querschnitt.
- 4. Teilen Sie die äußere Kabelummantelung auf eine Länge von ca. 30 mm, und achten Sie darauf, das Schirmgeflecht nicht zu beschädigen. Drücken Sie die Schirmanschlussklemme nach oben und führen Sie das Kabel durch.

HINWEIS

Stellen Sie einen guten Kontakt zwischen Schirmklemme und Schirmgeflecht sicher.

8.7.3 Schirmanschluss an den Verstärker

Sie können die Kabelschirmung mit Schirmblechen, Schirmanschlussklemmen und einem Motorstecker mit Zugentlastung und Schirmbleche direkt an den Verstärker anschließen.

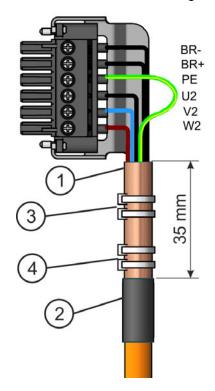
8.7.3.1 Schirmbleche

Montieren Sie die Schirmbleche wie auf den folgenden Abbildungen gezeigt am Verstärker.

Typen AKD-x0306 bis x1206: L-förmiges Schirmblech (nur in Europa)

Typen AKD-x02406 & xzzz07: flaches Schirmblech

8.7.3.2 Schirmanschlussklemmen



Verwenden Sie Schirmanschlussklemmen (siehe Zubehörhandbuch). Diese werden in die Schirmbleche eingehakt und gewährleisten einen optimalen Kontakt zwischen der Schirmung und dem Schirmblech.

Kollmorgen™ empfiehlt die Verwendung von Schirmklemmen des Typs Phoenix Contact SK14 mit einem Klemmbereich von 6 bis 13 mm.

8.7.3.3 Motorstecker X2 mit Schirmanschluss

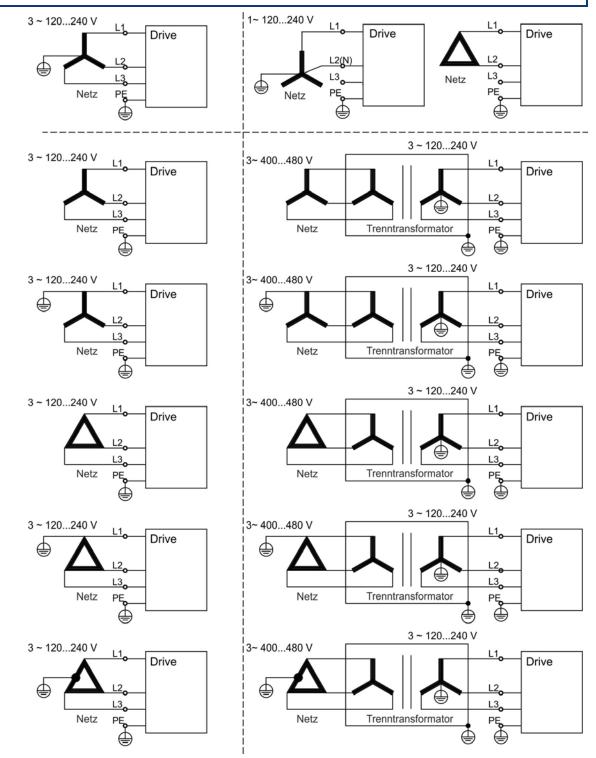
Anschluss für die Motorleistung durch Gegenstecker mit Zugentlastung.

Isolieren Sie die äußere Kabelummantelung auf eine Länge von ca. 120 mm ab und achten Sie darauf, das Schirmgeflecht nicht zu beschädigen. Schieben Sie das Schirmgeflecht (1) über das Kabel und sichern Sie es mit einer Gummihülse (2) oder Schrumpfschlauch.

Kürzen Sie alle Adern außer der Schutzerde (grün/gelb) um ca. 20 mm, sodass die Schutzerde die längste Ader ist. Isolieren Sie alle Adern ab und bringen Sie Aderendhülsen an.

Sichern Sie das Schirmgeflecht des Kabels am Schirmblech mit einem Kabelbinder (3) und verwenden Sie einen zweiten Kabelbinder (4), um das Kabel zu fixieren. Verdrahten Sie den Stecker wie im Anschlussbild dargestellt. Stecken Sie den Stecker in die Buchse an der Vorderseite des AKD.

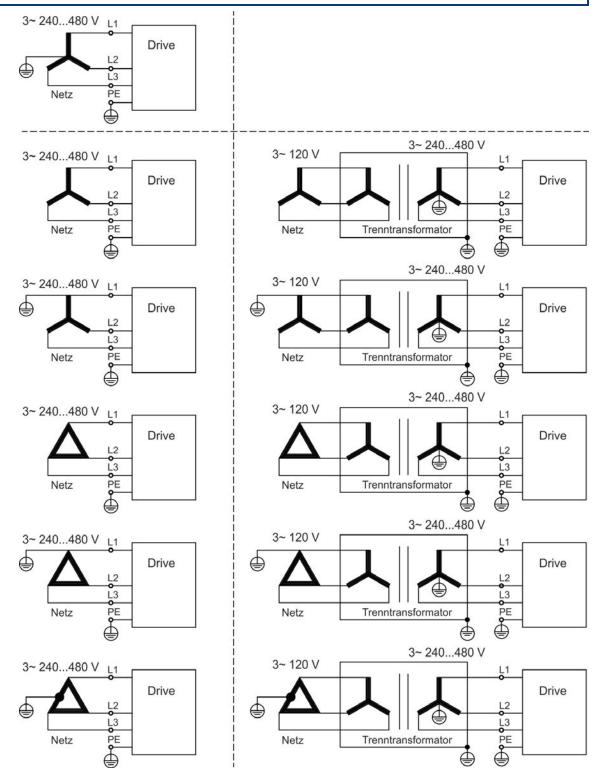
Schrauben Sie den Stecker an. Dies stellt sicher, dass zwischen dem Schirmgeflecht und der Frontplatte ein großflächiger, leitender Kontakt besteht.


8.8 Anschluss der Spannungsversorgung

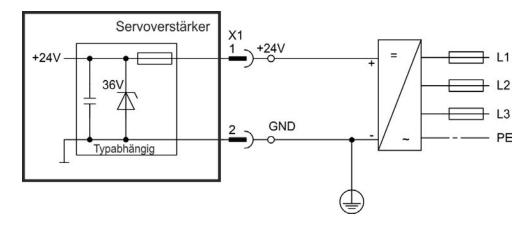
8.8.1 Anschluss an verschiedene Versorgungsnetze AKD-xzzz06 (120 V bis 240 V)

WARNUNG

Es besteht Stromschlag- und erheblich Verletzungsgefahr, wenn der Verstärker nicht ordnungsgemäß geerdet wird. Für Netzwerke mit einer Spannung von 400 bis 480 V wird ein Trenntransformator benötigt, um eine maximale Spannung von 240 V +10 % zu erhalten.



8.8.2 Anschluss an verschiedene Versorgungsnetze AKD-xzzz07 (240 V bis 480 V)


WARNUNG

Es besteht Stromschlag- und erheblich Verletzungsgefahr, wenn der Verstärker nicht ordnungsgemäß geerdet wird. Für Netzwerke mit einer Spannung von 120 V wird ein Trenntransformator benötigt, um eine minimale Spannung von 240 V +10 % zu erhalten.

8.8.3 24 V-Hilfsspannungsversorgung (X1)

Das Anschlussbild zeigt eine externe 24 V DC-Stromversorgung, die elektrisch isoliert ist, z. B. über einen Trenntransformator. Der erforderliche Nennstrom hängt ab von der Verwendung der Motorbremse und Optionskarte (→ S. 34 oder → S. 35).

8.8.3.1 AKD-x003 bis 024, Stecker X1

Pin	Signal	Beschreibung	
1	+24	+24 V DC Hilfsspannungsversorgung	
2	GND	24 V Versorgungs-GND	
3	STO	STO Enable (Safe Torque Off)	

8.8.3.2 AKD-x048, Stecker X1

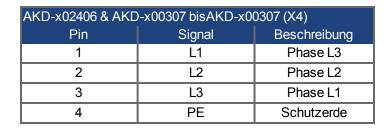
Pin	Signal	Beschreibung
1	+24 V	+24 V DC Hilfsspannungsversorgung
2	GND	24 V GND
3	STO +24V	+24 V DC STO Hilfsspannungsversorgung
4	STO GND	STO 24 V GND
5	STO-Status 1	Safe Torque Off Status Kanal 1
6	STO-Enable 1	Safe Torque Off Enable Kanal 1
7	STO-Status 2	Safe Torque Off Status Kanal 2
8	STO-Enable 2	Safe Torque Off Enable Kanal 2

8.8.4 Anschluss an die Netzversorgung (X3, X4)

Die Verstärker der AKD Serie können wie folgt versorgt werden:

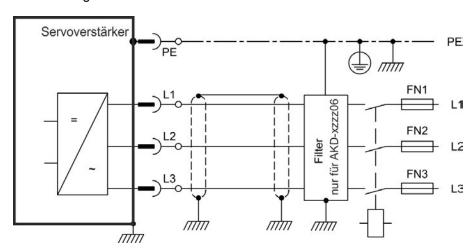
- AKD-xzzz06: 1 oder 3 phasiges, industrielles Versorgungsnetz (maximaler symmetrischer Nennstrom bei 120 V und 240 V: 200 kA).
- AKD-xzzz07: 3 phasiges, industrielles Versorgungsnetz (maximaler symmetrischer Nennstrom bei 240 V, 400 V und 480 V: 200 kA).

Der Anschluss an Versorgungsnetze mit anderen Spannungen ist mit einem zusätzlichen Trenntransformator möglich (→ S. 97). Periodische Überspannungen zwischen Außenleitern (L1, L2, L3) und Gehäuse des Servoverstärkers dürfen 1000V (Amplitude) nicht überschreiten. Gemäß EN 61800 dürfen Spannungsspitzen (< 50µs) zwischen den Außenleitern 1000V nicht überschreiten. Spannungsspitzen (< 50µs) zwischen Außenleitern und Gehäuse dürfen 2000V nicht überschreiten.

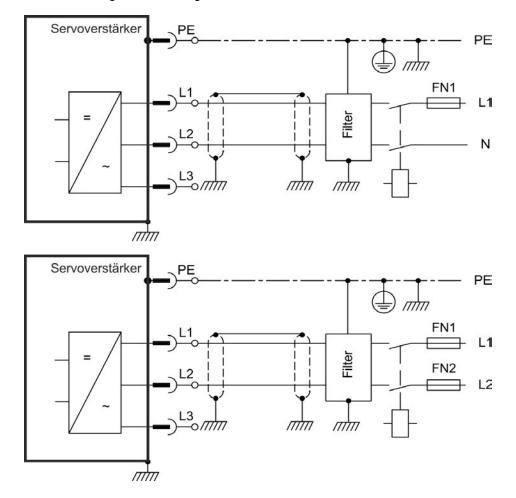


AKD-x00306 to AKD-x00606 (X3)			
Pin	Signal	Beschreibung	
4	L1	Phase L1	
5	L2	Phase L2	
6	L3	Phase L3	
7	PE	Schutzerde	

AKD-x01206 (X3)				
Pin	Signal	Beschreibung		
5	L1	Phase L1		
6	L2	Phase L2		
7	L3	Phase L3		
8	PE	Schutzerde		



AKD-x04807 (X4)				
Pin	Signal	Beschreibung		
1	L1	Phase L1		
2	L2	Phase L2		
3	L3	Phase L3		
4	PE	Schutzerde		


8.8.4.1 Dreiphasiger Anschluss (alle AKD Typen)

- An 3-phasiges Versorgungsnetz, Versorgungsnetze → S. 97
- Die Filterung bei AKD-xzzz06 ist vom Anwender bereitzustellen.
- Sicherungen sind vom Anwender bereitzustellen → S. 37.

8.8.4.2 Ein-/Zweiphasiger Anschluss (nur AKD-x00306 bis AKD-x01206)

- An einphasiges Versorgungsnetz (120 V→ S. 97
- Versorgungsnetze → S. 97
- L3 offen lassen
- Die Filterung und Sicherungen → S. 37 sind vom Anwender bereitzustellen.

8.9 DC-Bus-Zwischenkreis (X3, X14)

Der Zwischenkreis kann parallel angeschlossen werden, so dass die Bremsleistung zwischen allen Verstärkern aufgeteilt wird, die an denselben DC-Bus-Zwischenkreis angeschlossen sind. Jeder Verstärker muss einen eigenen Anschluss an die Netzspannung besitzen, auch wenn der Zwischenkreis verwendet wird. Verstärker, die in der Applikation häufig generatorisch arbeiten, sollten neben Geräte platziert werden, die häufig Energie aufnehmen. Dies verrringert den Stromfluss über größere Entfernungen. Sicherungen sind bei Bedarf vom Nutzer bereitzustellen → S. 37.

- Die Summe der Nennströme aller zu einem AKD-x003 bis 024 parallel geschalteten Servoverstärker darf 48 A nicht überschreiten.
 - Verwenden Sie ungeschirmte 6 mm² Einzeladem bis max. 200 mm Länge oder abgeschirmte 6 mm² Leitungen bei größeren Längen. Eine Sicherung als Leitungsschutz ist dann nicht erforderlich.
- Die Summe der Nennströme aller zu einem AKD-x048 parallel geschalteten Servoverstärker darf 96 A nicht überschreiten.
 Verwenden Sie ungeschirmte 16 mm² Einzeladern bis max. 300 mm Länge oder abge-

schirmte 16 mm² Leitungen bei größeren Längen.

HINWEIS

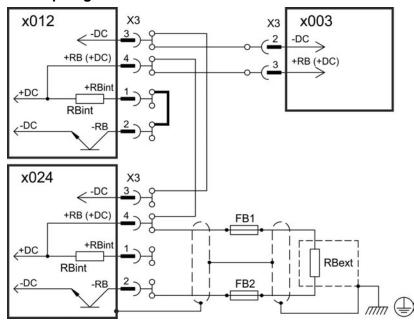
Die Geräte können zerstört werden, wenn die DC-Bus-Spannungen unterschiedlich sind. Nur Verstärker mit einer Netzversorgung vom selben Stromnetz (identische Netzspannung) dürfen über den DC-Bus-Zwischenkreis angeschlossen werden. AKD-x048 dürfen nur mit AKD-x048 verbunden werden.

HINWEIS

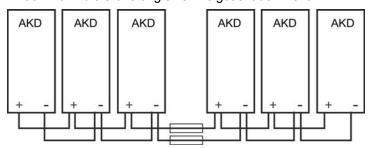
Die Phasenausfallüberwachung / Netzüberwachung arbeitet bei Verstärkern im verbundenen Zwischenkreis nicht. Der Ausfall einer Netzphase wird nicht erkannt. Eine externe Phasenausfallüberwachung ist zum Schutz der Endstufe erforderlich.

AKD-x00306 bis AKD-x00606 (X3)				
Pin	Signal	Beschreibung		
2	-DC	DC-Bus-Zwischenkreis minus		
3	+DC (+RB)	DC-Bus-Zwischenkreis plus		

AKD-x01206 (X3)				
Pin	Signal	Beschreibung		
3	-DC	DC-Bus-Zwischenkreis minus		
4	+DC (+RB)	DC-Bus-Zwischenkreis plus		

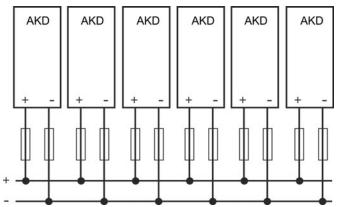


AKD-x02406 & AKD00307 bis AKD02407 (X3)				
Pin Signal Beschreibung				
3	-DC	DC-Bus-Zwischenkreis minus		
4	+DC (+RB)	DC-Bus-Zwischenkreis plus		



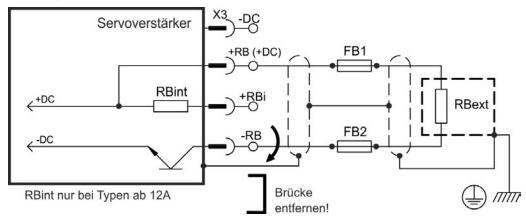
AKD04	AKD04807 (X3)					
Pin	Signal	Beschreibung				
1	-DC	DC-Bus-Zwischenkreis minus				
2	n.c.	Nicht verbunden				
3	+DC	DC-Bus-Zwischenkreis plus				

8.9.1 Zwischenkreis Topologie mit Y-Steckern



Wenn ein Gerät durch z.B. einen internen Kurzschluss ausfällt, können ohne externe DC Sicherungen weitere Geräte im Verbund beschädigt oder zerstört werden. Sollen viele Verstärker parallel geschaltet werden, so ist es sinnvoll, Zwischenkreissicherungen (→ S. 37) zwischen Verstärkergruppen (eine Gruppe bestehend aus zwei oder drei Geräten, je nach Stromstärke) einzufügen, um einen möglichen Folgeschaden zu begrenzen. Vollständig verhindern kann die Sicherung einen Folgeschaden nicht.

8.9.2 Zwischenkreis Topologie mit Stromschiene

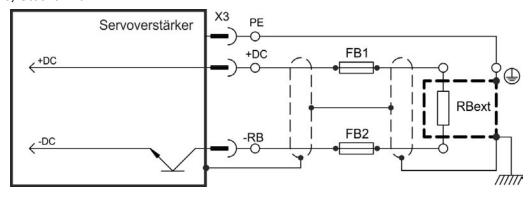

Diese Verdrahtung erfordert keine Y- Stecker. Falls ein Gerät durch Kurzschluss ausfällt, lösen nur dessen Zwischenkreissicherungen (→ S. 37.) aus, und der restliche Verbund läuft ungestört weiter. Die massive Stromschiene kann einen wesentlich höheren Strom führen, da der Ausgleichsstrom nicht wie oben über den Stecker fließt. Daher können in dieser Form fast beliebig viele Servoverstärker parallel geschaltet werden. Diese Anordnung ist häufig auch sinnvoll für die Anbindung eines KCM Kondensatormodules.

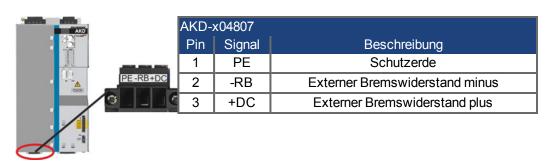
8.9.3 Externer Bremswiderstand (X3)

Hinweise zu den technischen Daten der Bremsschaltung finden Sie unter "Dynamisches Bremsen" (→ S. 40). Sicherungen (z. B. Schmelzsicherung) sind vom Nutzer bereitzustellen → S. 37.

8.9.3.1 AKD-x003 bis 024, Stecker X3

AKD-x00306 bis AKD-x00606 (X3)				
Pin Signal Beschreibung				
1	-RB	Externer Bremswiderstand minus		
3	+RB	Externer Bremswiderstand plus		




AKD-x1206 (X3)					
Signal	Beschreibung				
+Rbint	Interner Bremswiderstand plus				
-RB	Externer Bremswiderstand minus				
+RB	Externer Bremswiderstand plus				
	Signal +Rbint -RB				

AKD-x02406 & AKD-xzzz07 (X3)							
Pin	Signal	Beschreibung					
2	-RB	Externer Bremswiderstand minus					
4	+RB	Externer Bremswiderstand plus					

8.9.3.2 AKD-x048, Stecker X3

8.9.4 Kondensator Module (X3)

KCM Module (**K**OLLMORGEN **C**apacitor **M**odules) nehmen kinetische Energie auf, die der Motor im generatorischen Betrieb erzeugt. Normalerweise wird diese Energie über Bremswiderstände in Verlustleistung umgesetzt. Die KCM Module speisen die gespeicherte Energie in den Zwischenkreis zurück, wenn sie benötigt wird.

Montage: siehe regionales Zubehörhandbuch oder KCM Installationshandbuch.

Abmessungen (HxBxT): 300x100x201 mm

KCM-S	Spart Energie: Die beim generatorischen Bremsen im Kondensatormodul gespeicherte Energie steht für den nächsten Beschleunigungsfall zur Verfügung. Die Einsatzspannung des Moduls wird automatisch während der ersten Lastzyklen ermittelt.
KCM-P	Power trotz Netzausfall: Bei Ausfall der Leistungsversorgung stellt das Modul dem Servoverstärker die gespeicherte Energie für ein gesteuertes Stillsetzen des Antriebs zur Verfügung (nur Leistungsspannung; 24V separat puffern).
KCM-E	Erweiterungsmodul für beide Einsatzzwecke. Erweiterungsmodule sind in zwei Kapazitätsklassen verfügbar.

INFO

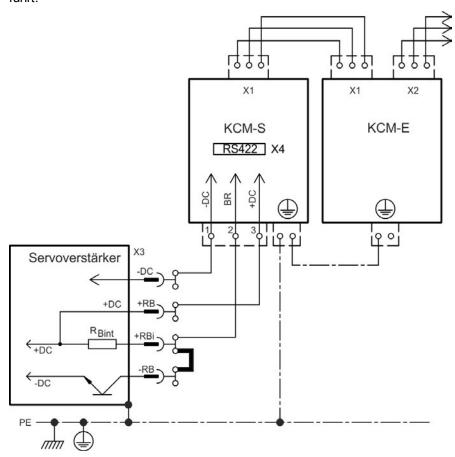
Die KCM Module dürfen nur an AKD Servoverstärkern mit 400/480V Nennspannung und maximal 24A Nennstrom angeschlossen werden. KCM Module können nicht an AKD-x048 angeschlossen werden. Informationen zu Montage, Installation und Inbetriebnahme finden Sie in der Betriebsanleitung der KCM Module.

GEFAHR

Zwischenkreisklemmen in Servosystemen führen hohe Gleichspannung bis zu 900V. Berühren der Klemmen unter Spannung ist lebensgefährlich. Schalten Sie die Netzspannung ab (freischalten). Sie dürfen nur bei freigeschalteter Anlage an den Anschlüssen arbeiten.

Die Selbstentladezeit der Module kann über eine Stunde betragen. Prüfen Sie den Ladezustand mit einem für Gleichspannung bis 1000V geeigneten Messgerät. Wenn Sie zwischen den Klemmen DC+/DC- oder gegen Erde eine Spannung größer als 60V messen, entladen Sie die Module (siehe "KCM Module entladen" (→ S. 109)).

8.9.4.1 Technische Daten


	Speicher-	Nenn	Spitzen	Leistung	Schutz-	Einsatz-	Masse
	Kapa-	Ver-	Ver-		klasse	span-	
	zität	sorgungs-	sorgungs-			nung	
Тур	[Ws]	spannung [V DC]	spannung [V DC]	[kW]		[V DC]	[kg]
KCM-S200	1600	max. 850	max. 950 (30s in 6 min)		IP20	ermittelt	6,9
KCM-P200	2000					470	6,9
KCM-E200	2000					-	4,1
KCM-E400	4000					-	6,2

8.9.4.2 Anschlussbeispiel mit KCM-S und KCM-E

HINWEIS

Maximale Kabellänge zwischen AKD und KCM: 500mm. Die DC+ und DC- Leitungen sollten immer verseilt sein, der maximal zulässige Querschnitt ist 6mm². Achten Sie auf korrekte Polung, bei Vertauschen von DC+/DC- werden die KCM Module zerstört.

Schließen Sie den BR Anschluss an den AKD mit den häufigsten generatorischen Bremsvorgängen im System an. Dieser AKD muss einen aktiven internen oder externen Bremswiderstand besitzen. Erstellen Sie ein Fahrprofil, das zum Ansprechen des Bremschoppers führt.

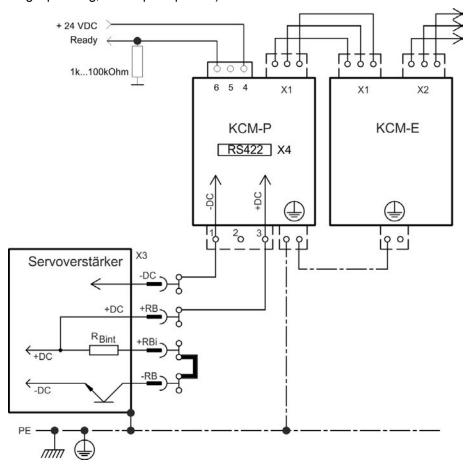
Inbetriebnahme KCM-S und KCM-E

Voraussetzung für die folgenden Anweisungen:

- Ordnungsgemäß freigeschaltete, geerdete Anlage
- KCM-S: im Schaltschrank montiert und verdrahtet. Last muss angekoppelt sein, die dazu führt, dass beim Abbremsen der Bremschopper des Servoverstärkers aktiv wird.
- KCM-E: montiert, mit PE geerdet und am KCM-S angeschlossen (X1).
- Entladehilfsmittel (Steckbrücke) sind entfernt.

Fahren Sie fort wie unten beschrieben:

- 1. Netzspannung einschalten, wenn der Servoverstärker den Boot-Vorgang beendet hat.
- 2. AKD freigeben und das Fahrprofil fahren, das zum Ansprechen des Bremschoppers führt.
- 3. KCM-S ermittelt die Chopperschwelle und beginnt zu laden, die LED (Moduloberseite) blinkt. Die im Kondensatormodul gespeicherte Energie steht für den nächsten Beschleunigungsfall zur Verfügung.


Das RS422 Interface an X4 ermöglicht den Datenaustausch über eine Terminalsoftware Ihrer Wahl. Interface Einstellungen: 115200 Baud, 8 Data Bits, 1 Stop Bit, keine Parity&Flow Control. Der X4 Gegenstecker ist im Lieferumfang. Weitere Informationen finden Sie in der KCM Betriebsanleitung.

8.9.4.3 Anschlussbeispiel mit KCM-P und KCM-E

HINWEIS

Maximale Kabellänge zwischen AKD und KCM: 500mm. Die DC+ und DC- Leitungen sollten immer verseilt sein, der maximal zulässige Querschnitt ist 6mm². Achten Sie auf korrekte Polung, bei Vertauschen von DC+/DC- werden die KCM Module zerstört.

KCM-P beginnt den Ladevorgang bei ca. 470 V DC. Bei Ausfall der Leistungsversorgung stellt das Modul dem Zwischenkreis die gespeicherte Energie zur Verfügung (nur Leistungsspannung, 24V separat puffern).

Inbetriebnahme KCM-P und KCM-E

Voraussetzung für die folgenden Anweisungen:

- Ordnungsgemäß freigeschaltete, geerdete Anlage
- KCM-P: im Schaltschrank montiert und verdrahtet. Stellen Sie die AKD Unterspannungsgrenze VBUS.UVTHRESH auf einen Wert unter 470V DC, sonst schaltet der AKD ab, bevor das KCM-P Energie in den Zwischenkreis liefern kann.
- KCM-E: montiert, mit PE geerdet und am KCM-P angeschlossen (X1).
- Entladehilfsmittel (Steckbrücke) sind entfernt.

Fahren Sie fort wie unten beschrieben:

- 1. Netzspannung einschalten, wenn der Servoverstärker den Boot-Vorgang beendet hat.
- 2. KCM-P beginnt den Ladevorgang bei ca. 470V DC, die LED blinkt.

Das RS422 Interface an X4 ermöglicht den Datenaustausch über eine Terminalsoftware Ihrer Wahl. Interface Einstellungen: 115200 Baud, 8 Data Bits, 1 Stop Bit, keine Parity&Flow Control. Der X4 Gegenstecker ist im Lieferumfang.

Das Ready Signal meldet die Betriebsbereitschaft (High Signal). Weitere Informationen finden Sie in der KCM Betriebsanleitung.

8.9.4.4 KCM Module entladen

Die jedem Modul beiliegenden Hilfsmittel (Steckbrücke bzw. Verbindungskabel) ermöglichen das sichere Entladen der Module.

HINWEIS

Wenn die Lade-LED in der Oberseite der Module blinkt, sind die Kondensatoren geladen. Die LED ermöglicht jedoch keine sichere Aussage über den Entladezustand, da sie nicht auf Ausfall überwacht wird.

GEFAHR

Zwischenkreisklemmen in Servosystemen führen hohe Gleichspannung bis zu 900V. Berühren der Klemmen unter Spannung ist lebensgefährlich.

Schalten Sie die Netzspannung ab (Anlage freischalten). Sie dürfen nur bei freigeschalteter Anlage an den Anschlüssen arbeiten.

Prüfen Sie den Ladezustand der Kondensatoren mit einem für Gleichspannung bis 1000V geeigneten Messgerät. Warten Sie, bis die zwischen den Klemmen DC+/DC- oder gegen Erde gemessene Spannung unter 60V gesunken ist. Die Selbstentladezeit der Module kann über eine Stunde betragen. Wenn Sie die Selbstentladezeit nicht abwarten können, müssen Sie die Module zwangsentladen.

Halten Sie das unten beschriebene Vorgehen zur Zwangsentladung unbedingt ein.

Gehen Sie zu Ihrer Sicherheit bei der Zwangsentladung der Module wie folgt vor:

- 1. Schalten Sie die Netzspannung ab (freischalten).
- 2. Entladen Sie die Module:

KCM-S/-P: Steckbrücke in die Schraubklemmen (schwarz-1 nach grau-2) an der Unterseite der Module stecken, mindestens 70s warten, Steckbrücke stecken lassen (Transportsicherung). Vor erneuter Inbetriebnahme die Steckbrücke wieder entfernen. **KCM-E**: Mit einem Verbindungskabel an der Oberseite des Moduls die Stecker X2/X3 brücken, mindestens 70s warten, Verbindungskabel stecken lassen (Transport Sicherung). Vor erneuter Inbetriebnahme das Verbindungskabel lösen und KCM-E wieder korrekt anschließen.

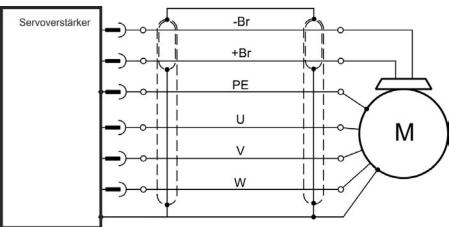
3. Führen Sie die geplante Aufgabe durch (z.B. Reinigen, Warten oder Deinstallieren).

8.10 Motor Leistungsanschluss (X2)

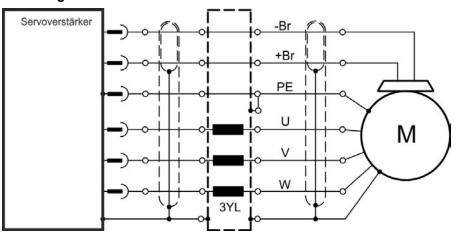
Zusammen mit dem Motorleistungskabel und der Motorwicklung bildet der Leistungsausgang der Verstärker einen Schwingkreis. Die maximale Spannung im System hängt von Merkmalen wie der Kapazität und Länge des Kabels, Induktivität des Motors und Frequenz (→ S. 34 bzw. → S. 35) ab

Der AKD kann bei korrekter Parametrierung und Verwendung des Thermofühlers den Motor vor Überlastung schützen. Bei Kollmorgen™ Motoren werden die korrekten Daten aus der Motordatenbank automatisch übernommen. Bei Motoren anderer Hersteller müssen die Daten des Leistungstypenschilds in der entsprechenden Seite der Kollmorgen™ Inbetriebnahmesoftware WorkBench eingetragen werden.

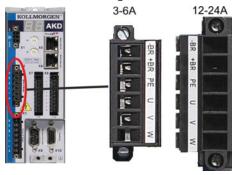
HINWEIS

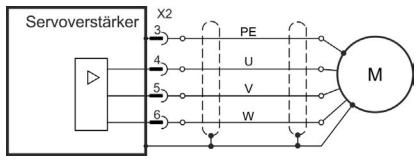

Der dynamische Spannungsanstieg kann die Lebensdauer des Motors verringern und bei ungeeigneten Motoren zu Überschlägen in der Motorwicklung führen.

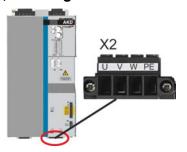
- Verwenden Sie nur Motoren der Isolationsklasse F (gemäß EN 60085) oder höher.
- Verwenden Sie nur Kabel, die den Spezifikationen entsprechen → S. 39.

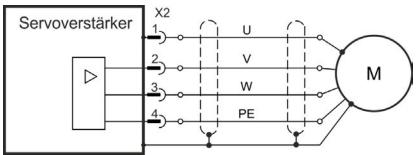

HINWEIS

Bei längeren Motorkabeln gefährden Ableitströme die Endstufe des Verstärkers. Bei Kabellängen von 25 m bis 50 m muss eine Motordrossel in der Motorleitung verdrahtet werden (nahe am Verstärker). Passende Kollmorgen™ Motordrosseln finden Sie im regionalen Zubehörhandbuch.


Kabellänge ≤ 25 m


Kabellänge >25 m

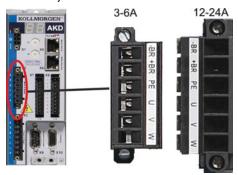

8.10.1 AKD-x003 bis 024, Leistungsstecker X2


Pin	Signal	Beschreibung				
1	-Br	Motor-Haltebremse (→ S. 112)				
2	+Br	Motor-Haltebremse (→ S. 112)				
3	PE	Schutzerde (Motorgehäuse)				
4	U	Motorphase U				
5	V	Motorphase V				
6	W	Motorphase W				

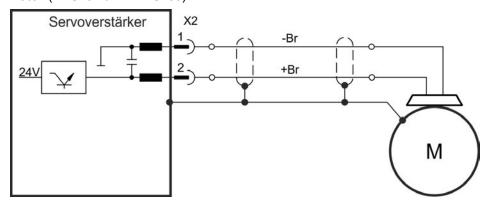
8.10.2 AKD-x048, Leistungsstecker X2

Pin	Signal	Beschreibung			
1	U	Motorphase U			
2	V	Motorphase V			
3	W	Motorphase W			
4	PE	Schutzerde (Motorgehäuse)			

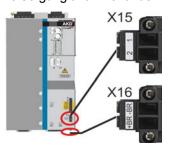
8.11 Motorbremse Anschluss (X2, X15, X16)


Eine 24 V-Haltebremse im Motor kann direkt durch den Verstärker gesteuert werden. Die Bremse funktioniert nur mit ausreichender 24V-Spannung. Prüfen Sie den Spannungsabfall, messen Sie die Spannung am Bremseingang und prüfen Sie die Bremsfunktion (gelüftet und bremsend).

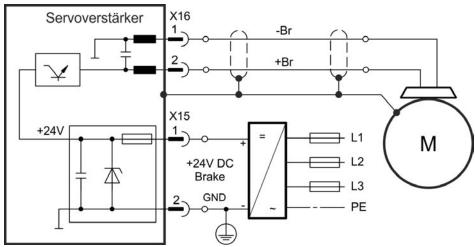
ACHTUNG


Diese Funktion ist nicht funktional sicher. Funktionale Sicherheit erfordert eine zusätzliche, von einer Sicherheitssteuerung angesteuerte mechanische Bremse. Der Hardware Enable Eingang (Stecker X8 Pin 4) leitet keinen kontrollierten Stopp ein, sondern schaltet die Endstufe sofort ab. Setzen Sie bei vertikalen Achsen den Parameter MOTOR.BRAKEIMM auf 1, damit die Bremse nach Fehler oder Hardware Disable ohne Verzögerung einfällt.

8.11.1 AKD-x003 bis 024, Stecker X2

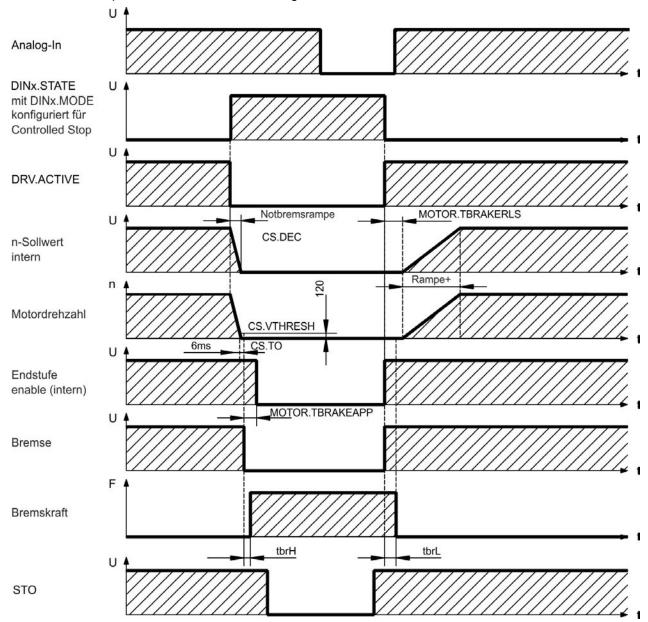

Pin	Signal	Beschreibung			
1	-Br	Motorhaltebremse, minus			
2	+Br	Motorhaltebremse, plus			
3	PE	Schutzerde (→ S. 110)			
4	U	Motorphase U (→ S. 110)			
5	V	Motorphase V (→ S. 110)			
6	W	Motorphase W (→ S. 110)			

Spannungsversorgung der Bremse über die 24 V ±10% Spannungsversorgung des Verstärkers an X1. Der maximale Bremsenstrom hängt ab vom Gerätetyp, siehe Technische Daten (→ S. 34 bzw. → S. 35).



8.11.2 AKD-x048, Stecker X15, X16

Bei AKD-x048 ist die Spannungsversorgung der Bremse getrennt von der Verstärker Hilfsspannung. Der maximale Bremsenstrom ist 2 A. Verwenden Sie X15 für die 24 VDC ±10% Versorgung und X16 für den Anschluss der Motorhaltebremse.



X15	Signal	Beschreibung				
1	24 V	24V Versorgungsspannung, Bremse				
2	GND	GND, Bremse				
X16	Signal	Beschreibung				
1	-Br	Motorhaltebremse, minus				
2	+Br	Motorhaltebremse, plus				

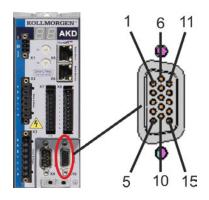
8.11.3 Funktionalität

Die Bremsfunktion muss durch einen Parameter freigegeben werden. Das folgende Diagramm zeigt das Timing und die funktionalen Beziehungen zwischen dem Controlled Stop Signal, der Geschwindigkeit und der Bremskraft. Alle Werte können mit Parametern angepasst werden; die Werte im Diagramm sind Standardwerte.

Der Geschwindigkeitssollwert des Servoverstärkers wird intern entlang einer einstellbaren Rampe (CS.DEC) nach 0V heruntergeregelt.

Bei Default-Einstellung wird der Ausgang für die Bremse geschaltet, wenn die Geschwindigkeit mindestens 6ms (CS.TO) lang 120 U/min (CS.VTHRESH) erreicht hat. Die Anzugszeiten (t_{brH}) und Abfallzeiten (t_{brL}) der in den Motor integrierten Haltebremse variieren je nach dem Motortyp.

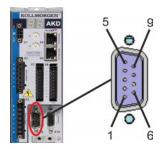
8.12 Feedback Anschluss (X10, X9, X7)


Jedes geschlossene Servosystem erfordert normalerweise mindestens ein Feedback System, um Istwerte vom Motor an den Verstärker zu senden. Je nach Typ des verwendeten Systems werden die Informationen analog oder digital an den Verstärker zurückgeführt.

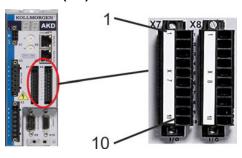
AKD unterstützt die gängigsten Feedback-Typen. Feedback Funktionen werden in WorkBench (Setup-Software) mit Parametern zugewiesen. Die Skalierung und weitere Einstellungen erfolgen ebenfalls in WorkBench. Eine detaillierte Beschreibung der Parameter finden Sie in der Onlinehilfe zu WorkBench.

Die folgende Tabelle bietet eine Übersicht über die unterstützten Rückführungstypen, ihre entsprechenden Parameter und einen Verweis auf das jeweils relevante Anschlussbild.

Feedback Typen	Anschluss	Stecker	FB1. SELECT	FB2. MODE	FB3. MODE
Resolver	→ S. 118	X10	40	-	-
SFD	→ S. 119	X10	41	-	-
SFD3	→ S. 120	X10	45	-	-
Encoder Hiperface DSL	→ S. 121	X10	46	-	-
Sinus/Cosinus-Encoder BiSS Mode B	→ S. 122	X10	32	-	-
Encoder BiSS Mode C	→ S. 123	X10	34	-	-
Sinus/Cosinus-Encoder ENDAT 2.1	→ S. 124	X10	30	-	-
Encoder ENDAT 2.2	→ S. 125	X10	31	-	-
Encoder ENDAT 2.2, FB2.SOURCE=1	→ S. 133	X9	-	-	0
Sinus/Cosinus-Encoder Hiperface	→ S. 126	X10	33	-	-
Sinus-Encoder + Hall	→ S. 127	X10	20	-	-
Sinus-Encoder	→ S. 127	X10	21	-	-
Inkrementalgeber + Hall	→ S. 128	X10	10	-	-
Inkrementalgeber	→ S. 128	X10	11	-	-
Tamagawa Smart Abs	→ S. 129	X10	42	-	-
Inkrementalgeber, FB2.SOURCE=1	→ S. 132	X9	-	0	-
Inkrementalgeber, FB2.SOURCE=2	→ S. 132	X7	-	0	-
Impuls/Richtung, FB2.SOURCE=1	→ S. 134	X9	-	1	-
Impuls/Richtung, FB2.SOURCE=2	→ S. 134	X7	-	1	-
CW/CCW, FB2.SOURCE=1	→ S. 135	X9	-	2	-
CW/CCW, FB2.SOURCE=2	→ S. 135	X7	-	2	-


8.12.1 Feedback Stecker (X10)

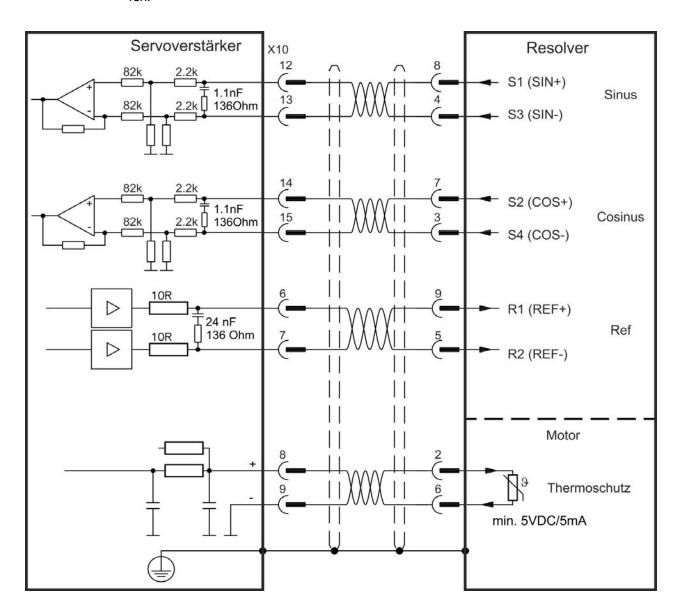
Pin	SFD	SFD3/ DSL	Resolver	BiSS B (analog)	BiSS C (digital)	EnDAT 2.1	EnDAT 2,2	Hiper- face	Sinus Enc. +Hall	Tamagawa Smart Abs*	Inkr. Enc. +Hall
1	-	-	-	-	-	-	-	-	Hall U	-	Hall U
2	-	-	-	CLK+	CLK+	CLK+	CLK+	-	Hall V	-	Hall V
3	-	-	-	CLK-	CLK-	CLK-	CLK-	-	Hall W	-	Hall W
4	SEN+	-	-	SEN+	SEN+	SEN+	SEN+	SEN+	SEN+	SEN+	SEN+
5	SEN-	-	-	SEN-	SEN-	SEN-	SEN-	SEN-	SEN-	SEN-	SEN-
6	COM+	COM+	R1 Ref+	DAT+	DAT+	DAT+	DAT+	DAT+	Null+	SD+	Null+
7	COM-	COM-	R2 Ref-	DAT-	DAT-	DAT-	DAT-	DAT-	Null-	SD-	Null-
8	-	-		Temperaturüberwachung (+)							
9	-	-		Temperaturüberwachung (-)							
10	+5 V	+5 V	-	+5 V	+5 V	+5 V	+5 V	+8 bis +9 V	+5 V	+5 V	+5 V
11	0 V	0 V	-	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V
12	-	-	S1 SIN+	A+	-	A+	-	SIN+	A+	-	A+
13	-	-	S3 SIN-	A-	-	A-	-	SIN-	A-	-	A-
14	-	-	S2 COS+	B+	-	B+	-	COS+	B+	-	B+
15	-	-	S4 COS-	B-	-	B-	-	COS-	B-	-	B-


CLK = CLOCK, DAT = DATA, SEN = SENSE, *= nur für AKD mit "NB" (rev 8+) Steuerkarte

8.12.2 Feedback Stecker (X9)

Pin	Impuls/Richtung	CW/CCW	Inkrementalgeber	EnDat 2.2 Geber
1	Impuls+	CW+	A+	CLOCK+
2	Impuls-	CW-	A-	CLOCK-
3	GND	GND	GND	GND
4	Richtung+	CCW+	B+	DATA+
5	Richtung-	CCW-	B-	DATA-
6	Schirm	Schirm	Schirm	Schirm
7	-	-	Null+	-
8	-	-	Null-	-
9	-	-	+ 5 V Versorgung (Aus-	+ 5 V Versorgung (Aus-
			gang)	gang)

8.12.3 Feedback Stecker (X7)

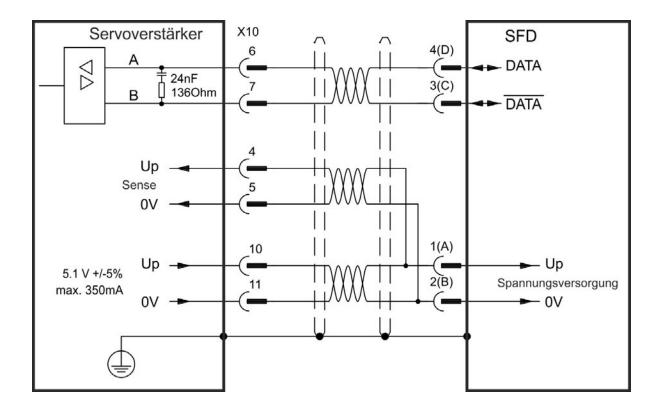

Pin	Impuls/Richtung	Impuls/Richtung CW/CCW		
9	Impuls	CW	Kanal A	
10	Richtung	CCW	Kanal B	
1	GND	GND	GND	

8.12.4 Resolver

Das folgende Diagramm zeigt den Anschluss eines Resolvers (2- bis 36-polig) als Rückführsystem. Die Temperaturüberwachung im Motor ist über das Resolverkabel angeschlossen und wird im Verstärker ausgewertet. Falls der Motor keinen Temperatursensor besitzt, muss im Kabel Pin 8 und 9 gebrückt werden.

Wenn Kabellängen von mehr als 100 m geplant sind, wenden Sie sich an den Kundendienst.

Тур	FBTYPE	Beschreibung
Resolver	40	Genauigkeit: 14 Bit (0,022°), Auflösung: 16 Bit (0,006°)

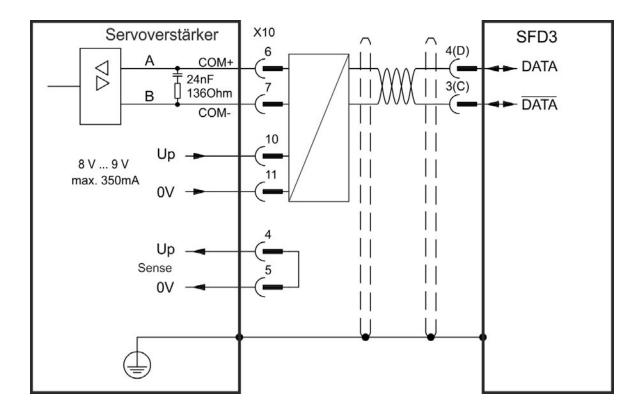

8.12.5 SFD

Das folgende Diagramm zeigt den Anschluss des (Vierdraht) Kollmorgen™-Rückführsystems SFD.

INFO

Der Sense-Eingang ist nur für Kabel mit einer Länge von über 25 m erforderlich, wenn der Drahtwiderstand vom Verstärker zum Sensor 3,3 Ohm übersteigt. . Kollmorgen™ Kabel sind bis 50 m Länge ohne Sense Anschluss zugelassen.

Тур	FBTYPE	Up	Bemerkungen
Smart Feedback Device	41	5,1 V +/-5 %	Genauigkeit 14 Bit (0.022°),
(SFD)			Auflösung 24 Bit (2 x 10E-5°)

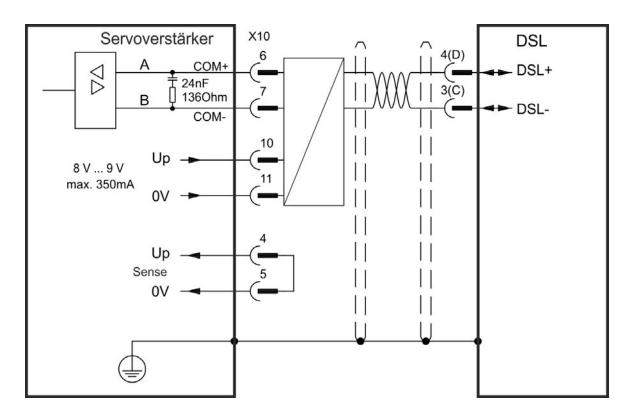

8.12.6 SFD3

Das folgende Diagramm zeigt den Anschluss des (Zweidraht) Kollmorgen™-Rückführsystems SFD3.

INFO

SFD3 kann mit einem speziellen Kollmorgen™ Anschlusskabel benutzt werden. Maximale Kabellänge bis zu 25 m.

Тур	FBTYPE	Up	Bemerkungen
SFD3	45	8 bis 9 V	ab FW 1.11,
			nur mit Kollmorgen™ Kabeln

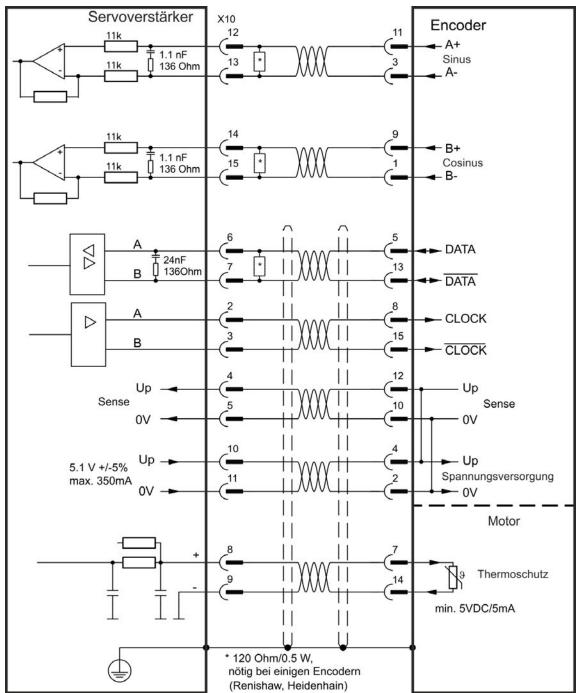

8.12.7 Hiperface DSL

Das folgende Diagramm zeigt den Anschluss des (Zweidraht) Hiperface DSL Rückführsystems.

INFO

Hiperface DSL kann mit einem speziellen Kollmorgen™ Anschlusskabel benutzt werden. Maximale Kabellänge bis zu 25 m.

Тур	FBTYPE	Up	Bemerkungen
Hiperface DSL	46	8 bis 9 V	ab FW 1.9,
			nur mit Kollmorgen™ Kabeln

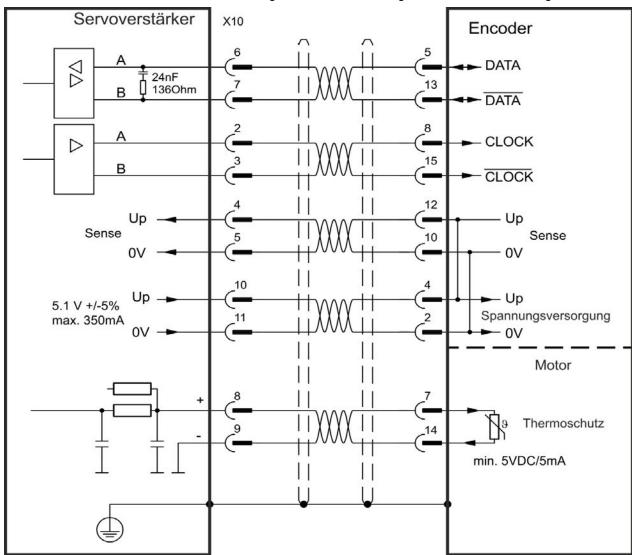

8.12.8 Encoder mit BiSS

8.12.8.1 BiSS (Mode B) Analog

Das folgende Diagramm zeigt die Verdrahtung eines Singleturn- oder Multiturn-Sinus/Cosinus-Encoders mit BiSS Mode B Schnittstelle als Rückführsystem. Die Temperaturüberwachung im Motor ist über das Encoderkabel angeschlossen und wird im Verstärker ausgewertet.

Wenn Kabellängen von mehr als 50 m geplant sind, wenden Sie sich an den Kundendienst.

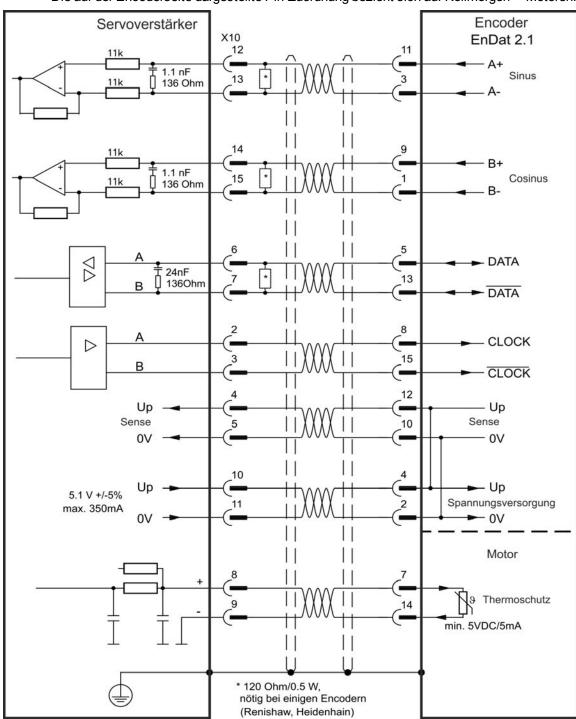
Тур	FBTYPE	Up	Grenzfrequenz
BiSS (Mode B)	32	5,1 V +/-5 %	1 MHz,
Analog			250 kHz bei Encodern die eine Ter-
			minierung erfordern.



8.12.8.2 BiSS (Mode C) Digital

Das folgende Diagramm zeigt die Verdrahtung eines Renishaw (Modell "Resolute RA26B") Encoders mit BiSS Mode C Schnittstelle als Rückführsystem. Die Temperaturüberwachung im Motor ist über das Encoderkabel angeschlossen und wird im Verstärker ausgewertet.

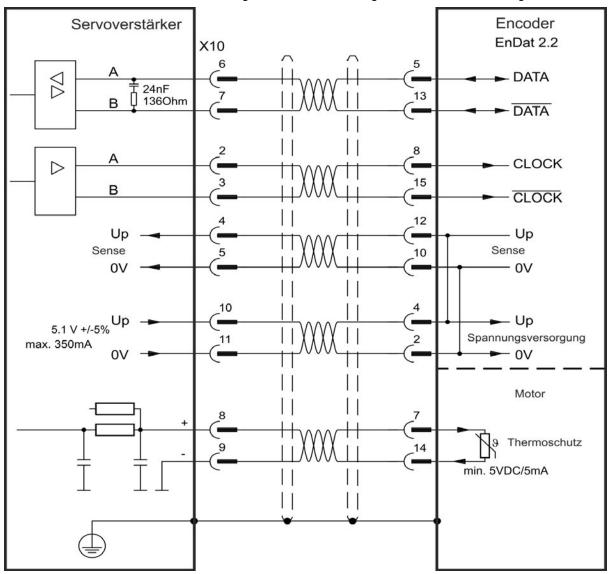
Wenn Kabellängen von mehr als 25 m geplant sind, wenden Sie sich an den Kundendienst.


Тур	FBTYPE	Up	Grenzfrequenz
BiSS Mode C	34	5,1 V +/-5 %	2,5 MHz

8.12.9 Sinus Encoder mit EnDat 2.1

Das folgende Diagramm zeigt die Verdrahtung eines Singleturn- oder Multiturn-Sinus/Cosinus-Encoders mit EnDat 2.1-Schnittstelle als Rückführsystem. Bevorzugte Typen sind die Encoder ECN1313 und EQN1325. Die Temperaturüberwachung im Motor ist über das Encoderkabel angeschlossen und wird im Verstärker ausgewertet. Alle Signale werden mit unserem konfektionierten Encoder-Anschlusskabel angeschlossen. Wenn Kabellängen von mehr als 50 m geplant sind, wenden Sie sich an den Kundendienst.

Тур	FBTYPE	Grenzfrequenz
EnDat 2.1	30	1 MHz,
		250 kHz bei Encodern die eine Terminierung erfordern.

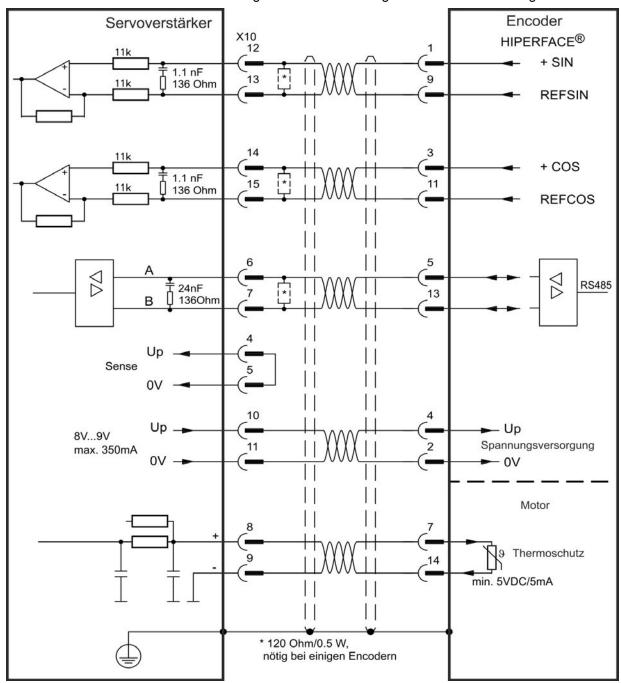

8.12.10 Encoder mit EnDat 2.2

Die folgende Tabelle und Abbildung zeigen die Verdrahtung eines Singleturn- oder Multiturn-Encoders mit EnDat 2.2-Schnittstelle als Rückführsystem.

Die Temperaturüberwachung im Motor ist über das Encoderkabel angeschlossen und wird im Verstärker ausgewertet. Alle Signale werden mit unserem konfektionierten Encoder-Anschlusskabel angeschlossen.

Wenn Kabellängen von mehr als 50 m geplant sind, wenden Sie sich an den Kundendienst.

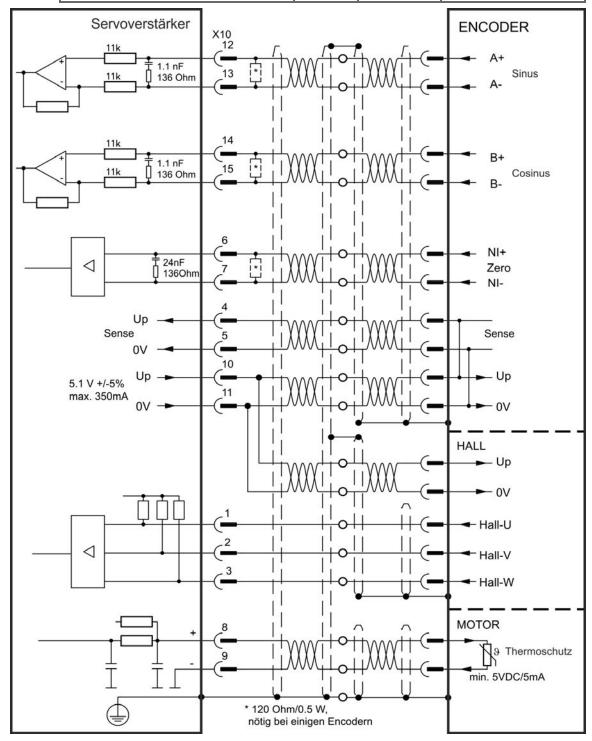
Тур	FBTYPE	Grenzfrequenz	Beschreibung
EnDat	31	1 MHz	Auf Bildschirmseite FEEDBACK (Rückführung)
2.2			anpassen


8.12.11 Sinus Encoder mit Hiperface

Das folgende Diagramm zeigt die Verdrahtung eines Singleturn- oder Multiturn-Sinus/Cosinus-Encoders mit Hiperface-Schnittstelle als Rückführsystem.

Die Temperaturüberwachung im Motor ist über das Encoderkabel angeschlossen und wird im Verstärker ausgewertet. Alle Signale werden mit unserem konfektionierten Encoder-Anschlusskabel angeschlossen.

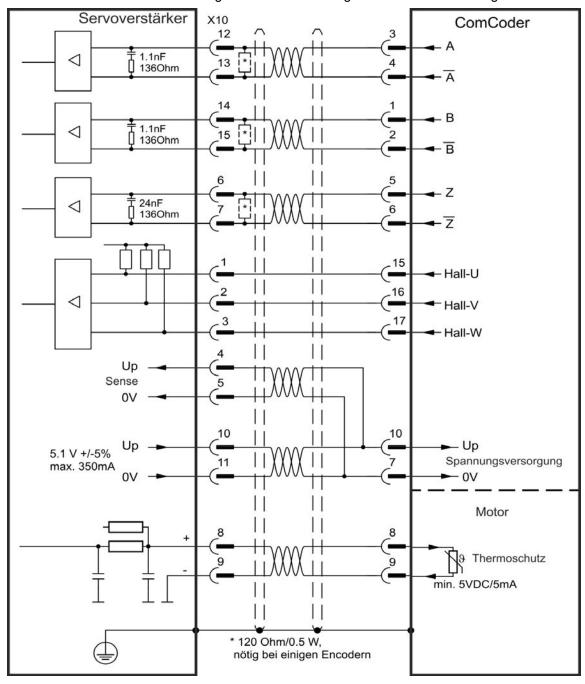
Wenn Kabellängen von mehr als 50 m geplant sind, wenden Sie sich an den Kundendienst.


Тур	FBTYPE	Grenzfrequenz	Beschreibung
Hiperface	33	1 MHz,	Wenn Pin 4 und 5 gebrückt
		250 kHz bei Encodern die eine Ter-	werden, beträgt Up 8 bis 9
		minierung erfordern.	V

8.12.12 Sinus-Encoder mit Hall

Rückführsysteme, die keine absoluten Informationen für die Kommutierung liefern, können entweder mit der Wake & Shake-Kommutierung arbeiten (siehe AKD Benutzerhandbuch) oder als komplettes Rückführsystem verwendet werden, wenn sie mit einem zusätzlichen Hall-Encoder kombiniert werden. Alle Signale sind an X10 angeschlossen und werden dort evaluiert. Wenn Kabellängen von mehr als 25 m geplant sind, wenden Sie sich an den Kundendienst.

Тур	FBTYPE	Up	Grenzfrequenz
Sinus/Cosinus 1 V p-p mit Hall	20	5,1 V +/-5 %	1 MHz, 250 kHz bei
Cinus/Casinus 11/ n n (Maka 9 Chaka)	24	E 4 \ / . / E 0/	Encodern die eine Ter-
Sinus/Cosinus 1 V p-p (Wake & Shake)	21	5,1 V +/-5 %	minierung erfordern.

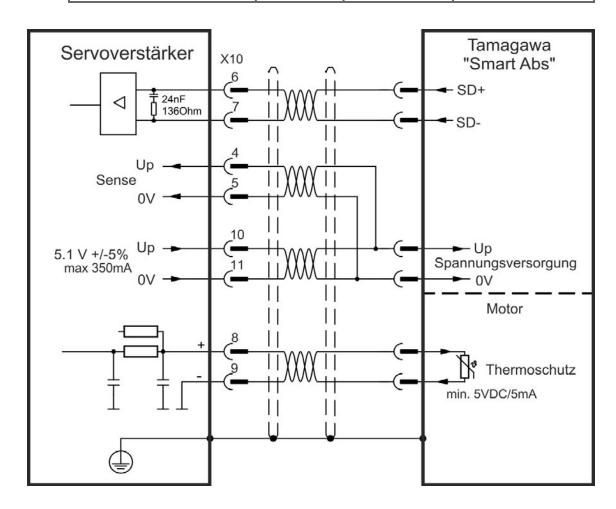


8.12.13 Inkrementalgeber

Rückführsysteme, die keine absoluten Informationen für die Kommutierung liefern, können entweder mit der Wake & Shake-Kommutierung arbeiten (siehe AKD Benutzerhandbuch) oder als komplettes Rückführsystem verwendet werden, wenn sie mit einem zusätzlichen Hall-Encoder kombiniert werden. Alle Signale werden mit einem konfektionierten Comcoder-Anschlusskabel angeschlossen. Die Temperaturüberwachung im Motor ist über das Comcoderkabel angeschlossen und wird im Verstärker ausgewertet.

Wenn Kabellängen von mehr als 25 m geplant sind, wenden Sie sich an den Kundendienst.

Тур	FBTYPE	Grenzfrequenz
Inkrementalgeber & Hall (Comcoder)	10	2,5 MHz
Inkrementalgeber (Wake & Shake)	11	2,5 MHz

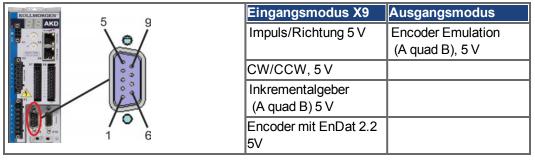


8.12.14 Tamagawa Smart Abs Encoder

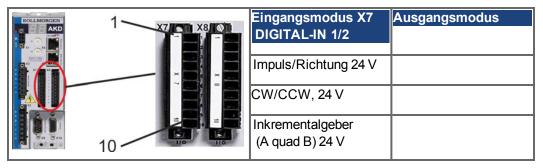
Das folgende Diagramm zeigt die Verdrahtung eines Tamagawa "Smart Abs" Encoders (Tamagawa Seiki Co.Ltd.S48-17/33bit-LPS-5V oder ähnlich) als primäres Feedback für AKD mit "NB" (rev 8+) Steuerkarte. Die Temperaturüberwachung im Motor ist über das Encoderkabel angeschlossen und wird im Verstärker ausgewertet. Falls der Motor keinen Temperatursensor besitzt, muss im Kabel Pin 8 und 9 gebrückt werden. Das Sense-Signal ist optional und kann entfallen, wenn das Encoderkabel kurz ist und im Kabel kein nennenswerter Spannungsabfall auftritt.

Wenn Kabellängen von mehr als 25 m geplant sind, wenden Sie sich an den Kundendienst.

Тур	FBTYPE	Up	Grenzfrequenz	
S48-17/33bit-LPS-5V	42	5,1 V +/-5 %	2,5 MHz	



8.13 Elektronisches Getriebe, Master-Slave Betrieb (X9, X7)


Es kann z. B. eine Master-Slave-Steuerung aufgebaut, ein externer Geber als zweites Feedback benutzt oder der Verstärker durch eine Schrittmotorsteuerung eines Drittanbieters angesteuert werden. Abhängig vom Signalpegel wird Stecker X9 (5 V TTL) oder X7 (24 V) benutzt.

Zur Konfiguration wird die WorkBench Setup Software benutzt (siehe Bildschirmseite "Feedback 2" in WorkBench). FB2.SOURCE, FB2.MODE, FB2.ENCRES und andere Parameter werden als Setup Parameter verwendet.

Stecker X9 kann als 5 V (TTL) Eingang oder Ausgang konfiguriert werden.

Stecker X7 (DIGITAL-IN 1/2) kann als Eingang für 24 V Inkrementalgebersignale konfiguriert werden.

8.13.1 Technische Eigenschaften und Pinbelegung

8.13.1.1 Stecker X7 Eingänge

Technische Eigenschaften

- Potentialfrei, die gemeinsame Referenzleitung ist DCOM7
- Maximale Signaleingangsfrequenz: 500 kHz
- Sensoren des Typs Sink oder Source möglich
- High: 15...30 V/2...15 mA, Low: -3...5 V/<15 mA
- Aktualisierungsrate: Hardware 2 µs

Pin	Impuls/Richtung	CW/CCW	Inkrementalgeber
9	Impuls	CW (Uhrzeigersinn)	Kanal A
10	Richtung	CCW (gegen Uhrzeigersinn)	Kanal B
1	GND	GND	GND

8.13.1.2 Stecker X9 Eingänge

Technische Eigenschaften

• Elektrische Schnittstelle: RS-485

· Maximale Signaleingangsfrequenz: 3 MHz

• Eingangssignal-Spannungsbereich: +12 V bis -7 V

Versorgungsspannung (nur für Inkrementalgeber-Eingang): +5 V ±5 %

• Maximaler Versorgungsstrom: 250 mA

Pin	Impuls/Richtung	CW/CCW	Inkrementalgeber	EnDat 2.2 Geber
1	Impuls+	CW+	A+	CLOCK+
2	Impuls-	CW-	A-	CLOCK-
3	GND	GND	GND	GND
4	Richtung+	CCW+	B+	DATA+
5	Richtung-	CCW-	B-	DATA-
6	Schirm	Schirm	Schirm	Schirm
7	-	-	Null+	-
8	-	-	Null-	-
9	-	-	+ 5 V Versorgung (Aus-	+ 5 V Versorgung (Aus-
			gang)	gang)

HINWEIS

Die maximale Kabellänge eines externen Inkrementalgebers an X9 hängt vom Spannungsabfall im Kabel und den Stromanforderungen des externen Encoders ab. Siehe Berechnungsbeispiel im Kapitel "Elektronisches Getriebe" des Benutzerhandbuchs.

8.13.1.3 Stecker X9 Ausgänge

Technische Eigenschaften

• Elektrische Schnittstelle: RS-485

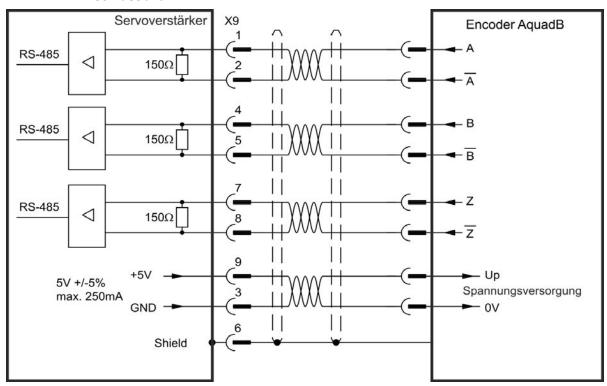
Max. Frequenz: 3 MHzAuflösung: Bis zu 16 Bit

• Die Impulse pro Umdrehung sind einstellbar.

• Impulsphasenverschiebung: 90°±20°

Pin	Encoder Emulation Ausgang
1	Kanal A+
2	Kanal A-
3	GND
4	Kanal B+
5	Kanal B-
6	Schirm
7	Kanal Null+
8	Kanal Null-
9	-

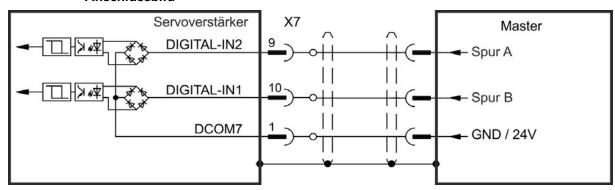
INFO


Die maximal zulässige Kabellänge beträgt 100 Meter.

8.13.2 Encoder als zweites Feedback

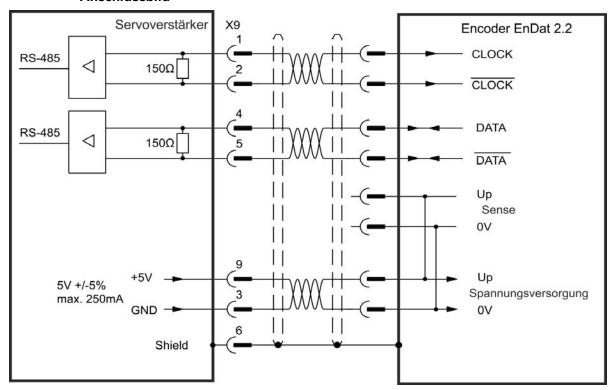
8.13.2.1 Inkrementalgeber Eingang 5 V (X9)

An diesen Eingang kann ein 5 V A quad B-Encoder oder der Encoder-Emulationsausgang eines anderen Verstärkers angeschlossen und als Master-Encoder, zweites Feedback, Getriebe oder Nockeneingang verwendet werden. Verwenden Sie den Eingang nicht als Anschluss für ein primäres Feedback!


Anschlussbild

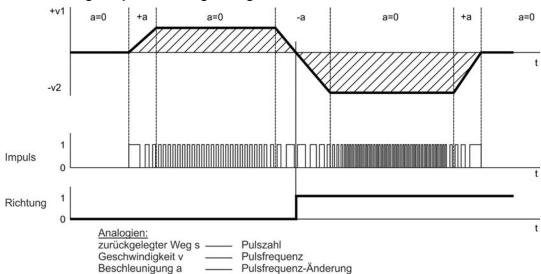
8.13.2.2 Inkrementalgeber Eingang 24 V (X7)

Ein 24 V Inkrementalgeber kann an die digitalen Eingänge 1 und 2 angeschlossen und als Master-Encoder, zweites Feedback, Getriebe oder Nockeneingang verwendet werden. Verwenden Sie den Eingang nicht als Anschluss für ein primäres Feedback!

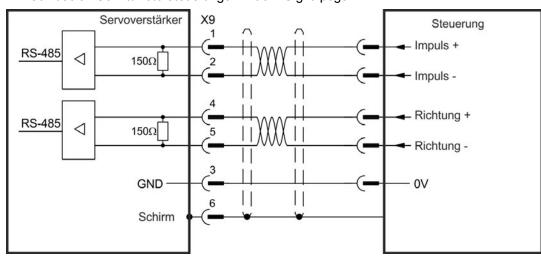

Anschlussbild

8.13.2.3 Encoder mit EnDat 2.2 Eingang 5 V (X9)

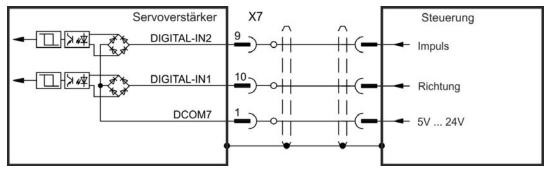
An diesen Eingang kann ein Singleturn- oder Multiturn-Encoders mit EnDat 2.2-Schnittstelle angeschlossen und als Master-Encoder, zweites Feedback, Getriebe oder Nockeneingang, oder als primärer Feedbackeingang verwendet werden.


Anschlussbild

8.13.3 Impuls / Richtung

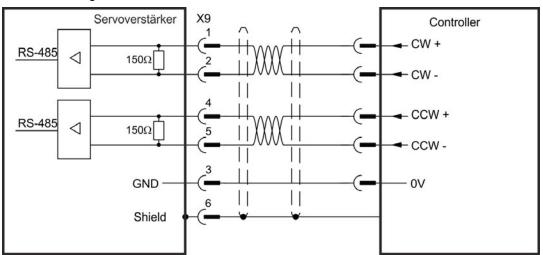

Der Verstärker kann an eine Schrittmotorsteuerung eines Drittanbieters angeschlossen werden. Legen Sie mit der Setup-Software WorkBench die Parameter für den Verstärker fest. Die Schrittanzahl kann angepasst werden, sodass der Verstärker an die Puls-/Richtungssignale einer beliebigen Schrittmotorsteuerung angepasst werden kann.

Geschwindigkeitsprofil und Signaldiagramm

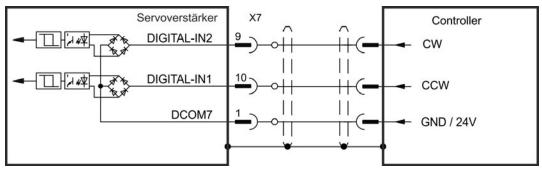

8.13.3.1 Impuls / Richtung Eingang 5 V (X9)

Anschluss an Schrittmotorsteuerungen mit 5 V Signalpegel.

8.13.3.2 Impuls / Richtung Eingang 5 V bis 24 V (X7)

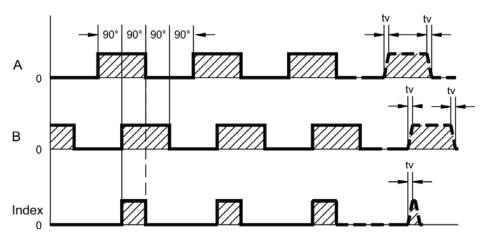

Eingang für Schrittmotorsteuerungen. Die Eingänge an X7 arbeiten mit 5V bis 24V.

8.13.4 CW / CCW

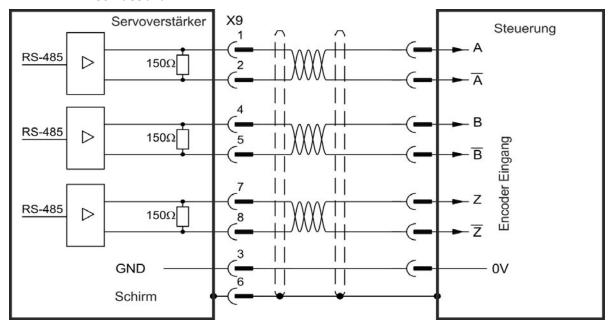

8.13.4.1 CW / CCW Eingang 5 V (X9)

Der Verstärker kann an die Steuerung eines Drittanbieters angeschlossen werden, die 5 V $\,$ CW/CCW-Signale liefert.

8.13.4.2 CW / CCW Eingang 24 V (X7)

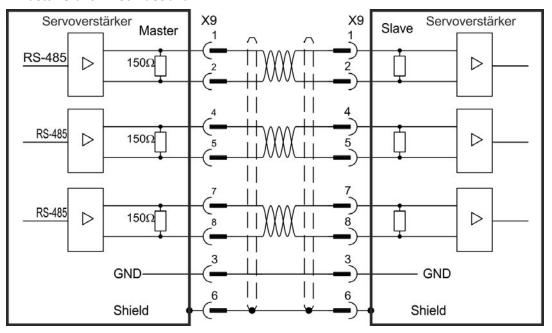

Der Verstärker kann an die Steuerung eines Drittanbieters angeschlossen werden, die 24 V CW/CCW-Signale liefert.

8.13.5 Encoder Emulation (EEO)


Der Verstärker berechnet die Motorwellenposition aus den zyklisch-absoluten Signalen der primären Rückführung und generiert Inkrementalgeber-kompatible Impulse aus diesen Informationen. Am SubD Stecker X9 werden 3 Signale ausgegeben: A, B und Index, mit 90° Phasenverschiebung (das heißt quadratisch), mit einem Nullimpuls.

Die Auflösung (vor der Vervielfachung) kann mit dem Parameter DRV.EMUERES eingestellt werden. Verwenden Sie den Parameter DRV.EMUEZOFFSET zum Einstellen und Speichern der Indexposition innerhalb einer mechanischen Umdrehung. Die Verstärker arbeiten mit einer internen Versorgungsspannung.

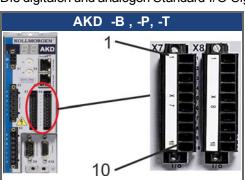
tv max. 30 ns


Anschlussbild

8.13.6 Master-Slave-Steuerung

Mehrere AKD Verstärker können als Slave-Verstärker an einen AKD Master angeschlossen werden. Die Slave-Verstärker verwenden die Encoder-Ausgangssignale des Masters als Befehlseingang und führen die Befehle aus.

Master-Slave-Anschlussbild



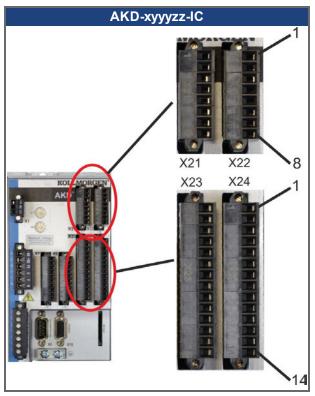
8.14 I/O-Anschluss

8.14.1 Übersicht

8.14.1.1 I/O-Stecker X7 und X8 (alle AKD Varianten)

Die digitalen und analogen Standard-I/O-Signale sind an X7 und X8 angeschlossen.

Stecker	Pin	Signal	Abkürzung	Funktion	Anschluss
X7	1	Digital Common X7	DCOM7	Gemeinsamer für X7 Pins 2, 3, 4, 9, 10	→ S. 144
X7	2	Digitaler Eingang 7	DIGITAL-IN 7	Programmierbar	
X7	3	Digitaler Eingang 4	DIGITAL-IN 4	Programmierbar	
X7	4	Digitaler Eingang 3	DIGITAL-IN 3	Programmierbar	
X7	5	Digitaler Ausgang 2-	DIGITAL-OUT2-	Programmierbar	→ S. 151
X7	6	Digitaler Ausgang 2+	DIGITAL-OUT2+	Programmierbar	
X7	7	Digitaler Ausgang 1-	DIGITAL-OUT1-	Programmierbar	
X7	8	Digitaler Ausgang 1+	DIGITAL-OUT1+	Programmierbar	
X7	9	Digitaler Eingang 2	DIGITAL-IN 2	Programmierbar, schnell	→ S. 144
X7	10	Digitaler Eingang 1	DIGITAL-IN 1	Programmierbar, schnell	
X8	1	Fehlerrelaisausgang	Fehlerrelaisausgang	Fehlerrelaisausgang	→ S. 152
X8	2	Fehlerrelaisausgang	Fehlerrelaisausgang	Fehlerrelaisausgang	
X8	3	Digital Common X8	DCOM8	Gemeinsamer für X8 Pins 4, 5, 6	→ S. 144
X8	4	Digitaler Eingang 8	DIGITAL-IN 8	Freigabe Endstufe, nicht programmierbar	
X8	5	Digitaler Eingang 6	DIGITAL-IN 6	Programmierbar	
X8	6	Digitaler Eingang 5	DIGITAL-IN 5	Programmierbar	
X8	7	Analoge Masse	AGND	Analoge Masse	→ S. 143
X8	8	Analoger Ausgang +	Analog-Out	Tachospannung	
X8	9	Analoger Eingang -	Analog-In-	Geschwindigkeits-	→ S. 142
X8	10	Analoger Eingang +	Analog-In+	Sollwert	

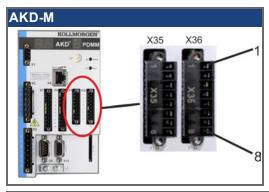

Digital Common Anschlüsse für X7 und X8 sind nicht miteinander verbunden.

Die Leitung DCOMx sollte an den 0 V-Ausgang der I/O-Versorgung angeschlossen werden, wenn Sensoren des Typs "Source" mit digitalen Eingängen verwendet werden.

Die Leitung DCOMx sollte an den 24 V-Ausgang der I/O-Versorgung angeschlossen werden, wenn Sensoren des Typs "Sink" mit digitalen Eingängen verwendet werden.

8.14.1.2 I/O Stecker X21, X22, X23 und X24 (nur AKD-T mit I/O Optionskarte)

Die Optionskarte I/O bietet vier zusätzliche Stecker X21, X22, X23, X24 für I/O Signale.



Stecker	Pin	Signal	Abkürzung	Funktion	Anschluss
X21	1	Digitaler Eingang 21	DIGITAL-IN 21	Programmierbar	→ S. 147
X21	2	Digitaler Eingang 22	DIGITAL-IN 22	Programmierbar	
X21	3	Digitaler Eingang 23	DIGITAL-IN 23	Programmierbar	
X21	4	Digital Common X21/1_3	DCOM21.1_3	Gemeinsamer für X21 Pins 1, 2, 3	
X21	5	Digitaler Eingang 24	DIGITAL-IN 24	Programmierbar	
X21	6	Digitaler Eingang 25	DIGITAL-IN 25	Programmierbar	
X21	7	Digitaler Eingang 26	DIGITAL-IN 26	Programmierbar	
X21	8	Digital Common X21/5_7	DCOM21.5_7	Gemeinsamer für X21 Pins 5, 6, 7	
X22	1	Digitaler Eingang 27	DIGITAL-IN 27	Programmierbar	→ S. 147
X22	2	Digitaler Eingang 28	DIGITAL-IN 28	Programmierbar	
X22	3	Digitaler Eingang 29	DIGITAL-IN 29	Programmierbar	
X22	4	Digital Common X22/1_3	DCOM22.1_3	Gemeinsamer für X22 Pins 1, 2, 3	
X22	5	Digitaler Eingang 30	DIGITAL-IN 30	Programmierbar	
X22	6	Digitaler Eingang 31	DIGITAL-IN 31	Programmierbar	
X22	7	Digitaler Eingang 32	DIGITAL-IN 32	Programmierbar	
X22	8	Digital Common X22/5_7	DCOM22.5_7	Gemeinsamer für X22 Pins 5, 6, 7	

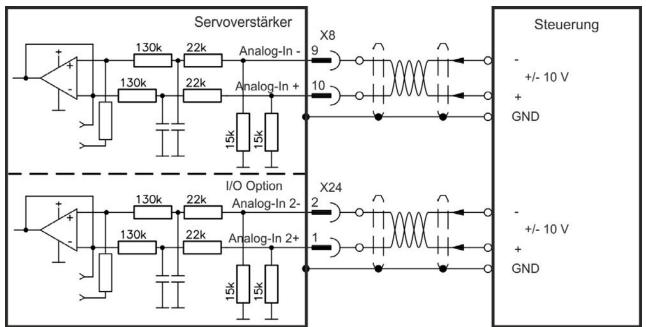
Stecker	Pin	Signal	Abkürzung	Funktion	Anschluss
X23	1	Analoger Ausgang 2 +	Analog-Out2	Programmierbar	→ S. 143
X23	2	reserviert	n.c.	n.c.	
X23	3	Analoge Masse	AGND	Programmierbar	
X23	4	reserviert	n.c.	n.c.	
X23	5	Digitaler Ausgang 21+	DIGITAL-OUT 21+	Programmierbar	→ S. 153
X23	6	Digitaler Ausgang 21-	DIGITAL-OUT 21-	Programmierbar	
X23	7	Digitaler Ausgang 22+	DIGITAL-OUT 22+	Programmierbar	
X23	8	Digitaler Ausgang 22-	DIGITAL-OUT 22-	Programmierbar	
X23	9	Digitaler Ausgang 23+	DIGITAL-OUT 23+	Programmierbar	
X23	10	Digitaler Ausgang 23-	DIGITAL-OUT 23-	Programmierbar	
X23	11	Digitaler Ausgang 24+	DIGITAL-OUT 24+	Programmierbar	
X23	12	Digitaler Ausgang 24-	DIGITAL-OUT 24-	Programmierbar	
X23	13	Relaisausgang 25	DIGITAL-OUT 25	Programmierbar, Relais	→ S. 154
X23	14	Relaisausgang 25	DIGITAL-OUT 25	Programmierbar, Relais	
X24	1	Analoger Eingang 2+	Analog-In2+	Programmierbar	→ S. 142
X24	2	Analoger Eingang 2-	Analog-In2-	Programmierbar	
X24	3	Analoge Masse	AGND	Programmierbar	
X24	4	reserviert	n.c.	n.c.	
X24	5	Digitaler Ausgang 26+	DIGITAL-OUT 26+	Programmierbar	→ S. 153
X24	6	Digitaler Ausgang 26-	DIGITAL-OUT 26-	Programmierbar	
X24	7	Digitaler Ausgang 27+	DIGITAL-OUT 27+	Programmierbar	
X24	8	Digitaler Ausgang 27-	DIGITAL-OUT 27-	Programmierbar	
X24	9	Digitaler Ausgang 28+	DIGITAL-OUT 28+	Programmierbar	
X24	10	Digitaler Ausgang 28-	DIGITAL-OUT 28-	Programmierbar	
X24	11	Digitaler Ausgang 29+	DIGITAL-OUT 29+	Programmierbar	
X24	12	Digitaler Ausgang 29-	DIGITAL-OUT 29-	Programmierbar	
X24	13	Relaisausgang 30	DIGITAL-OUT 30	Programmierbar, Relais	→ S. 154
X24	14	Relaisausgang 30	DIGITAL-OUT 30	Programmierbar, Relais	

8.14.1.3 I/O Stecker X35 und X36 (nur AKD-M)

AKD PDMM bietet zwei zusätzliche Stecker X35 und X36 mit digitalen I/O.

Stecker	Pin	Signal	Abkürzung	Funktion	Anschluss
X35	1	Digital Common X35	DCOM35	Gemeinsamer für	→ S. 149
				X35 Pins 2, 3, 4	
X35	2	Digitaler Eingang 21	DIGITAL-IN 21	Programmierbar	
X35	3	Digitaler Eingang 22	DIGITAL-IN 22	Programmierbar	
X35	4	Digitaler Eingang 23	DIGITAL-IN 23	Programmierbar	
X35	5	n.c.	n.c.	-	-
X35	6	n.c.	n.c.	-	-
X35	7	Digitaler Ausgang 21-	DIGITAL-OUT21-	Programmierbar	→ S. 155
X35	8	Digitaler Ausgang 21+	DIGITAL-	Programmierbar	
			OUT21+		
X36	1	Digital Common X36	DCOM36	Gemeinsamer für	→ S. 149
				X36 Pins 2, 3, 4	
X36	2	Digitaler Eingang 24	DIGITAL-IN 24	Programmierbar	
X36	3	Digitaler Eingang 25	DIGITAL-IN 25	Programmierbar	
X36	4	Digitaler Eingang 26	DIGITAL-IN 26	Programmierbar	
X36	5	n.c.	n.c.	-	-
X36	6	n.c.	n.c.	-	-
X36	7	Digitaler Ausgang 22-	DIGITAL-OUT22-	Programmierbar	→ S. 155
X36	8	Digitaler Ausgang 22+	DIGITAL-	Programmierbar	
			OUT22+		

Digital Common Anschlüsse für X35 und X36 sind nicht miteinander verbunden. Die Leitung DCOMx sollte an den 0 V-Ausgang der I/O-Versorgung angeschlossen werden, wenn Sensoren des Typs "Source" mit digitalen Eingängen verwendet werden. Die Leitung DCOMx sollte an den 24 V-Ausgang der I/O-Versorgung angeschlossen werden, wenn Sensoren des Typs "Sink" mit digitalen Eingängen verwendet werden.


8.14.2 Analoge Eingänge (X8, X24)

Der Verstärker bietet Differenzeingänge für die analoge Drehmoment-, Geschwindigkeitsoder Positionsregelung. Im Standardgerät ist ein analoger Eingang an X8 verfügbar, Geräte mit eingebauter I/O Optionskarte bieten einen zweiten Eingang an X24.

Technische Eigenschaften

- Bereich der Differenzeingangsspannung: ± 12,5 V
- Maximale Eingangspannung bezogen auf interne Masse (0V): -12,5 bis +16,0 V
- Auflösung: 16 Bit und voll monoton
- Nicht eingestellter Offset: < 50 mV
- Offset-Drift typisch: 250 μV/°C
- Verstärkungs- oder Abfalltoleranz: +/- 3%
- Nichtlinearität: < 0,1% des Endwertes oder 12,5 mV
- Gleichtaktunterdrückungen: > 30 dB bei 60 Hz
- Eingangsimpedanz: > 13 kOhm
- Signal-Stör-Verhältnis bezogen auf den Endwert:
 - AIN.CUTOFF = 3 kHz: 14 BitAIN.CUTOFF = 800 Hz: 16 Bit

Anschlussbild für analogen Eingang

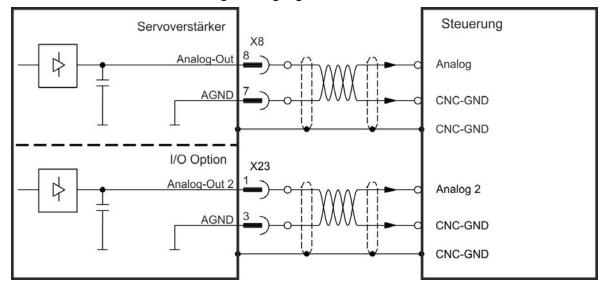
Anwendungsbeispiele für Sollwert-Eingang Analog-In:

- Eingang mit reduzierter Empfindlichkeit für Konfiguration/Tippbetrieb
- Vorsteuerung/Übersteuerung

Definieren der Drehrichtung

Standardeinstellung: Die Drehung der Motorwelle im Uhrzeigersinn (auf das Wellenende blickend) wird von der positiven Spannung zwischen Klemme (+) und Klemme (-) beeinflusst.

Um die Drehrichtung der Motorwelle umzukehren, vertauschen Sie die Anschlüsse an den Klemmen +/- oder ändern Sie den Parameter DRV.DIR auf der Seite "Feedback 1".


8.14.3 Analoge Ausgänge (X8, X23)

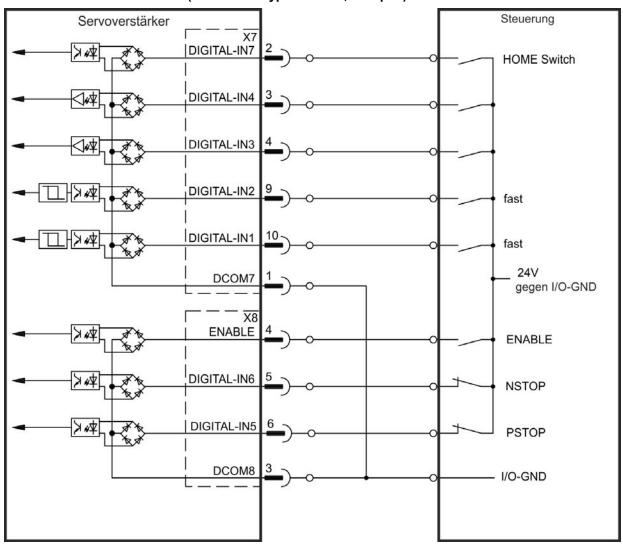
Analoge Ausgänge werden verwendet, um konvertierte analoge Werte auszugeben, die im Verstärker digital erfasst wurden. Im Standardgerät ist ein analoger Ausgang an X8 verfügbar, Geräte mit eingebauter I/O Optionskarte bieten einen zweiten Ausgang an X23. Eine Liste dieser vorprogrammierten Funktionen ist in der WorkBench Setup Software enthalten.

Technische Eigenschaften

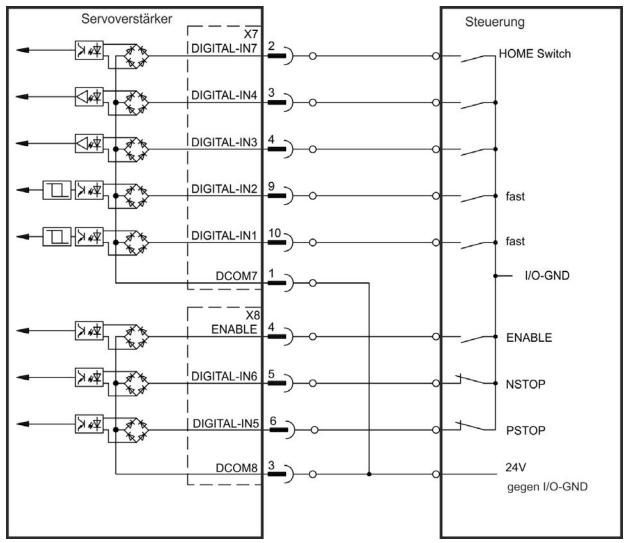
- Ausgangsspannungsbereich bezogen auf AGND: ± 10 V
- Auflösung: 16 Bit und voll monoton
- Nicht eingestellter Offset: < 50 mV
- Offset-Drift typisch: $250 \,\mu\text{V}/^{\circ}\text{C}$
- Verstärkungs- oder Abfalltoleranz: +/- 3%
- Nichtlinearität: < 0,1% des Endwertes oder 10 mV
- Ausgangsimpedanz: 110 Ohm
- Die Spezifikation erfüllt die Anforderungen der Norm EN 61131-2, Tabelle 11.
- Bandbreite -3 dB: >8 kHz
- Maximaler Ausgangsstrom: 20 mA
- Kapazitive Last: unbegrenzt, die Reaktionsgeschwindigkeit ist jedoch durch lout und Rout begrenzt.
- · Kurzschlussfest gegen AGND

Anschlussbild für analogen Ausgang

8.14.4 Digitale Eingänge (X7/X8)


Der Verstärker bietet 8 digitale Eingänge (→ S. 138). Diese können verwendet werden, um vorprogrammierte Funktionen zu initiieren, die im Verstärker gespeichert sind. Eine Liste dieser vorprogrammierten Funktionen ist in WorkBench enthalten. Der digitale Eingang 8 ist nicht programmierbar, sondern fest auf die ENABLE-Funktion eingestellt. Wenn ein Eingang programmiert wurde, muss dies im Verstärker gespeichert werden.

INFO


Je nach der ausgewählten Funktion sind die Eingänge HIGH oder LOW aktiv.

Die Eingänge können mit geschalteten +24 V ("Source") oder geschaltetem GND ("Sink") verwendet werden. Siehe folgende Diagramme.

Anschlussbild (Anschluss Typ "Source", Beispiel)

Anschlussbild (Anschluss Typ "Sink", Beispiel)

8.14.4.1 Digitale Eingänge 1 und 2

Diese Eingänge (X7/9 und X7/10) sind besonders schnell und eignen sich daher z. B. für Latch-Funktionen. Sie können auch als 24 V Eingänge für elektronisches Getriebe benutzt werden (→ S. 130).

Technische Eigenschaften

- Potentialfrei, die gemeinsame Referenzleitung ist DCOM7
- Sensoren des Typs Sink oder Source möglich
- High: 3,5...30 V/2...15 mA, Low: -2...+2 V/<15 mA
- Aktualisierungsrate: Hardware 2 µs

8.14.4.2 Digitale Eingänge 3 bis 7

Diese Eingänge können mit der Setup-Software programmiert werden. Standardmäßig sind alle Eingänge abgeschaltet. Weitere Informationen finden Sie in der Setup-Software.

Technische Eigenschaften

Wählen Sie die gewünschte Funktion in WorkBench.

- Potentialfrei, gemeinsame Referenzleitung ist DCOM7 bzw. DCOM8
- Sensoren des Typs Sink oder Source möglich
- High: 3,5...30 V/2...15 mA, Low: -2...+2 V/<15 mA
- Aktualisierungsrate: Software 250 µs

8.14.4.3 Digitaler Eingang 8 (ENABLE)

Der digitale Eingang 8 (Klemme X8/4) ist auf die Enable-Funktion eingestellt.

Technische Eigenschaften

- Potentialfrei, die gemeinsame Referenzleitung ist DCOM8
- Verdrahtung des Typs Sink oder Source möglich
- High: 3,5...30 V/2...15 mA, Low: -2...+2 V/<15 mA
- Aktualisierungsrate: direkte Verbindung zur Hardware (FPGA)

INFO

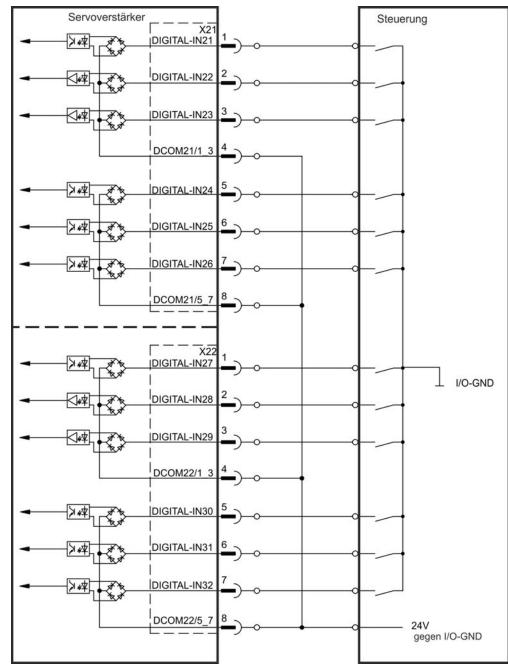
Der Hardware Enable Eingang und das Software Enable Signal (über Feldbus oder WorkBench) sind seriell verknüpft, das bedeutet, der Hardware Enable muss immer verdrahtet werden.

Die Endstufe des Verstärkers wird freigegeben, indem das ENABLE-Signal angewendet wird (Klemme X8/4, aktiv high). Die Freigabe ist nur möglich, wenn am STO Eingang ein 24 V-Signal anliegt, → S. 52. Im deaktivierten Status (Low Signal) erzeugt der angeschlossene Motor kein Drehmoment.

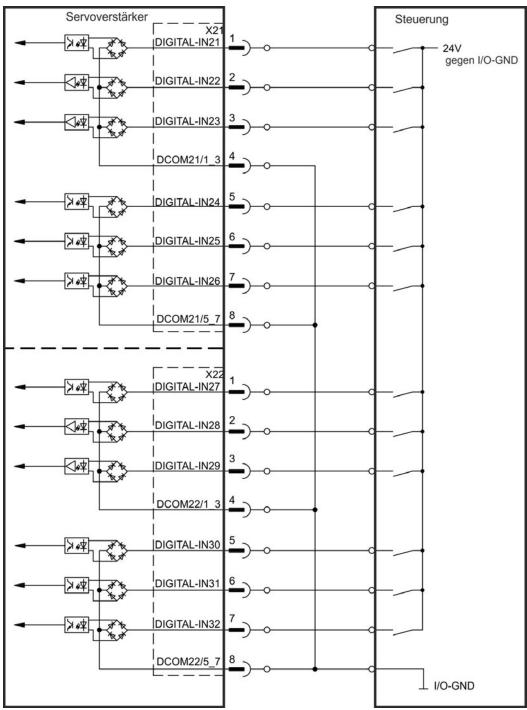
Eine Software-Freigabe durch die Setup-Software ist ebenfalls erforderlich (UND-Verknüpfung). Die Software Freigabe in WorkBench kann auf permanent gesetzt werden.

8.14.5 Digitale Eingänge mit I/O Optionskarte (X21, X22)

Die Option "IC" bietet 12 zusätzliche digitale Eingänge (→ S. 138). Diese können verwendet werden, um vorprogrammierte Funktionen zu initiieren, die im Verstärker gespeichert sind. Eine Liste dieser vorprogrammierten Funktionen ist in WorkBench enthalten. Wenn ein Eingang programmiert wurde, muss dies im Verstärker gespeichert werden.


INFO

Je nach der ausgewählten Funktion sind die Eingänge HIGH oder LOW aktiv. Die Eingänge können mit geschalteten +24 V ("Source") oder GND ("Sink") benutzt werden.


Technische Eigenschaften

- Potentialfrei, Sensoren des Typs Sink oder Source möglich
- High: 3,5...30 V/2...15 mA, Low: -2...+2 V/<15 mA,
- Aktualisierungsrate: Hardware 250 μs

Anschlussbild (Anschluss Typ "Source", Beispiel)

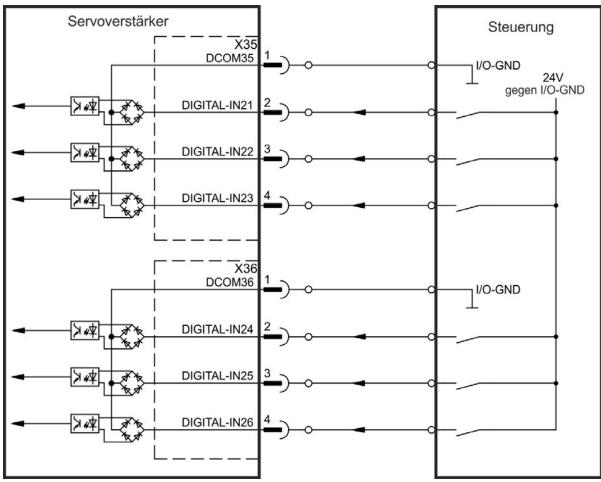
Anschlussbild (Anschluss Typ "Sink", Beispiel)

8.14.6 Digitale Eingänge (X35/X36) bei AKD-M

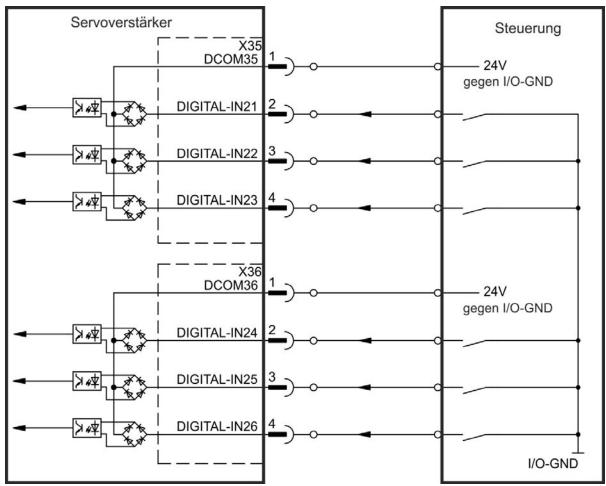
Zusätzlich zu den 8 digitalen Eingängen an X7/X8 (→ S. 138) bietet die Gerätevariante AKD PDMM 6 digitale Eingänge an X35 und X36. Diese können verwendet werden, um vorprogrammierte Funktionen zu initiieren, die im Verstärker gespeichert sind. Eine Liste dieser vorprogrammierten Funktionen ist in KAS IDE enthalten. Wenn ein Eingang programmiert wurde, muss dies im Verstärker gespeichert werden. Standardmäßig sind alle Eingänge abgeschaltet. Weitere Informationen finden Sie in der Setup-Software.

INFO

Je nach der ausgewählten Funktion sind die Eingänge HIGH oder LOW aktiv.


Technische Eigenschaften

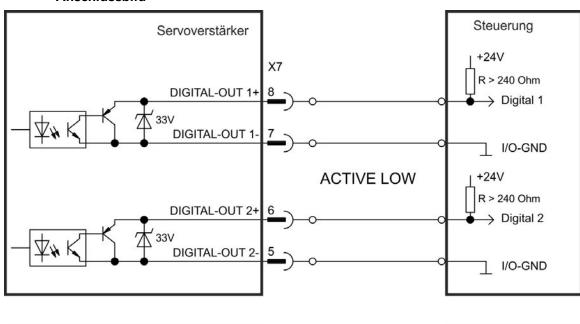
Wählen Sie die gewünschte Funktion in KAS IDE.

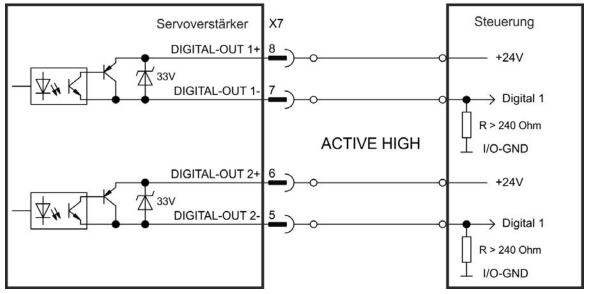

- Potentialfrei, die gemeinsame Referenzleitung ist DCOM35 oder DCOM36
- Sensoren des Typs Sink oder Source möglich
- High: 3,5...30 V/2...15 mA, Low: -2...+2 V/<15 mA
- Aktualisierungsrate: Software 250 μs

Die Eingänge können mit geschalteten +24 V ("Source") oder geschaltetem GND ("Sink") verwendet werden. Siehe folgende Diagramme.

Anschlussbild (Anschluss Typ "Source", Beispiel)

Anschlussbild (Anschluss Typ "Sink", Beispiel)


8.14.7 Digitale Ausgänge (X7/X8)


8.14.7.1 Digitale Ausgänge 1 und 2

Der Verstärker bietet 2 digitale Ausgänge (X7/5 bis X7/8, → S. 138). Wählen Sie die gewünschte Funktion in der Setup-Software aus. Es können Meldungen von vorprogrammierten Funktionen, die im Verstärker gespeichert sind, ausgegeben werden. Eine Liste dieser vorprogrammierten Funktionen ist in der Setup Software enthalten. Wenn eine Funktion zugewiesen wurde, muss der Parametersatz im Verstärker gespeichert werden.

Technische Eigenschaften

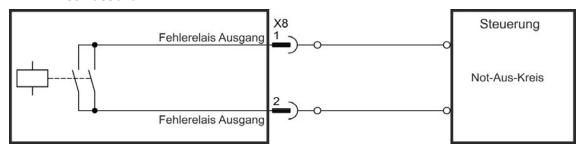
- 24 V I/O-Stromversorgung an Klemmen X7/8 und X7/6, 20 V DC bis 30 V DC
- Alle digitalen Ausgänge sind potentialfrei, DIGITAL OUT 1/2: Klemmen X7/7-8 und X7/5-6), max.100 mA
- Kann als aktiv low oder aktiv high verdrahtet werden (siehe folgende Beispiele)
- Aktualisierungsrate: 250 μs

8.14.7.2 Fehlerrelais

Die Betriebsbereitschaft (Klemmen X8/1 und X8/2) wird durch einen potentialfreien Relaiskontakt gemeldet.

Das Fehlerrelais kann für zwei Betriebsarten programmiert werden:

- Kontakt geschlossen, wenn kein Fehler vorliegt
- Kontakt geschlossen, wenn kein Fehler vorliegt und der Verstärker freigegeben ist.

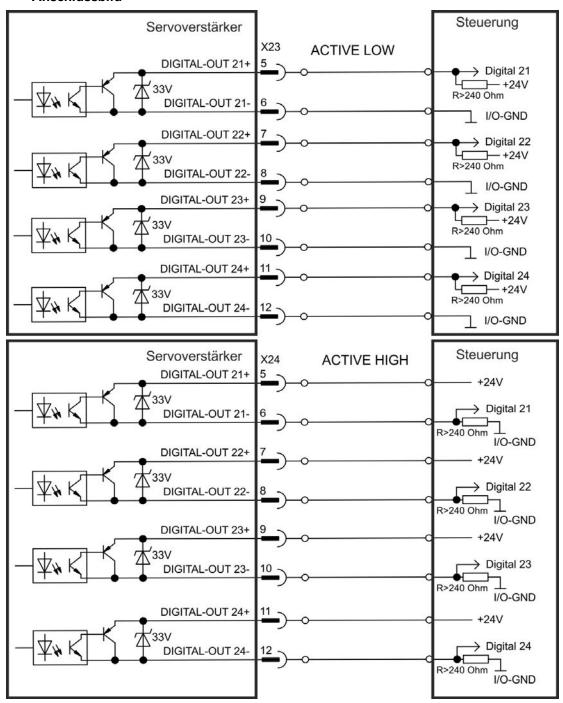

Das Signal wird weder durch das Enable-Signal, die I²t-Grenze noch durch die Bremschopperschwelle beeinflusst.

Technische Eigenschaften

- FEHLER: Relaisausgang, max. 30 V DC oder 42 V AC, 1 A
- Anzugsverzögerung: max. 10 ms
- Abfallverzögerung: max. 10 ms

INFO

Alle Fehler führen zum Öffnen des Fehlerkontakts und zur Abschaltung der Endstufe (wenn der Fehlerkontakt offen ist, ist die Endstufe deaktiviert -> keine Leistungsabgabe). Liste der Fehlermeldungen: → S. 193.

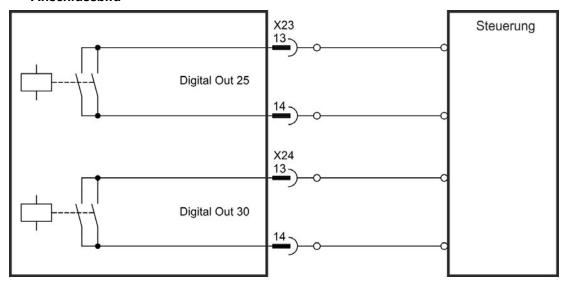

8.14.8 Digitale Ausgänge mit I/O Optionskarte (X23/X24)

8.14.8.1 Digitale Ausgänge 21 bis 24 und 26 bis 29

Die Optionskarte "IC" bietet 10 zusätzliche digitale Ausgänge (→ S. 138). Wählen Sie die gewünschte Funktion in der Setup-Software aus. Es können Meldungen von vorprogrammierten Funktionen, die im Verstärker gespeichert sind, ausgegeben werden. Eine Liste dieser vorprogrammierten Funktionen ist in der Setup Software enthalten. Wenn eine Funktion zugewiesen wurde, muss der Parametersatz im Verstärker gespeichert werden.

Technische Eigenschaften

- 24 V I/O-Stromversorgung, 20 VDC bis 30 VDC, potentialfrei, max. 100 mA.
- Kann als aktiv low oder aktiv high verdrahtet werden (siehe folgende Beispiele)
- Aktualisierungsrate: 250 μs

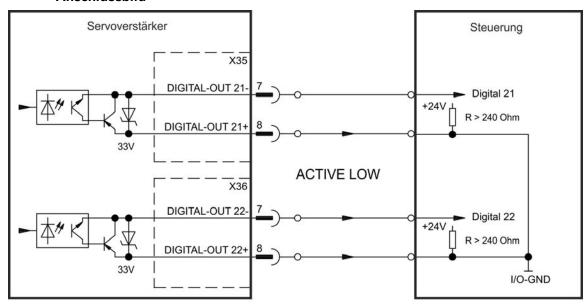


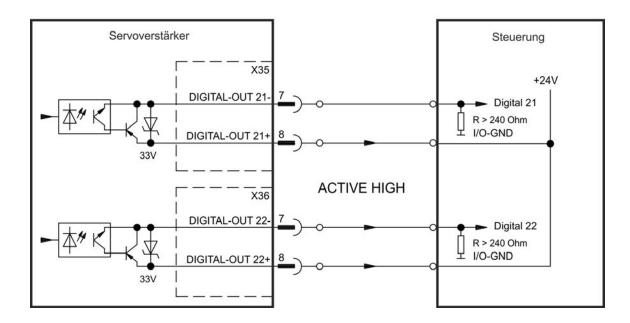
8.14.8.2 Digitale Relaisausgänge 25, 30

Die Optionskarte "IC" bietet zwei zusätzliche digitale Relaisausgänge (→ S. 138). Wählen Sie die gewünschte Funktion in der Setup-Software aus. Es können Meldungen von vorprogrammierten Funktionen, die im Verstärker gespeichert sind, ausgegeben werden. Eine Liste dieser vorprogrammierten Funktionen ist in der Setup Software enthalten. Wenn eine Funktion zugewiesen wurde, muss der Parametersatz im Verstärker gespeichert werden.

Technische Eigenschaften

- Relaisausgang, max. 30 V DC oder 42 V AC, 1 A
- Anzugsverzögerung: max. 10 ms
- Abfallverzögerung: max. 10 ms


8.14.9 Digitale Ausgänge (X35/X36) bei AKD-M


8.14.9.1 Digitale Ausgänge 21 und 22

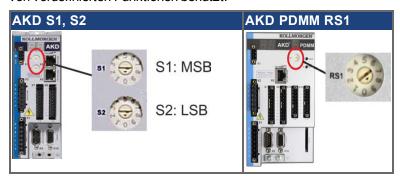
Zusätzlich zu den digitalen Ausgängen an X7 (→ S. 138) bietet die Gerätevariante AKD PDMM 2 digitale Ausgänge an X35 und X36. Wählen Sie die gewünschte Funktion in der Setup-Software aus. Es können Meldungen von vorprogrammierten Funktionen, die im Verstärker gespeichert sind, ausgegeben werden. Eine Liste dieser vorprogrammierten Funktionen ist in der Setup Software enthalten. Wenn eine Funktion zugewiesen wurde, muss der Parametersatz im Verstärker gespeichert werden.

Technische Eigenschaften

- 24 V I/O-Stromversorgung an Klemmen X35/8 und X36/8, 20 V DC bis 30 V DC
- Alle digitalen Ausgänge sind potentialfrei, max. 100 mA.
- Kann als aktiv low oder aktiv high verdrahtet werden (siehe folgende Beispiele)
- Aktualisierungsrate: 1 ms

8.15 LED-Anzeige

LED-7-Segmentanzeigen geben den Status des Verstärkers an, nachdem die 24 V-Versorgung eingeschaltet wurde. Falls die TCP/IP Verbindung zum PC oder zur Steuerung nicht arbeitet, ist die LED Anzeige die einzige Informationsquelle.



Mehr Informationen finden Sie in der WorkBench Onlinehilfe.

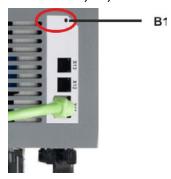
Anzeigecodes (Übersicht)	Status
o0, o1, o2	Normalbetrieb, Betriebsart 0 oder 1 oder 2, keine Fehler
Fx	Fehler (siehe "Fehler und Warnmeldungen" (→ S. 193))
nx	Warnung (siehe "Fehler und Warnmeldungen" (→ S. 193))
IPx	Anzeige der IP-Adresse des Servoverstärkers
	Eingeschaltet, lädt FPGA. In Monitor- und Betriebs-FPGA fehlerhaft.
[.]	Servoverstärker freigegeben
[.] (blinkt)	Servoverstärker in dynamischem Bremsmodus (DRV.ACTIVE = 3).
dx	Firmware-Download

8.16 Drehschalter (S1, S2, RS1)

Die eingebauten Drehschalter werden zum Einstellen der IP Adresse oder für die Auswahl von vordefinierten Funktionen benutzt.

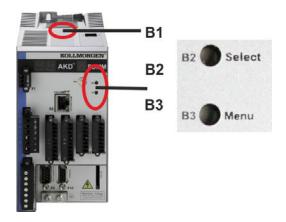
8.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T

S1	S2	Funktion	Einstellen wenn	Bemerkungen
0	0	DHCP IP	24 V aus ist	Die IP-Adresse des Servoverstärkers wird vom DHCP-Server im Netzwerk abgerufen, Details siehe → S. 163.
X	у	Statische IP	24 V aus ist	Die IP-Adresse ist 192.168.0.nn, gültige Werte sind 01 bis 99, Details siehe → S. 163.
AK	D-x	*****-CC		
8	9	DRV.TYPE Umschaltung	24 V ein und AKD gesperrt ist	3s langes Drücken von B1 schaltet den Servoverstärker von CAN nach EtherCAT oder umgekehrt (→ S. 167 und → S. 172). Anschließend 24 V aus und wieder einschalten.
ΑK	D m	it I/O Optionska	irte	
1	0	Daten laden	24 V ein und AKD gesperrt ist	5s langes Drücken von B1 startet den Lade- vorgang von der SD Karte in den Ser- voverstärker. Details siehe → S. 160.
1	1	Daten sichern	24 V ein und AKD gesperrt ist	5s langes Drücken von B1 startet den Spei- chervorgang vom Servoverstärker in die SD Karte. Details siehe → S. 160.
AK	D-T		*	
1	2	Stopp Pro- gramm	24 V ein ist	5s langes Drücken von B1 stoppt das BASIC Programm.
1	3	Neustart Pro- gramm	24 V ein ist	5s langes Drücken von B1 startet das BASIC Programm neu.


8.16.2 Drehschalter RS1 mit AKD-M

RS1	Funktion	Einstellen wenn	Bemerkungen
0	DHCP IP	24 V aus ist	Die IP-Adresse des Servoverstärkers wird vom DHCP- Server im Netzwerk abgerufen (→ S. 165).
1	Statische IP	24 V aus ist	Die IP Adresse kann mit einem Web Browser konfiguriert werden (→ S. 165).
2 9	Statische IP	24 V aus ist	Die IP-Adresse ist 192.168.0.10n, gültige Werte sind 2 bis 9 (→ S. 165).

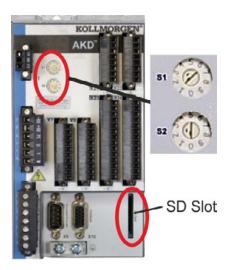
8.17 Taster (B1, B2, B3)


Die Taster werden verwendet, um vordefinierte Funktionen zu starten.

8.17.1 Taster B1 bei AKD-B, -P, -T

Funktion	Taster	Bemerkungen
IP Adresse anzei-	B1	Kurz drücken, um die IP Adresse im zweistelligen Display
gen		anzuzeigen.
Gerätetyp bei AKD- CC Varianten umschalten	B1	Drehschalter S1 auf 8 und S2 auf 9 stellen. 3 Sekunden lang drücken, um von CAN nach EtherCAT oder zurück umzuschalten.
Laden von SD Karte	B1	Nur Verstärker mit I/O Optionskarte. Drehschalter S1 auf 1 und S2 auf 0 stellen. B1 5s lang drücken, um Daten von der SD Karte in den Verstärker zu laden.
Speichem auf SD Karte	B1	Nur Verstärker mit I/O Optionskarte. Drehschalter S1 auf 1 und S2 auf 1 stellen. B1 5s lang drücken, um Daten vom Servoverstärker auf der SD Karte zu speichern.

8.17.2 Taster B1, B2, B3 bei AKD-M



Funktion	Taster	Bemerkungen			
-	B1	Unbenutzt			
Startfunktione stärkers)	Startfunktionen (Taster drücken und halten, während der Hochlaufphase des Verstärkers)				
Recovery	B2	Drücken und Halten startet den Verstärker im Recovery Modus.			
Menü	В3	Drücken und Halten blockiert den Autostart der Applikation und startet die Anzeige des Menüs. Menüpunkt ausführen siehe unten.			
Operative Fun	ktionen (Taste	er bei normalem Betrieb drücken)			
Menü	В3	Drücken startet die Anzeige der Menüpunkte. Die Menüpunkte werden 10s lang angezeigt, durch Drücken von B2 auswählen.			
Menüpunkt ausführen	B2	Drücken während der gewünschte Menüpunkt angezeigt wird. Applikation läuft, verfügbare Menüpunkte: - 'IP' Adresse - 'stop' Applikation (bestätigen) Application läuft nicht, verfügbare Menüpunkte: - 'IP' Adresse - 'start' Applikation (bestätigen) - 'reset' auf Werkseinstellungen (bestätigen) - 'backup' zu SD Karte (bestätigen) (→ S. 161) - 'restore' von SD Karted (bestätigen) (→ S. 161)			
Bestätigen	B2	Falls der gewählte Menüpunkt eine Bestätigung erfordert, wird im Display 10 s lang ein "y" angezeigt. Drücken Sie B2 zur Bestätigung.			

8.18 SD Speicherkarte, -M oder I/O Optionskarte

8.18.1 SD Karte mit I/O Optionskarte

AKD mit eingebauter I/O Optionskarte besitzen einen integrierten SD Kartenleser. Die Funktionen können mit der WorkBench Software oder mit B1 (Geräteoberseite) zusammen mit der Drehschaltereinstellung 10 bzw. 11 ausgelöst werden. Detaillierte Informationen finden Sie im AKD *Benutzerhandbuch*.

INFO

Das Auslösen der Save/Load Funktionen (AKD nach SD oder SD nach AKD) ist bei laufendem Programm oder freigegebenem Servoverstärker nicht möglich.

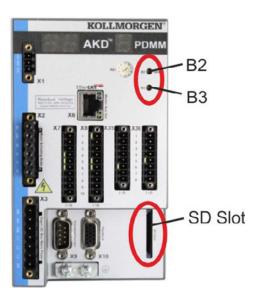
BASIC Programme und nichtflüchtige Parameter können gespeichert/geladen werden.

Wenn während der Save/Load Funktionen ein Fehler auftritt, wird die Fehlernummer im LED Display mit "E" gefolgt von vier Zahlen angezeigt. Fehlernummern → S. 193

Unterstützte SD Speicherkarten

SD Speicherkarten sind von den Herstellern vorformatiert. Die folgende Tabelle zeigt die von AKD unterstützten Speicherkartentypen:

SD Type	Dateisystem	Kapazität	Unterstützt
SD (SDSC)	FAT16	1MB bis 2GB	JA
SDHC	FAT32	4GB bis 32GB	JA
SDXC	exFAT (Microsoft)	>32GB bis 2TB	NEIN


Funktionen

Wenn eine SD Speicherkarte in den SD Kartenleser gesteckt ist und kein Programm läuft und der Servoverstärker gesperrt ist (disable), stellen Sie die Drehschalter wie unten beschrieben ein und drücken Sie B1 etwa 5 Sekunden lang um die Funktion zu starten:

Funktion	S1	S2	Bemerkungen
Daten auf SD Karte spei- 1 1 5s lang B1 drücken, um Daten vom Servoverstä		5s lang B1 drücken, um Daten vom Servoverstärker	
chern			auf der SD Karte zu speichern.
Daten von SD Karte	1	0	5s lang B1 drücken, um Daten von der SD Karte in den
laden			Verstärker zu laden.

8.18.2 SD Karte mit AKD-M

AKD PDMM besitzt einen integrierten SD Kartenleser. Mit den Tasten B2 und B3 können Datenübertragungen zwischen AKD PDMM und SD Speicherkarte gestartet werden. Diese Funktionen können auch in der KAS IDE Software ausgelöst werden. Detaillierte Informationen finden Sie im AKD PDMM Benutzerhandbuch.

Die Auslösung der backup/restore Funktionen (AKD PDMM nach SD oder SD nach AKD PDMM) ist bei laufender Applikation nicht möglich.

INFO

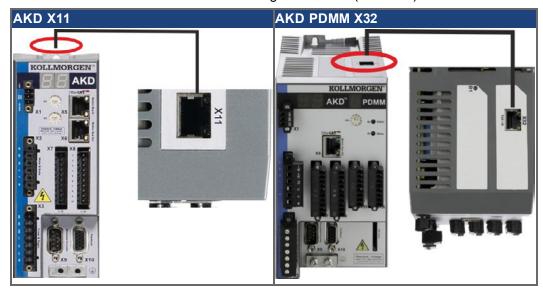
Stoppen Sie die Applikation über den Web-Browser oder benutzen Sie die Stopp Funktion mit den Tasten B2/B3 bevor Sie die SD Funktionen nutzen.

Wenn während der Save/Load Funktionen ein Fehler auftritt, wird die Fehlemummer im einstelligen LED Display mit "E" gefolgt von zwei Zahlen angezeigt. Fehlemummern → S. 199

Unterstützte SD Speicherkarten

SD Speicherkarten sind von den Herstellern vorformatiert. Die folgende Tabelle zeigt die von AKD PDMM unterstützten Speicherkartentypen:

SD Type	Dateisystem	Kapazität	Unterstützt
SD (SDSC)	FAT16	1MB bis 2GB	JA
SDHC	FAT32	4GB bis 32GB	JA
SDXC	exFAT (Microsoft)	>32GB bis 2TB	NEIN


Funktionen

Wenn eine SD Speicherkarte in den SD Kartenleser gesteckt ist und kein Anwendungsprogramm läuft, zeigt das Menü im einstelligen Display (mit B3 starten, → S. 158) die möglichen Funktionen:

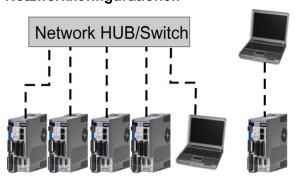
- 'backup' kopiert Firmware, Konfigurationsdaten, Anwenderprogramme und Nutzerdaten vom AKD PDMM auf die SD Karte.
- 'restore' kopiert Firmware, Konfigurationsdaten, Anwenderprogramme und Nutzerdaten von der SD Karte auf den AKD PDMM.

8.19 Ethernet Schnittstelle (X11, X32)

Die Parameter für den Betrieb, die Positionsregelung und Fahraufträge können mit der Setup-Software auf einem handelsüblichen PC konfiguriert werden (→ S. 178).

Schließen Sie die Serviceschnittstelle (X11 oder X32) des Verstärkers an eine Ethernet-Schnittstelle am PC direkt oder über einen Netzwerkhub/-switch an, **während die Stromversorgung zu den Geräten abgeschaltet ist.** Verwenden Sie bevorzugt Standard-Ethernetkabel der Kategorie 5.

Prüfen Sie, ob die Verbindungs-LEDs am AKD (grüne LED am RJ45-Stecker) und an Ihrem PC (oder Netzwerkhub/-switch) beide leuchten. Wenn beide LEDs leuchten, besteht eine gute elektrische Verbindung.

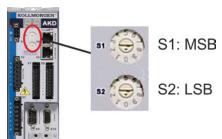

8.19.1 Pinbelegung X11, X32

Pin	Signal	Pin	Signal
1	Senden +	5	n.c.
2	Senden -	6	Empfangen -
3	Empfangen +	7	n.c.
4	n.c.	8	n.c.

8.19.2 Bus Protokolle X11, X32

Protokoll	Тур	Stecker
Modbus TCP	Service Bus	X11, X32
Ethernet TCP/IP	Service Bus	X11, X32

8.19.3 Mögliche Netzwerkkonfigurationen


8.19.4 Festlegen der IP Adresse AKD-B, AKD-P, AKD-T

Die IP-Adresse kann auf der LED Anzeige durch Drücken der Taste B1 angezeigt werden.

B1 drücken zur Anzeige der IP Adresse

Sie können die Drehschalter verwenden, um den Wert für die IP-Adresse des AKD zu wählen. Bei CANopen und einigen anderen Feldbussen legen die Drehschalter auch die Stationsadresse des Servoverstärkers für das jeweilige Netzwerk fest.

Drehschalter- Einstellung	IP-Adresse des Servoverstärkers
00	DHCP/Automatische IP-Adresse. Die IP-Adresse des AKD wird vom DHCP-Server in Ihrem Netzwerk abgerufen. Wenn kein DHCP-Server vorhanden ist, wird eine automatische IP-Adresse vergeben (sie wird intern gemäß dem AutoIP-Protokoll im Format 169.254.xx.xx generiert).
01 bis 99	Statische IP-Adresse. Die IP-Adresse ist 192.168.0.nn, wobei nn für die Zahl steht, auf die Drehschalter eingestellt sind. Diese Einstellung generiert Adressen im Bereich von 192.168.0. 01 bis 192.168.0. 99 . Beispiel: Wenn S1 auf 2 und S2 auf 5 eingestellt ist, lautet die IP-Adresse 192.168.0.25.

INFO

Die PC-Subnetmask muss auf 255.255.255.0 oder 255.255.255.128 gesetzt sein. Wenn Sie den AKD direkt mit einem PC verbinden, benutzen Sie statische IP-Adressierung (nicht 00).

Statische IP Adressierung

Wenn der Servoverstärker direkt an einen PC angeschlossen wird, muss die statische IP Adressierung benutzt werden. Stellen Sie die Drehschalter S1 und S2 auf eine von 00 abweichende Stellung (siehe Tabelle oben).

Dynamische IP-Adressierung (DHCP und Auto-IP)

Wenn S1 und S2 beide auf 0 eingestellt sind, befindet sich der Servoverstärker im DHCP-Modus. Der Servoverstärker ruft seine IP-Adresse von einem externen DHCP-Server ab, sofern im Netzwerk ein solcher vorhanden ist. Wenn kein DHCP-Server vorhanden ist, erzeugt der Servoverstärker automatisch eine private IP-Adresse im Format 169.254.x.x.

Wenn Ihr PC direkt mit dem Servoverstärker verbunden ist und in den TCP/IP-Einstellungen festgelegt ist, dass die IP-Adresse automatisch abgerufen werden soll, wird zwischen den Geräten eine Verbindung mithilfe von automatisch generierten kompatiblen Adressen hergestellt. Ein PC kann bis zu 60 Sekunden benötigen, um eine automatische private IP-Adresse zu konfigurieren (169.254.x.x).

Ändern der IP-Adresse

Wenn Sie die Drehschalter verstellen, während der Servoverstärker mit 24 V versorgt wird, müssen Sie die 24V Hilfsspannung aus- und wieder einschalten. Dadurch wird die Adresse zurückgesetzt.

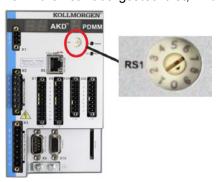
IP-Adressenmodus

Standardmäßig verwendet der Servoverstärker die oben beschriebene Methode um die IP-Adresse festzulegen. Die IP-Adresse kann jedoch auch unabhängig von den Drehschaltern festgelegt werden. Weitere Informationen finden Sie im AKD Benutzerhandbuch oder auf Bildschirmseite Einstellungen-> Feldbus-> TCP/IP in WorkBench.

Wiederherstellen der Kommunikation bei unerreichbarer IP-Adresse

Wenn IP.MODE auf 1 gesetzt ist (feste IP-Adressierung) startet der Servoverstärker mit einer IP-Adresse, die eventuell vom Host Computer nicht erreichbar ist.

Wenn eine statische Adresse die Kommunikation verhindert, können die IP Einstellungen auf den Defaultzustand mit folgender Prozedur zurückgesetzt werden:


- Beide Drehschalter auf 0 stellen.
- Taster B1 (oben am Servoverstärker) zirka 5 s lang drücken.

Das Diplay blinkt 0.0.0.0 und dann versucht der Servoverstärker eine Adresse über DHCP zu beziehen.

Schalten Sie die Spannung nicht ab, benutzen Sie nun WorkBench um die IP Adresse wie gewünscht einzustellen und speichern Sie die Werte im nicht-flüchtigen Speicher.

8.19.5 Festlegen der IP Adresse AKD-M

Sie können den Drehschalter RS1 verwenden, um die IP-Adresse des AKD PDMMeinzustellen. Die konfigurierte IP-Adresse wird am 7-Segment Display angezeigt, wenn beim Einschalten der 24 V Versorgung ein Ethernet Kabel an X32 gesteckt ist. Wenn kein Ethernet Kabel gesteckt ist, wird keine IP Adresse angezeigt.

Drehschalter- Einstellung	IP-Adresse des Servoverstärkers
0	DHCP/Automatische IP-Adresse. Die IP-Adresse des AKD wird vom DHCP-Server in Ihrem Netzwerk abgerufen. Wenn kein DHCP-Server vorhanden ist, wird eine automatische IP-Adresse vergeben (sie wird intern gemäß dem AutoIP-Protokoll im Format 169.254.xx.xx generiert).
1	Statische IP-Adresse. Die IP Adresse kann mit einem Web Browser konfiguriert werden. Die default IP Adresse ist 192.168.1.101. Um diese Adresse zu ändern, starten Sie einen Web Browser und geben die default IP Adresse als Adresse ein. Die Website des AKD PDMM öffnet sich. Navigieren Sie zur Registerkarte "Settings" und stellen Sie die gewünschte statische IP Adresse des AKD PDMM ein.
2 bis 9	Statische IP-Adresse. Die IP-Adresse ist 192.168.0.10n, wobei n für die Zahl steht, auf die der Drehschalter eingestellt ist. Diese Einstellung generiert Adressen im Bereich von 192.168.0.102 bis 192.168.0.109. Beispiel: Wenn S1 auf 5 eingestellt ist, lautet die IP-Adresse 192.168.0.105.

INFO

Die PC-Subnetmask muss auf 255.255.255.0 oder 255.255.128 gesetzt sein.

Statische IP Adressierung

Wenn der Servoverstärker direkt an einen PC angeschlossen wird, muss die statische IP Adressierung benutzt werden. Stellen Sie den Drehschalter RS1 auf einen Wert zwischen 2 und 9 ein (siehe Tabelle oben).

Dynamische IP-Adressierung (DHCP und Auto-IP)

Wenn RS1 auf 0 eingestellt ist, befindet sich der Servoverstärker im DHCP-Modus. Der Servoverstärker ruft seine IP-Adresse von einem externen DHCP-Server ab, sofern im Netzwerk ein solcher vorhanden ist. Wenn kein DHCP-Server vorhanden ist, erzeugt der Servoverstärker automatisch eine private IP-Adresse im Format 169.254.x.x.

Wenn Ihr PC direkt mit dem Servoverstärker verbunden ist und in den TCP/IP-Einstellungen festgelegt ist, dass die IP-Adresse automatisch abgerufen werden soll, wird zwischen den Geräten eine Verbindung mithilfe von automatisch generierten kompatiblen Adressen hergestellt. Ein PC kann bis zu 60 Sekunden benötigen, um eine automatische private IP-Adresse zu konfigurieren (169.254.x.x).

Ändern der IP-Adresse

Wenn Sie die Drehschalter verstellen, während der Servoverstärker mit 24 V versorgt wird, müssen Sie die 24V Hilfsspannung aus- und wieder einschalten. Dadurch wird die Adresse zurückgesetzt.

8.19.6 Modbus TCP

können über den RJ-45 Stecker X11 (AKD) oder X32 (AKD PDMM, nur für Kollmorgen™ Touchpanels) an eine Modbus HMI angeschlossen werden. Das Protokoll ermöglicht das Lesen und Schreiben der Verstärker-parameter. Der Status der Kommunikation wird über die eingebauten LEDs angezeigt.

Stecker	LED#	Name	Funktion
X11, X32	LED1	Link In	Ein = aktiv, Aus= inaktiv
	LED2	Betrieb	Ein = in Betrieb, Aus= nicht in Betrieb

Schließen Sie die Serviceschnittstelle (X11, X32) des Verstärkers an eine Ethernet-Schnittstelle am PC direkt oder über einen Netzwerkhub/-switch an, **während die Stromversorgung zu den Geräten abgeschaltet ist.** Verwenden Sie bevorzugt Standard-Ethernetkabel der Kategorie 5.

Voraussetzungen für den Anschluss einer Modbus HMI an den Servoverstärker:

- Die HMI muss Modbus TCP unterstützen.
- Die HMI benötigt Ethernet Hardware und einen Treiber für Modbus TCP, der Treiber benötigt keine speziellen Eigenschaften um den AKD zu unterstützen.

Die Kollmorgen™AKI HMI's sind kompatible mit dem "Kollmorgen Modbus Master" Treiber.

Die Subnet Maske des AKD lautet 255.255.255.0. Die ersten drei Oktets der IP Adresse des Servoverstärkers müssen mit den ersten drei Oktets der IP Adresse der HMI übereinstimmen. Das letzte Oktet muss unterschiedlich sein.

Prüfen Sie, ob die Link-LED am AKD Verstärker (grüne LED am RJ45-Stecker) und am Master bzw. Switch leuchten. Wenn beide LEDs leuchten, besteht eine gute elektrische Verbindung.

Modbus TCP und WorkBench/KAS IDE können über einen Switch simultan laufen.

8.20 CAN-Bus-Schnittstelle (X12/X13)

Für die CAN-Bus-Verbindung werden zwei 6-polige RJ-25-Stecker (X12/X13) verwendet.

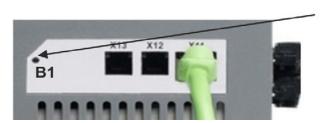
Stecker	Pin	Signal	Stecker	Pin	Signal
X12	1	Interner Abschlusswiderstand	X13	1	Interner Abschlusswiderstand
X12	2	CAN-Schirm	X13	2	CAN-Schirm
X12	3	CANH in	X13	3	CANH out
X12	4	CANL in	X13	4	CANL out
X12	5	GND	X13	5	GND
X12	6	Interner Abschlusswiderstand	X13	6	Interner Abschlusswiderstand

8.20.1 CAN-Bus Aktivierung bei AKD-CC Modellen

AKD-CC Modelle unterstützen das CANopen-Protokoll sowohl bei CAN-Bus- als auch EtherCAT-Netzwerkverwendung. Setzen des Parameters DRV.TYPE aktiviert entweder EtherCAT oder CANopen. Im Auslieferungszustand der CC Modelle ist die EtherCAT-Hardware aktiv gesetzt.

Um die CAN-Bus-Hardware zu aktivieren, müssen Sie den Parameter DRV.TYPE ändern.

- 1. Mit Software: Schließen Sie einen PC an den AKD an und ändern Sie den Parameter DRV.TYPE im WorkBench Terminal (siehe DRV.TYPE Dokumentation) oder
- 2. Mit Hardware: Benutzen Sie die Drehschalter S1 & S2 in der Front und den Taster B1 oben am Gerät.


Die folgenden Schritte beschreiben das Umschalten mit Hilfe der Drehschalter:

1. Stellen Sie den Wert 89 mit den AKD-Drehschaltern ein.

Drehen Sie S1 auf 8 und S2 auf 9

2. Drücken Sie die B1 Taste für etwa 3 Sekunden.

B1 für 3 Sekunden drücken

Die 7-Segment Anzeige zeigt während des Vorgangs Cn. Schalten Sie die 24 V Spannungsversorgung nicht ab, solange das Display Cn zeigt!

- 3. Warten Sie, bis das Display zurück auf die Standardanzeige schaltet. Nun ist das Gerät für CANopen vorbereitet.
- 4. Schalten Sie die 24 V Spannungsversorgung aus und wieder ein.

INFO

Die 7-Segmentanzeige zeigt Er (Error), wenn die Umschaltung nicht erfolgeich war. Schalten Sie die 24 V Spannungsversorgung aus und wieder ein. Wiederholen Sie den Vorgang. Falls der Fehler erneut gemeldet wird, wenden Sie sich an den Kollmorgen™ Kundendienst.

8.20.2 Baudrate für CAN-Bus

Sie können festlegen, ob der Servoverstärker beim Einschalten eine feste Baudrate wählen oder einen Algorithmus zur automatischen Erkennung der Baudrate ausführen soll. Die Übertragungsgeschwindigkeit kann über den Parameter **FBUS.PARAM01** eingestellt werden. FBUS.PARAM01 stellen Sie in WorkBench oder mit den AKD-Drehschaltern ein.

Baudrate [kBit/s]	FBUS.PARAM01	Oberer Drehschalter S1	Unterer DrehschalterS2
Auto	0	9	0
125	125	9	1
250	250	9	2
500	500	9	3
1000	1000	9	4


Im Falle einer festen Baudrate sendet der Servoverstärker nach einem Aus- und Wiedereinschalten der Spannungsversorgung die Boot-Up Meldung mit der Baudrate, die im nichtflüchtigen Speicher abgelegt ist. Im Falle einer automatischen Erkennung der Baudrate sucht der Servoverstärker nach einem gültigen CAN-Frame auf dem Bus. Bei Empfang eines gültigen Frames sendet der Servoverstärker die Boot-Up Meldung entsprechend der gemessenen Bit-Zeit. Anschließend kann die Baudrate über das Objekt 1010 Sub 1 im nichtflüchtigen Speicher abgelegt werden.

INFO

Anderenfalls wird die Funktion zur automatischen Erkennung benutzt. Eine zuverlässige automatische Erkennung der Baudrate erfordert eine normgemäße Verkabelung des CAN-Bus (Abschlusswiderstände, Masseanschluss usw.) erforderlich. Wenn die automatische Erkennung der Baudrate verwendet wird, muss der AKD gesperrt sein.


Gehen Sie zur Einstellung der Baudrate über die Drehschalter wie folgt vor:

- 1. Sperren Sie den Verstärker.
- 2. Stellen Sie die Drehschalter auf eine der Adressen von 90 bis 94 ein (siehe Tabelle oben)

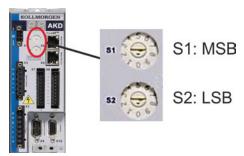
Drehen Sie S1 auf 9 und S2 auf eine Zahl von 0 bis 4

3. Drücken Sie mindestens 3 Sekunden lang die Taste B1 am AKD, bis die Drehschaltereinstellung im AKD-Display erscheint.

B1 für 3 Sekunden drücken

4. Wenn der Einstellwert des Drehschalters im Display blinkt, lassen Sie die Taste B1 los und warten Sie, bis das Blinken aufhört. Dabei wird der Parameter FBUS.PARAM01 auf den neuen Wert gesetzt, und alle Parameter werden gespeichert. Die neue Einstellung wird mit dem nächsten Einschalten des Servoverstärkers wirksam.

Wenn ein Fehler auftritt, blinken die folgenden Meldungen 5 mal:


- E1 Verstärker ist freigegeben
- E2 Speichern der neuen Einstellungen fehlgeschlagen
- E3 Fehlerhafte Schalterstellung

8.20.3 Stationsadresse für CAN-Bus

INFO

Nachdem Sie die Stationsadresse geändert haben, müssen Sie die 24 V-Hilfsspannungsversorgung für den Verstärker aus- und wieder einschalten.

Verwenden Sie während der Konfiguration die Drehschalter an der Frontplatte des AKD, um die Stationsadresse für die Kommunikation voreinzustellen.

Die Drehschalter an der Frontplatte des AKD (S1 & S2) entsprechen der CAN-Stationsadresse. Die Schalter S1 & S2 entsprechen auch der IP-Adresseneinstellung des Verstärkers. Sowohl das CAN- als auch das IP-Netzwerkadressenschema müssen konfiguriert werden, um dieser Abhängigkeit Rechnung zu tragen, wenn das TCP/IP- und das CAN-Netzwerk in einer Anwendung gleichzeitig ausgeführt werden. Beispiel:

S1 (MSB)	S2 (LSB)	CAN Adresse	IP Adresse
4	5	45	192.168.0.45

Die Einstellung der IP Adresse kann mit Hilfe der WorkBench Software (Einstellungen -> Feldbus-> TCP/IP) von den Drehschaltern entkoppelt werden.

8.20.4 CAN-Bus-Abschluss

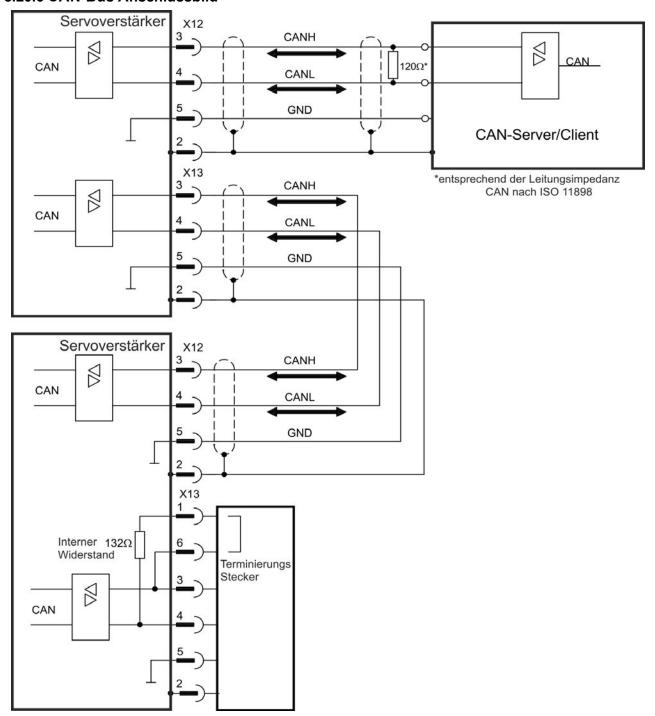
Das letzte Busgerät an beiden Enden des CAN-Bus-Systems muss über Abschlusswiderstände verfügen. Der AKD verfügt über integrierte 132 Ohm Widerstände, die aktiviert werden können, indem die Pins 1 und 6 gebrückt werden. Ein optionaler Terminierungsstecker ist für den AKD verfügbar (*P-AKD-CAN-TERM*). Der optionale Terminierungsstecker ist ein RJ-12-Stecker mit einer integrierten Drahtbrücke zwischen den Pins 1 und 6. Der Terminierungsstecker muss in den X13-Stecker des letzten Verstärkers im CAN-Netzwerk gesteckt werden.

INFO

Entfernen Sie den Abschlussstecker, wenn der AKD nicht das letzte Busgerät ist und verwenden Sie X13 zum Anschließen des nächsten Gerätes.

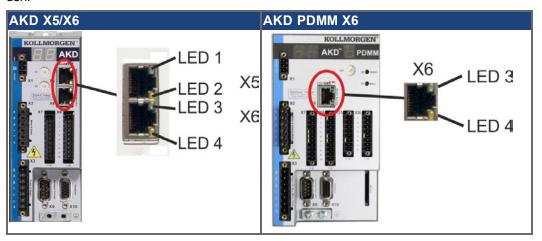
8.20.5 CAN-Bus-Kabel

Um die Anforderungen der Norm ISO 11898 zu erfüllen, muss ein Bus-Kabel mit einer charakteristischen Impedanz von 120 Ohm verwendet werden. Die maximale verwendbare Kabellänge für eine zuverlässige Kommunikation nimmt mit zunehmender Übertragungsgeschwindigkeit ab. Zur Orientierung können Sie die folgenden Werte verwenden, die von Kollmorgen™ gemessen wurden; diese Werte sind keine garantierten Grenzwerte:


• Charakteristische Impedanz: 100 bis 120 Ohm

Max. Kapazität im Kabel: 60 nF/kmSchleifenwiderstand: 159,8 Ohm/km

Übertragungsgeschwindigkeit (kBaud)	1000	500	250
Maximale Kabellänge (m)	10	70	115


Eine geringere Kapazität im Kabel (max. 30 nF/km) und ein geringerer Leitungswiderstand (Schleifenwiderstand, 115 Ohm/km) ermöglichen größere Längen. Eine charakteristische Impedanz von 150 ± 5 Ohm erfordert einen Abschluss-Widerstand 150 ± 5 Ohm.

8.20.6 CAN-Bus Anschlussbild

8.21 Motion-Bus-Schnittstelle (X5/X6/X11)

Die Motion-Bus-Schnittstelle besitzt RJ-45-Stecker und kann je nach der verwendeten Verstärkerversion für die Kommunikation mit verschiedenen Feldbus-Geräten verwendet werden.

HINWEIS

Schließen Sie die Ethernetleitung für den PC mit der Setup-Software nicht an die Motion-Bus-Schnittstelle X5/X6 an.

Das Ethernet-Konfigurationskabel muss an Stecker X11 oder X32 angeschlossen werden.

8.21.1 Pinbelegung X5/X6/X11

Pin	Signal X5	Signal X6	Signal X11
1	Senden +	Empfangen +	Senden +
2	Senden -	Empfangen -	Senden -
3	Empfangen +	Senden +	Empfangen +
4, 5	n.c.	n.c.	n.c.
6	Empfangen -	Senden -	Empfangen -
7, 8	n.c.	n.c.	n.c.

8.21.2 Bus-Protokolle X5/X6/X11

Protokoll	Тур	Anschluss Option	Stecker
EtherCAT	Motion-Bus	EC oder CC	X5, X6
SynqNet	Motion-Bus	SQ	X5, X6
sercos [®] III	Motion-Bus	S3	X5, X6
PROFINET RT	Motion-Bus	PN	X11
EtherNet/IP	Motion-Bus	El	X11

8.21.3 EtherCAT

Sie können bei AKD mit den Anschlusstypen EC und CC eine Verbindung zum EtherCAT-Netzwerk über die RJ-45-Stecker X5 (In Port) und X6 (Out Port) herstellen. Der Kommunikationsstatus wird von den integrierten LEDs angezeigt.

AKD PDMM Geräte (Gerätevariante AKD-M) agieren als EtherCAT (CoE) Master und besitzen dafür den X6 Stecker (Out Port) zum Aufbau einer linearen Topologie mit maximal 8 Slaves und 250 ms Zykluszeit.

Gerätevariante	Stecker	LED- Nr.	Name	LED-Funktion EIN	LED-Funktion AUS
AKD	X5	LED1	Link In	aktiv	nicht aktiv
		LED2	Betrieb	in Betrieb	nicht in Betrieb
AKD und AKD PDMM	X6	LED3	Link Out	aktiv	nicht aktiv
		LED4	-	-	-

8.21.3.1 EtherCAT Aktivierung bei AKD-CC Modellen

AKD-CC Modelle unterstützen das CANopen-Protokoll sowohl bei CAN-Bus- als auch EtherCAT-Netzwerkverwendung. Im Auslieferungszustand der AKD-CC Modelle ist die EtherCAT-Hardware aktiv gesetzt. Sollten Sie ein Gerät von CANopen nach EtherCAT umschalten müssen, ändern Sie den Parameter DRV.TYPE.

- 1. Mit Software: Schließen Sie einen PC an den AKD an und ändern Sie den Parameter DRV.TYPE im WorkBench Terminal (siehe DRV.TYPE Dokumentation) oder
- 2. Mit Hardware: Benutzen Sie die Drehschalter S1 & S2 in der Front und den Taster B1 oben am Gerät.

Die folgenden Schritte beschreiben das Umschalten mit Hilfe der Drehschalter:

1. Stellen Sie den Wert 89 mit den AKD-Drehschaltern ein.

Drehen Sie S1 auf 8 und S2 auf 9

2. Drücken Sie die B1 Taste für etwa 3 Sekunden.

B1 für 3 Sekunden drücken

Die 7-Segment Anzeige zeigt während des Vorgangs En.
Schalten Sie die 24 V Spannungsversorgung nicht ab, solange das Display En zeigt!

- 3. Warten Sie, bis das Display zurück auf die Standardanzeige schaltet.
- 4. Schalten Sie die 24 V Spannungsversorgung aus und wieder ein.

INFO

Die 7-Segmentanzeige zeigt Er (Error), wenn die Umschaltung nicht erfolgeich war. Schalten Sie die 24 V Spannungsversorgung aus und wieder ein. Wiederholen Sie den Vorgang. Falls der Fehler erneut gemeldet wird, wenden Sie sich an den Kollmorgen™ Kundendienst.

8.21.4 SynqNet

Sie können eine Verbindung zum SynqNet-Netzwerk über die RJ-45-Stecker X5 (In Port) und X6 (Out Port) herstellen. Der Status wird von den integrierten LEDs angezeigt.

Stecker	LED#	Name	Funktion
X5	LED1	Link_in	EIN = Empfang gültig (In Port)
			AUS = ungültig, ausgeschaltet oder reset
	LED2	zyklisch	EIN = Netzwerk zyklisch
			BLINKEND = Netzwerk nicht zyklisch
			AUS = ausgeschaltet oder reset
X6	LED3	Link_out	EIN = Empfang gültig (Out Port)
			AUS = ungültig, ausgeschaltet oder reset
	LED4	Repeater	EIN = Repeater eingeschaltet, Netzwerk zyklisch
			BLINKEND = Repeater eingeschaltet, Netzwerk nicht zyklisch
			AUS = Repeater ausgeschaltet, Netz ausgeschaltet oder reset

8.21.5 PROFINET

AKD mit Anschluss Option **PN** können über den RJ-45 Stecker X11 an ein PROFINET Netzwerk angeschlossen werden. Das PROFINET RT Protokoll wird benutzt. Der Status der Netzwerkkommunikation wird über die eingebauten LEDs angezeigt.

Stecker	LED#	Name	Funktion
X11	LED1	Link In	Ein = aktiv, Aus= inaktiv
	LED2	Betrieb	Ein = in Betrieb, Aus= nicht in Betrieb

Schließen Sie die Serviceschnittstelle (X11) des Verstärkers an eine Ethernet-Schnittstelle am PC direkt oder über einen Netzwerkhub/-switch an, während die Stromversorgung zu den Geräten abgeschaltet ist. Verwenden Sie bevorzugt Standard-Ethernetkabel der Kategorie 5. Prüfen Sie, ob die Link-LED am AKD Verstärker (grüne LED am RJ45-Stecker) und am Master bzw. Switch leuchten. Wenn beide LEDs leuchten, besteht eine gute elektrische Verbindung. Die Subnet Maske des AKD lautet 255.255.255.0. Die ersten drei Oktets der IP Adresse des Servoverstärkers müssen mit den ersten drei Oktets der IP Adresse der HMI übereinstimmen. Das letzte Oktet muss unterschiedlich sein. PROFINET RT und WorkBench können gleichzeitig verwendet werden wenn ein Switch benutzt wird.

8.21.6 Ethernet/IP

AKD mit Anschluss Option **EI** können über den RJ-45 Stecker X11 an ein Ethernet/IP Netzwerk angeschlossen werden. Der Status der Netzwerkkommunikation wird über die eingebauten LEDs angezeigt.

Stecker	LED#	Name	Funktion
X11	LED1	Link In	Ein = aktiv, Aus= inaktiv
	LED2	Betrieb	Ein = in Betrieb, Aus= nicht in Betrieb

Schließen Sie die Serviceschnittstelle (X11) des Verstärkers an eine Ethernet-Schnittstelle am Ethernet/IP Master direkt oder über einen Netzwerkhub/-switch an, während die Stromversorgung zu den Geräten abgeschaltet ist. Verwenden Sie Kat. 5 Kabel. Prüfen Sie, ob die Link-LED am AKD Verstärker (grüne LED am RJ45-Stecker) und am Master bzw. Switch leuchten. Wenn beide LEDs leuchten, besteht eine gute elektrische Verbindung. Die Subnet Maske des AKD lautet 255.255.255.0. Die ersten drei Oktets der IP Adresse des Servoverstärkers müssen mit den ersten drei Oktets der IP Adresse der HMI übereinstimmen. Das letzte Oktet muss unterschiedlich sein. Ethernet/IP und WorkBench können simultan laufen, wenn ein Switch verwendet wird.

8.21.7 sercos® III

AKD Servoverstärker (Variante S3) können an ein sercos[®] III Netzwerk über die RJ-45-Stecker X5 (In Port) und X6 (Out Port) angeschlossen werden. Lineare und Ring Topologien sind möglich. Der Status der Kommunikation wird über die eingebauten Stecker-LEDs angezeigt.

INFO

Verfügbar ab Firmware Revision 1.11, das Protokoll arbeitet zur Zeit nur mit Mastern der Firma Hypertherm.

Stecker	LED#	Name	Funktion
X5	LED1	Link In	EIN = aktiv, AUS= nicht aktiv
	LED2	Betrieb	EIN = in Betrieb, AUS = nicht in Betrieb
X6	LED3	Link Out	EIN = aktiv, AUS= nicht aktiv
	LED4	-	-

9 Inbetriebnahme

9.1	Wichtige Hinweise	176
9.2	Setup AKD-B, AKD-P, AKD-T	177
9.3	Setup AKD-M	183
9.4	Fehler und Warnmeldungen	193
9.5	Fehlersuche und -behebung beim AKD	201

9.1 Wichtige Hinweise

INFO

Der Hersteller der Maschine muss vor der Prüfung und Inbetriebnahme eine Risikobeurteilung für die Maschine erstellen und geeignete Maßnahmen ergreifen, um sicherzustellen, dass unvorhergesehene Bewegungen nicht zu Verletzungen oder Sachschäden führen können.

Der Verstärker darf nur von Fachpersonal mit umfassenden Kenntnissen in der Elektrotechnik und der Antriebstechnik getestet und konfiguriert werden.

GEFAHR

Die Geräte erzeugen hohe elektrische Spannungen bis zu 900 V. Es besteht die Gefahr eines elektrischen Schlags. Stellen Sie sicher, dass alle Anschlusskomponenten, die im Betrieb Spannung führen, gegen Berührung geschützt sind.

Trennen Sie nie die elektrischen Anschlüsse des Verstärkers, während er in Betrieb ist.

Kondensatoren können bis zu 7 Minuten nach Abschalten der Stromversorgung gefährliche Spannung führen.

WARNUNG

Der Antrieb kann abhängig von der Parametereinstellung nach dem Einschalten der Netzspannung, bei Spannungseinbrüchen oder Unterbrechungen automatisch anlaufen. Es besteht die Gefahr von tödlichen oder schweren Verletzungen für Personen, die in der Maschine arbeiten. Wenn der Parameter DRV.ENDEFAULT auf 1 gesetzt ist, warnen Sie an der Maschine mit einem Warnschild (Warnung: Automatischer Wiederanlauf nach Einschalten!) und stellen Sie sicher, dass ein Einschalten der Netzspannung nicht möglich ist, während sich Personen im gefährdeten Bereich der Maschine aufhalten.

VORSICHT

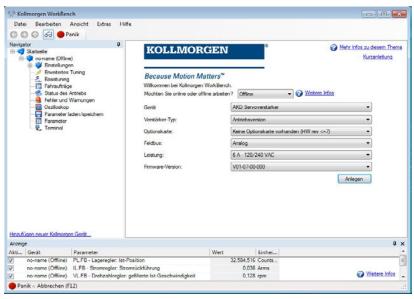
Der Kühlkörper des Verstärkers kann im Betrieb Temperaturen über 80°C erreichen. Gefahr leichter Verbrennungen. Prüfen Sie die Temperatur des Kühlkörpers, bevor Sie am Verstärker arbeiten. Warten Sie, bis der Verstärker auf unter 40 °C abgekühlt ist, bevor Sie ihn berühren.

HINWEIS

Wenn der Verstärker länger als 1 Jahr gelagert wurde, müssen Sie die Kondensatoren im DC-Bus-Zwischenkreis formieren. Um die Kondensatoren zu formieren, trennen Sie alle elektrischen Anschlüsse und legen Sie ca. 30 Minuten lang einphasig 208 bis 240 V AC an die Klemmen L1/L2 des Verstärkers an.

INFO

Weitere Informationen zur Konfiguration des Geräts:


- Die Parameter und das Verhalten des Regelkreises sind in der Onlinehilfe zur Setup-Software WorkBench beschrieben.
- Die Konfiguration von Erweiterungskarten ist in der entsprechenden Anleitung auf der DVD beschrieben.
- Kollmorgen™ bietet auf Anfrage Schulungen an.

9.2 Setup AKD-B, AKD-P, AKD-T

9.2.1 Setup-Software WorkBench

Dieses Kapitel beschreibt die Installation der Setup-SoftwareWorkBench für die Inbetriebnahme der digitalen Verstärker AKD-B, AKD-P und AKD-T. WorkBench wird für die Inbetriebnahme der Gerätevariante AKD-M nicht verwendet (AKD PDMM). Für diese Gerätevariante wird die Software KAS IDE benutzt (→ S. 183).

Kollmorgen™ bietet Schulungs- und Vertiefungskurse auf Anfrage.

9.2.2 Bestimmungsgemäße Verwendung

Die Setup-Software ist dafür vorgesehen, die Betriebsparameter für die Verstärker der AKD Reihe zu ändern und zu speichern. Der angeschlossene Verstärker kann mithilfe dieser Software konfiguriert werden. Während der Inbetriebnahme kann der Verstärker direkt über die Servicefunktionen gesteuert werden.

Die Einstellung der Parameter eines laufenden Antriebs darf nur von entsprechend qualifiziertem Fachpersonal (→ S. 16) vorgenommen werden.

Datensätze, die auf Datenträgern gespeichert wurden, sind nicht gegen unbeabsichtigte Veränderungen durch andere Personen gesichert. Die Verwendung von ungeprüften Daten kann zu unerwarteten Bewegungen führen. Nachdem Sie Datensätze geladen haben, müssen Sie daher alle Parameter prüfen, bevor Sie den Verstärker freigeben.

9.2.3 Beschreibung der Software

Jeder Verstärker muss an die Anforderungen für Ihre Maschine angepasst werden. Für die meisten Anwendungen können Sie einen PC und WorkBench (die Setup-Software für den Verstärker) verwenden, um die Parameter für Ihren Verstärker festzulegen. Der PC wird über ein Ethernet-Kabel mit dem Verstärker verbunden (→ S. 162). Die Setup-Software ermöglicht die Kommunikation zwischen dem PC und AKD. Sie finden die Setup-Software auf der mitgelieferten DVD und im Download-Bereich der Kollmorgen™-Website.

Sie können Parameter einfach ändern und die Wirkung auf den Verstärker direkt beobachten, da eine permanente (Online-)Verbindung zum Verstärker besteht. Sie können auch wichtige Istwerte vom Verstärker abrufen, die auf dem PC-Monitor angezeigt werden (Oszilloskop-Funktionen).

Sie können Datensätze auf Datenträgern speichern (Archivierung) sowie auf andere Verstärker laden oder zu Sicherungszwecken verwenden. Sie können die Datensätze auch ausdrucken.

Die meisten Standard-Feedbacks (SFD, EnDAT 2.2, 2.1, and BiSS) sind Plug-and-Play kompatibel. Die Typenschilddaten des Motors werden im Rückführsystem gespeichert und vom Verstärker beim Einschalten automatisch abgerufen. Die Daten der nicht Plug-and-Play-kompatiblen Motoren von Kollmorgen™ sind in WorkBench gespeichert und können per Mausklick über die Bildschirmseite "Motor" in der WorkBench-Software geladen werden.

Eine umfassende Onlinehilfe mit Beschreibungen aller Variablen und Funktionen bietet Ihnen in jeder Situation Unterstützung.

9.2.4 Hardware-Anforderungen

Die Serviceschnittstelle (X11, RJ45) des Verstärkers wird über ein Ethernet-Kabel mit der Ethernet-Schnittstelle des PCs verbunden (→ S. 162).

Mindestanforderungen für den PC:

Prozessor: mindestens Pentium® II oder gleichwertig

Grafikarte: Windows-kompatibel, Farbe

Laufwerke: Festplatte mit mindestens 20 MB freiem Speicherplatz, DVD-Laufwerk Schnittstellen: eine freie Ethernet-Schnittstelle oder einen Hub-/Switch-Anschluss

9.2.5 Betriebssysteme

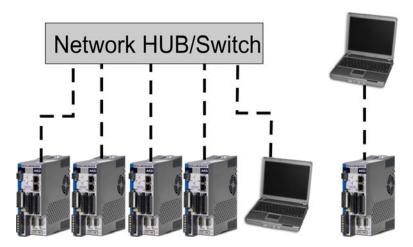
Windows 2000/XP/VISTA/7/8

WorkBench unterstützt Windows 2000, Windows XP, Windows VISTA, Windows 7 und Windows 8

Unix, Linux

Die Funktion der Software für Windows unter Unix oder Linux wurde nicht geprüft.

9.2.6 Installation unter Windows 2000/XP/VISTA/7


Die DVD enthält ein Installationsprogramm für die Setup-Software.

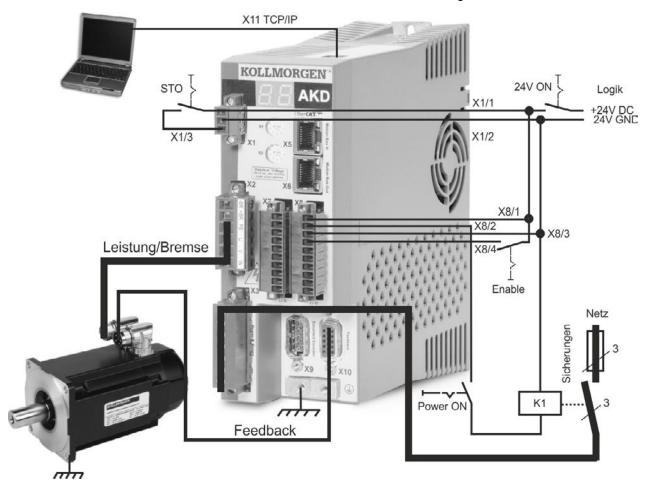
Installation

- Autostart-Funktion aktiviert:
 Legen Sie die DVD in ein freies Laufwerk ein. Ein Fenster mit dem Startbildschirm wird
 geöffnet. Darin wird eine Verknüpfung mit der Setup-Software WorkBench angezeigt. Kli cken Sie auf die Verknüpfung, und befolgen Sie die Anweisungen.
- Autostart-Funktion deaktiviert:
 Legen Sie die DVD in ein freies Laufwerk ein. Klicken Sie in der Taskleiste auf Start und dann auf Ausführen. Geben Sie den Programmaufruf ein: x:\index.htm (x = Laufwerksbuchstabe des DVD-Laufwerks).
 Klicken Sie auf OK und fahren Sie wie vorstehend beschrieben fort.

Anschluss an die Ethernet-Schnittstelle des PCs

• Schließen Sie das Schnittstellenkabel an eine Ethernet-Schnittstelle an Ihrem PC oder an einen Hub/Switch und die Serviceschnittstelle X11 des AKD an (→ S. 162).

9.2.7 Verstärkerschnelltest AKD-B, AKD-P, AKD-T


9.2.7.1 Auspacken, Montieren und Verdrahten des AKD

- Packen Sie den Verstärker und das Zubehör aus. Beachten Sie die Sicherheitshinweise in der Dokumentation.
- Montieren Sie den Verstärker.
- Verdrahten Sie den Verstärker oder nehmen Sie die Mindestverdrahtung zum Testen des Verstärkers wie unten beschrieben vor.
- Stellen Sie sicher, dass Sie die folgenden Informationen zur Hand haben:
 - Nennversorgungsspannung
 - Motortyp (Motordaten, wenn der Motortyp in der Motordatenbank nicht enthalten ist)
 - In den Motor integrierte Rückführungseinheit (Typ, Polzahl/Strichzahl/Protokoll)
 - Trägheitsmoment der Last

9.2.7.2 Mindestverdrahtung zum Testen des Verstärkers ohne Last

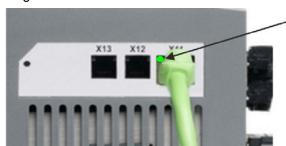
HINWEIS

Dieser Schaltplan dient nur zur Veranschaulichung und erfüllt nicht die Anforderungen im Hinblick auf EMV, Sicherheit oder Funktionalität Ihrer Anwendung.

Wenn Sie den AKD direkt mit einem PC verbinden, empfehlen wir eine statische IP-Adressierung (ungleich 00).

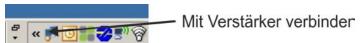
9.2.7.3 IP-Adresse einstellen

Stellen Sie die IP-Adresse ein wie in "Festlegen der IP Adresse AKD-B, AKD-P, AKD-T" (→ S. 163) beschrieben.


9.2.7.4 Verbindungen überprüfen

Sie können die Logikversorgung zum Servoverstärker über den Anschluss X1 einschalten (für die Kommunikation wird keine Bus-Spannung benötigt).

Wenn die Stromversorgung hergestellt ist, beginnen LED-Meldungen zu blinken:


- 1. –
- 2. []
- 3.][
- 4. I-P
- 5. IP-Adresse des Servoverstärkers, wird als Folge von Zahlen und Punkten angezeigt (z. B. 192.168.0.25).
- 6. Status des Servoverstärkers (opmode "o0", "o1" oder "o2") bzw. Fehlercode, wenn am Servoverstärker ein Fehlerzustand vorliegt.

Prüfen Sie, dass die Verbindungs-LEDs am Servoverstärker (grüne LED am RJ45-Stecker) und an Ihrem PC beide leuchten. Wenn beide LEDs leuchten, ist die elektrische Verbindung hergestellt.

LED leuchtet grün, wenn der Verstärker an einem Netzwerk angeschlossen ist.

Während der PC die Verbindung herstellt, erscheint in Ihrer Taskleiste das folgende Symbol:

Warten Sie, bis dieses Symbol sich zum Symbol für eingeschränkte Konnektivität ändert (dies kann bis zu einer Minute dauern).

Der PC kann vollständig mit dem Servoverstärker kommunizieren, obwohl Windows für die Verbindung mit dem Servoverstärker das Symbol für eingeschränkte Konnektivität anzeigt. In WorkBench können Sie jetzt den Servoverstärker über diese Verbindung konfigurieren.

9.2.7.5 WorkBench Installieren und starten

WorkBench wird automatisch von der mit dem Servoverstärker gelieferten DVD installiert. WorkBench ist auch auf der Kollmorgen™ Website verfügbar. Wenn die Installation vollständig ist, klicken Sie auf das WorkBench Symbol um das Programm zu starten. WorkBench zeigt eine Liste aller Servoverstärker an, die in Ihrem lokalen Netzwerk erkannt wurden. Wählen Sie den zu konfigurierenden Servoverstärker aus und klicken Sie auf **Next**. Wenn mehrere Servoverstärker erkannt werden, kann ein Servoverstärker mit einem der folgenden Verfahren eindeutig identifiziert werden:

- 1. MAC Adresse des Gerätes. Diese Adresse finden Sie auf dem Aufkleber an der Seite des Servoverstärkers.
- 2. Name des Gerätes. Der Gerätename wird mit der WorkBench Software eingestellt. Ein neuer Servoverstärker erhält standardmäßig den Namen "No_Name".
- 3. Display blinken lassen. Wählen Sie einen Servoverstärker aus und klicken Sie auf **Blink** (Blinken). Das Display des gewählten Servoverstärkers blinkt nun 20 Sekunden lang.

9.2.7.6 IP-Adresse des Servoverstärkers in WorkBench eingeben

Wenn WorkBench Ihren Servoverstärker nicht automatisch anzeigt, können Sie die IP-Adresse wie folgt manuell in WorkBench eingeben:

IP-Adresse ermitteln. Sie k\u00f6nnen die IP-Adresse des Servoverst\u00e4rkers auf dem Servoverst\u00e4rker-Display anzeigen lassen, indem Sie die Taste B1 dr\u00fccken. Auf dem Display erscheinen nacheinander die Zahlen und Punkte der IP-Adresse (z. B. 192.168.0.25).
 B1 dr\u00fccken zur Anzeige

der IP Adresse

 Eingabe der IP-Adresse. Geben Sie die ermittelte IP-Adresse in das Feld Specify Address (Adresse angeben) in WorkBench ein. Klicken Sie dann auf Weiter, um die Verbindung herzustellen.

9.2.7.7 Servoverstärker mit dem Setup-Assistenten freigeben

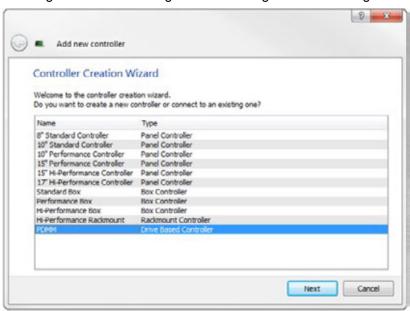
Sobald eine Verbindung mit dem Servoverstärker hergestellt wurde, wird die Bildschirmseite "AKD Übersicht" angezeigt. Ihr Servoverstärker wird im Navigationsbereich auf der linken Seite des Bildschirms angezeigt. Klicken Sie mit der rechten Maustaste auf den Namen Ihres Servoverstärkers und wählen Sie im Dropdown-Menü die Option **Setup Wizard** aus. Der Setup-Assistent führt Sie durch die Erstkonfiguration des Servoverstärkers. Dies umfasst eine einfache Testbewegung des Antriebs.

Nachdem Sie den Setup-Assistenten abgeschlossen haben, sollte der Servoverstärker freigegeben sein. Wenn der Servoverstärker nicht freigegeben ist, prüfen Sie Folgendes:

- 1. Die Hardware-Freigabe (HW) muss aktiviert sein (Pin 4 am Stecker X8).
- Die Software-Freigabe (SW) muss aktiviert sein. Aktivieren Sie die Funktionen mit der Schaltfläche Enable/Disable in der oberen Symbolleiste in WorkBench oder auf der Bildschirmseite "Übersicht".
- 3. Es dürfen keine Fehler vorliegen (klicken Sie auf die Schaltfläche **Clear Fault** (Fehler löschen) in der oberen Symbolleiste, um alle Fehler zu löschen).

Der Status der HW-Freigabe, SW-Freigabe und von Fehlern wird in der unteren Symbolleiste der WorkBench-Software angezeigt. Der Servoverstärker ist verbunden, wenn am unteren rechten Rand **Online** angezeigt wird.

Sie können jetzt die Bildschirmseite "Einstellungen" in WorkBench verwenden, um die erweiterte Konfiguration Ihres Servoverstärkers fortzusetzen.


9.3 Setup AKD-M

9.3.1 Setup-Software KAS IDE

Dieses Kapitel beschreibt die Installation der Setup-Software KAS IDE für die Inbetriebnahme der digitalen Verstärker AKD-M (AKD PDMM). KAS IDE wird für die Inbetriebnahme der Gerätevarianten AKD-B, AKD-P und AKD-T nicht verwendet. Für diese Gerätevarianten wird die Software WorkBench benutzt (→ S. 177).

KAS IDE enthält Werkzeuge für das Konfigurieren des EtherCAT Netzwerk, Inbetriebnahme und Tunen der Servoverstärker, Erstellen eines SPS Programms und einer Benutzeroberfäche (HMI).

Kollmorgen™ bietet Schulungs- und Vertiefungskurse auf Anfrage.

9.3.2 Bestimmungsgemäße Verwendung

Die Setup-Software ist dafür vorgesehen, die Betriebsparameter für die Verstärker der AKD PDMM Reihe zu ändern und zu speichern. Der angeschlossene Verstärker kann mithilfe dieser Software konfiguriert werden. Während der Inbetriebnahme kann der Verstärker direkt über die Servicefunktionen gesteuert werden.

Die Einstellung der Parameter eines laufenden Antriebs darf nur von entsprechend qualifiziertem Fachpersonal (→ S. 16) vorgenommen werden.

Datensätze, die auf Datenträgern gespeichert wurden, sind nicht gegen unbeabsichtigte Veränderungen durch andere Personen gesichert. Die Verwendung von ungeprüften Daten kann zu unerwarteten Bewegungen führen. Nachdem Sie Datensätze geladen haben, müssen Sie daher alle Parameter prüfen, bevor Sie den Verstärker freigeben.

9.3.3 Beschreibung der Software

Jeder Verstärker muss an die Anforderungen für Ihre Maschine angepasst werden. Für die meisten Anwendungen können Sie einen PC und KAS IDE ("Kollmorgen Automation Suite Integrated development environment") verwenden, um die Parameter für Ihren Verstärker festzulegen. Der PC wird über ein Ethernet-Kabel mit dem Verstärker verbunden (→ S. 162). Die Setup-Software ermöglicht die Kommunikation zwischen dem PC und AKD PDMM. Sie finden die KAS IDE Setup-Software auf der mitgelieferten DVD und im Download-Bereich der Kollmorgen™-Website.

Sie können Parameter einfach ändern und die Wirkung auf den Verstärker direkt beobachten, da eine permanente (Online-)Verbindung zum Verstärker besteht. Sie können auch wichtige Istwerte vom Verstärker abrufen, die auf dem PC-Monitor angezeigt werden (Oszilloskop-Funktionen).

Sie können Datensätze auf Datenträgern speichern (Archivierung) sowie auf andere Verstärker laden oder zu Sicherungszwecken verwenden. Sie können die Datensätze auch ausdrucken.

Die meisten Standard-Rückführungen (SFD, EnDAT 2.2, 2.1 und BiSS) sind Plug-and-Play-kompatibel. Die Typenschilddaten des Motors werden im Rückführsystem gespeichert und vom Verstärker beim Einschalten automatisch abgerufen. Die Daten der nicht Plug-and-Play-kompatiblen Motoren von Kollmorgen™ sind in KAS IDE gespeichert und können per Mausklick über die Bildschirmseite "Motor" in der KAS IDE-Software geladen werden.

Eine umfassende Onlinehilfe mit Beschreibungen aller Variablen und Funktionen bietet Ihnen in jeder Situation Unterstützung.

9.3.4 Hardware-Anforderungen

Die Serviceschnittstelle (X32, RJ45) des Verstärkers wird über ein Ethernet-Kabel mit der Ethernet-Schnittstelle des PCs verbunden (→ S. 162).

Mindestanforderungen für den PC:

Prozessor: mindestens Pentium® II oder gleichwertig

Betriebssystem: Windows XP oder 7 Grafikarte: Windows-kompatibel, Farbe

Laufwerke: Festplatte mit mindestens 20 MB freiem Speicherplatz, DVD-Laufwerk Schnittstellen: eine freie Ethernet-Schnittstelle oder einen Hub-/Switch-Anschluss

9.3.5 Betriebssysteme

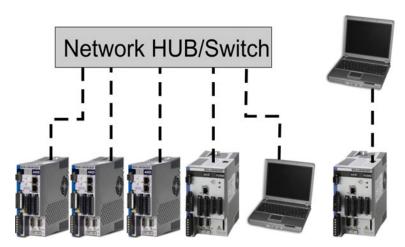
Windows XP/7

KAS IDE unterstützt Windows XP und Windows 7

Unix. Linux

Die Funktion der Software für Windows unter Unix oder Linux wurde nicht geprüft.

9.3.6 Installation unter Windows XP/7


Die DVD enthält ein Installationsprogramm für die Setup-Software.

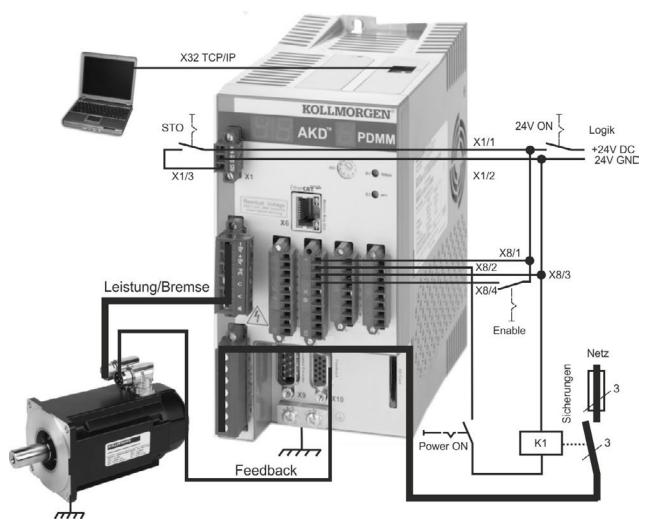
Installation

- Autostart-Funktion aktiviert:
 Legen Sie die DVD in ein freies Laufwerk ein. Ein Fenster mit dem Startbildschirm wird
 geöffnet. Darin wird eine Verknüpfung mit der Setup-Software KAS IDE angezeigt. Kli cken Sie auf die Verknüpfung, und befolgen Sie die Anweisungen.
- Autostart-Funktion deaktiviert:
 Legen Sie die DVD in ein freies Laufwerk ein. Klicken Sie in der Taskleiste auf Start und dann auf Ausführen. Geben Sie den Programmaufruf ein: x:\index.htm (x = Laufwerksbuchstabe des DVD-Laufwerks).
 Klicken Sie auf OK und fahren Sie wie vorstehend beschrieben fort.

Anschluss an die Ethernet-Schnittstelle des PCs

• Schließen Sie das Schnittstellenkabel an eine Ethernet-Schnittstelle an Ihrem PC oder an einen Hub/Switch und die Serviceschnittstelle X32 des AKD PDMM (→ S. 162).

9.3.7 Verstärkerschnelltest AKD-M


9.3.7.1 Auspacken, Montieren und Verdrahten des AKD PDMM

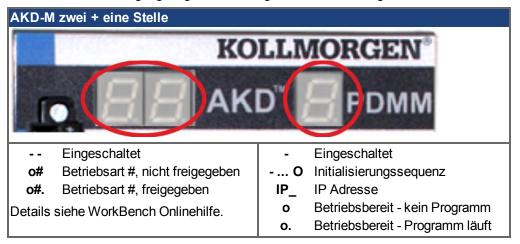
- Packen Sie den Verstärker und das Zubehör aus. Beachten Sie die Sicherheitshinweise in der Dokumentation.
- Montieren Sie den Verstärker.
- Verdrahten Sie den Verstärker oder nehmen Sie die Mindestverdrahtung zum Testen des Verstärkers wie unten beschrieben vor.
- Stellen Sie sicher, dass Sie die folgenden Informationen zur Hand haben:
 - Nennversorgungsspannung
 - Motortyp (Motordaten, wenn der Motortyp in der Motordatenbank nicht enthalten ist)
 - In den Motor integrierte Rückführungseinheit (Typ, Polzahl/Strichzahl/Protokoll)
 - Trägheitsmoment der Last

9.3.7.2 Mindestverdrahtung zum Testen des Verstärkers ohne Last

HINWEIS

Dieser Schaltplan dient nur zur Veranschaulichung und erfüllt nicht die Anforderungen im Hinblick auf EMV, Sicherheit oder Funktionalität Ihrer Anwendung.

Wenn Sie den AKD PDMM direkt mit einem PC verbinden, empfehlen wir eine statische IP-Adressierung (ungleich 0).

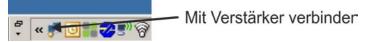

9.3.7.3 IP-Adresse einstellen

Stellen Sie die IP-Adresse ein wie in "Festlegen der IP Adresse AKD-M" (→ S. 165) beschrieben.

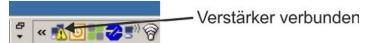
9.3.7.4 Verbindungen überprüfen

Sie können die Logikversorgung zum Servoverstärker über den Anschluss X1 einschalten (für die Kommunikation wird keine Bus-Spannung benötigt).

Wenn die Stromversorgung hergestellt ist, beginnen LED-Meldungen zu blinken:



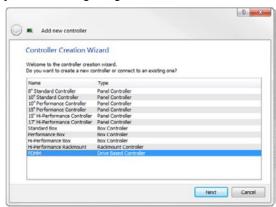
Prüfen Sie, dass die Verbindungs-LEDs am Servoverstärker (grüne LED am RJ45-Stecker X32) und an Ihrem PC beide leuchten. Wenn beide LEDs leuchten, ist die elektrische Verbindung hergestellt.



LED leuchtet grün, wenn der Verstärker an einem Netzwerk angeschlossen ist.

Während der PC die Verbindung herstellt, erscheint in Ihrer Taskleiste das folgende Symbol:

Warten Sie, bis dieses Symbol sich zum Symbol für eingeschränkte Konnektivität ändert (dies kann bis zu einer Minute dauern).



Der PC kann vollständig mit dem Servoverstärker kommunizieren, obwohl Windows für die Verbindung mit dem Servoverstärker das Symbol für eingeschränkte Konnektivität anzeigt. In KAS IDE können Sie jetzt den Servoverstärker über diese Verbindung konfigurieren.

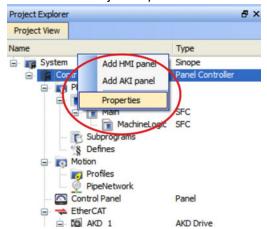
9.3.7.5 KAS IDE Installieren und starten

KAS IDE befindet sich auf der DVD, die mit dem AKD PDMM ausgeliefert wird, und online unter www.kollmorgen.com. Legen Sie die DVD ein und warten Sie, bis die Installation automatisch gestartet wird. Wenn die Installation vollständig ist, klicken Sie auf das KAS IDE Symbol um das Programm zu starten.

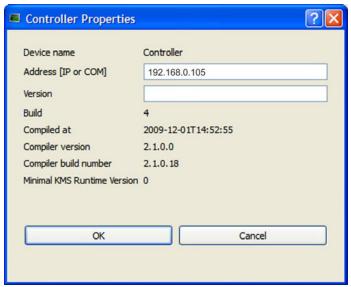
Starten Sie ein neues Projekt (*File > New*). Damit öffnen Sie das *Add a New Controller* Fenster. Wählen Sie Ihr AKD PDMM Modell aus der Liste. Der Controller wird nun im Projektfenster angezeigt.

Für die Zuordnung des Projekts zu der IP Adresse des AKD PDMM klicken Sie mit der rechten Maustaste auf die Controller Option im Projektfenster. Wählen Sie **Properties**, das folgende Fenster erscheint:

Geben Sie die IP Adresse des AKD PDMM ein, setzen Sie den *Controller Type* auf PDMM und klicken Sie auf OK. Um die Verbindung zum AKD PDMM herzustellen, benutzen Sie die folgenden Steuerbefehle:

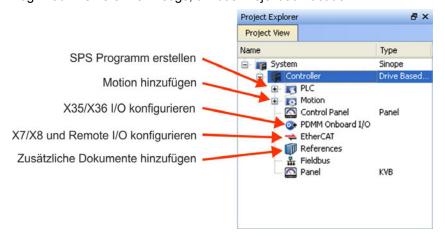

Doppelklicken Sie aus EtherCAT im Projekt Fenster zum Öffnen des EtherCAT Fensters. Klicken auf SCAN Devices startet die automatische Identifizierung und Auflistung Ihres KAS IDE. Wenn mehrere Servoverstärker erkannt werden, kann ein Servoverstärker mit einem der folgenden Verfahren eindeutig identifiziert werden:

- 1. MAC Adresse des Gerätes. Die Adresse finden Sie auf einem Aufkleber an der Seite des Gerätes.
- 2. Name des Gerätes. Der Gerätename wird mit der KAS IDE Software eingestellt. Ein neuer Servoverstärker erhält standardmäßig den Namen "No_Name".
- 3. Display blinken lassen. Wählen Sie ein Gerät aus und klicken Sie auf Blink. Die Anzeige des Gerätes blinkt jetzt etwa 20 Sekunden lang.

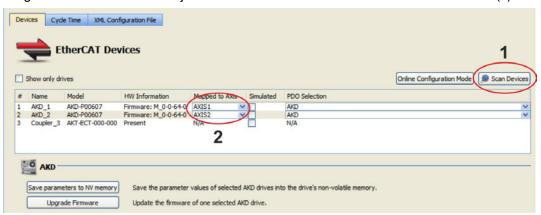

9.3.7.6 IP-Adresse des Servoverstärkers in KAS IDE eingeben

Wenn KAS IDE Ihren Servoverstärker nicht automatisch anzeigt, können Sie die IP-Adresse wie folgt manuell in KAS IDE eingeben:

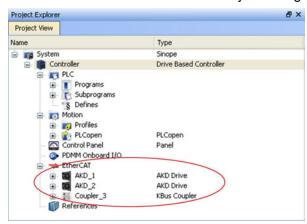
- IP-Adresse ermitteln. Drücken von B2 am Servoverstärker startet das Menü im einstelligen Display. Wenn "IP" erscheint, erneut B2 drücken, um die IP-Adresse anzuzeigen (zum Beispiel 192.168.0.105).
- 2. Die IP Adresse des AKD PDMM ist im Projektfile in der KAS IDE eingetragen. Öffnen Sie ein Projekt oder erstellen Sie ein neues Projekt. Klicken Sie mit der rechten Maustaste im Projekt Explorer auf Controller und wählen Sie *Properties*:



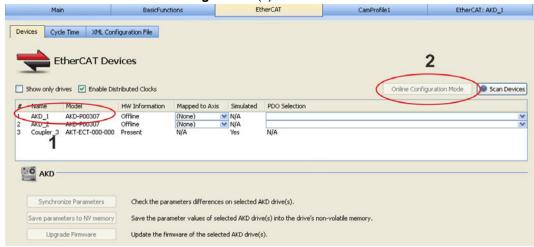
3. Geben Sie die IP Adresse des AKD PDMM ein:

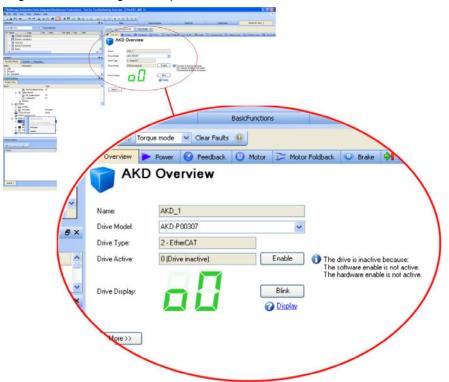

9.3.7.7 Ein neues Projekt starten

Wenn ein Projekt (neu oder gespeichert) im Project Explorer geöffnet wurde, haben Sie Zugriff auf mehrere Werkzeuge, um das Projekt aufzubauen:

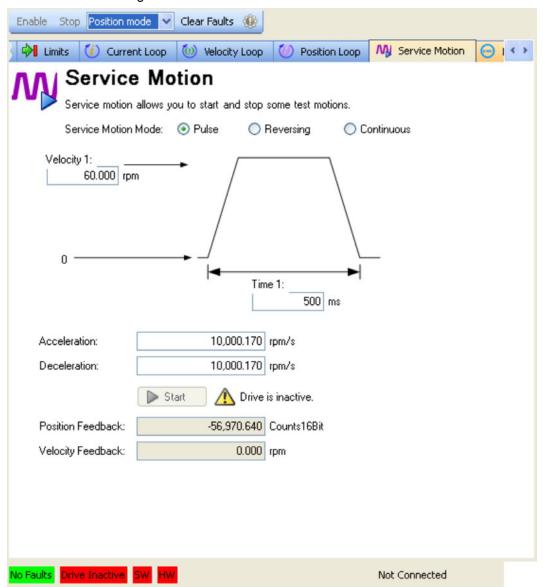


Alle Verstärker, inklusive des Verstärkers im AKD PDMM selbst und die Remote I/O können mit KAS IDE konfiguriert werden.


Fügen Sie Verstärker zum Projekt hinzu: klicken Sie auf EtherCAT und Scan devices (1).


Mappen Sie gefundene Verstärker zu Achsen in Ihrer Applikation (2). Alle gefundenen Elemente werden automatisch zu Ihrem Projekt hinzugefügt:

Um direkt mit einem Verstärker zu kommunizieren, ohne das Projekt zu starten, klicken Sie auf das EtherCAT Symbol im Projektbaum. Wählen Sie den gewünschten Verstärker (1) und klicken Sie dann auf *Online Configuration* (2):


Im Arbeitsfenster öffnen sich nun das bekannte Workbench Startfenster und ermöglicht den Zugriff auf alle Konfigurationsparameter des Verstärkers:

Der Setup Wizzard führt Sie durch die wichtigsten Schritte der Konfiguration:

Sie können für Testzwecke eine Bewegung auslösen, ohne das Projekt zu starten. Benutzen Sie dazu die Einstellungen in dem **Service Motion** Fenster.

9.4 Fehler und Warnmeldungen

9.4.1 Fehler und Warnmeldungen AKD

Wenn ein Fehler auftritt, wird das Fehlerrelais des Verstärkers geöffnet; die Endstufe wird ausgeschaltet (der Motor erzeugt kein Drehmoment mehr) oder die Last wird dynamisch gebremst. Das spezifische Verhalten des Verstärkers hängt vom Fehlertyp ab. Auf der LED-Anzeige an der Frontplatte des Verstärkers wird die Nummer des aufgetretenen Fehlers angezeigt. Wenn vor der Fehlermeldung eine Warnung ausgegeben wird, erscheint die Warnmeldung auf der LED-Anzeige mit derselben Nummer wie der zugehörige Fehler. Warnungen deaktivieren weder die Leistungsstufe des Verstärkers noch den Fehlerausgang.

AKD Fehler- oder Warnmeldungen werden angezeigt. Fehlermeldungen sind mit "F" kodiert, Warnmeldungen mit "n".

Bei eingebauter Optionskarte I/O werden Fehler bezogen auf die SD Karte mit "E" gefolgt von 4 Zahlen angezeigt.

In der zweistelligen LED-Anzeige wird links ein "F" oder "E" für einen Fehler oder ein "n" für eine Warnmeldung angezeigt. Rechts wird die Nummer des Fehlers oder der Warnung angezeigt: 1-0-1-[Pause]. Es wird der Fehler mit der höchsten Priorität angezeigt, wenn mehrere Fehler gleichzeitig vorliegen. Prüfen Sie die AKD WorkBench Fehlerbildschirmseite oder lesen Sie den Status von DRV.FAULTS, um die vollständige Liste der aktuellen Fehler anzuzeigen.

INFO

Weitere Informationen zu Fehlermeldungen, Fehlerbeseitigung und zum Löschen von Fehlern finden Sie in der WorkBench-Onlinehilfe.

Fehler	Meldung/Warnung
	24V (X1) zusammengebrochen oder 5V (X9) kurzgeschlossen.
E0082	SD Karte nicht vorhanden.
E0083	SD Karte ist schreibgeschützt.
E0084	SD Lesegerät nicht installiert.
E0095	Datei auf SD Karte nicht gefunden.
E0096	Dateilesefehler auf SD Karte.
E0097	Dateisystemfehler auf SD Karte.
E0098	Ein Parameter konnte nicht von der SD Karte in den Verstärker geladen werden.
E0099	Fehler beim Schreiben auf SD Karte.
E0100	SD Karte Lesen/Schreiben aktiv.
E0101	Fehler beim Zugriff auf die binäre BASIC Datei.
F0	Reserviert.
F101, n101	Nicht kompatibler FPGA-Typ. FPGA ist ein Labor-FPGA.
F102, n102	Fehler durch Boot-Firmware. FPGA ist keine Standard-FPGA-Version.
F103	Fehler Boot-FPGA.
F104	Fehler FPGA.
F105	Stempel des nichtflüchtigen Speichers ungültig.
F106	Daten des nichtflüchtigen Speichers
n107	Positiv-Endschalter-Grenzwert überschritten.
n108	Negativ-Endschalter-Grenzwert überschritten.
F121	Fehler bei Referenzfahrt.

Fehler	Meldung/Warnung		
F123, n123	Ungültiger Fahrauftrag.		
F125, n125	Synchronisations verlust.		
F126, n126	Zu viel Bewegung.		
F128	MPOLES/FPOLES ist keine Ganzzahl.		
F129	Heartbeat-Verlust.		
F130	Überstrom bei sekundärer Rückführungsversorgung.		
F131	Zweites Feedback A/B Spur Kabelbruch		
F132	·		
F133	Zweites Feedback Z Signal Kabelbruch Fehlemummer in F138 geändert.		
F134	Unzulässiger Status der sekundären Rückführung.		
F135, n135	Referenzfahrt erforderlich.		
F136	Die Firmware- und FPGA-Version sind nicht kompatibel.		
n137	Referenzfahrt und Rückführung nicht kompatibel		
F138	Instabilität während Autotuning		
F139	Zielposition überschritten wegen Aktivierung des falschen Fahrauftrages.		
n151	Keine ausreichende Fahrstrecke; Bewegungsausnahme.		
n152	Keine ausreichende Fahrstrecke; Folgefahrsatzausnahme.		
n153	Überschreitung der maximalen Geschwindigkeit.		
n154	Folgefahrsatz fehlgeschlagen; Bewegungsparameter prüfen.		
n156	Zielposition infolge eines Haltebefehls überschritten.		
n157	Index-Impuls für Referenzfahrt nicht gefunden.		
n158	Referenzfahrt-Schalter nicht gefunden.		
n159	Einstellung der Fahrauftrags-Parameter fehlgeschlagen		
n160	Aktivierung des Fahrauftrags fehlgeschlagen.		
n161	Referenzfahrt fehlgeschlagen.		
n163	MT.NUM überschreitet den Grenzwert.		
n164			
	Fahrauftrag ist nicht initialisiert.		
n165	Zielposition des Fahrauftrags außerhalb des Bereichs.		
n167	SW Endschalter erreicht.		
n168	Ungültige Bit-Kombination im Steuerwort des Fahrauftrags.		
n169	1:1 Profil kann nicht bei laufendem Fahrauftrag ausgelöst werden.		
n170	Die Kundenprofil-Tabelle ist nicht initialisiert.		
n171	Aktivierung des Fahrauftrags steht bevor.		
n174	Referenzfahrt Distanz überschritten		
n175	Klemmmoment am Endanschlag nicht erreicht.		
F176	Aktuelle Position überschreitet Endanschlag Überwachungsfenster.		
F178	Achse hat die Zielposition erreicht, ohne am Endanschlag zu stoppen.		
F201	Fehler in externem RAM.		
F202	Fehler in externem RAM.		
F203	Fehler bei Code-Integrität.		
F204-F232	EEPROM-Fehler erkannt.		
F234-F237	Innentemperatur zu hoch.		
n234-n237			
F240-F243	Innentemperatur niedrig.		
n240-n243			

Meldung/Warnung	
Externer Fehler.	
Bus-Spannung überschreitet zulässige Grenzwerte.	
Optionskarte: EEPROM fehlerhaft.	
I/O Optionskarte: Checksumme Downstream.	
Optionskarte: Checksumme Upstream.	
Optionskarte: Watchdog.	
Optionskarte: Firmware und FPGA Typen sind nicht kompatibel.	
Optionskarte: Firmware und FPGA Typen sind nicht kompatibel.	
Motor überhitzt.	
Überdrehzahl.	
Instabilität.	
Motor Foldback.	
Bremskreis unterbrochen.	
Kurzschluss Bremskreis.	
Bremse im Freigabezustand geschlossen.	
Spannung übersteigt Nennwert für den Motor.	
Motor I ² t Belastung.	
Bremse gelöst obwohl sie angezogen sein sollte.	
Festlegung des Rückführungstyps fehlgeschlagen.	
Fehler bei Amplitude des analogen Signals.	
EnDat-Kommunikationsfehler.	
Hall-Fehler.	
BiSS-Watchdog-Fehler.	
BiSS-Multitum-Fehler.	
BiSS-Sensorfehler.	
SFD-Rückführungsfehler.	
Defekte Ader in primärer Rückführung.	
Spannungsversorgung der primären Rückführung.	
Encoder-Initialisierung fehlgeschlagen.	
FB3 EnDat-Kommunikationsfehler.	
SFD Positionssensor Fehler	
Fehler im nichtflüchtigen Speicher, Multiturn Überlauf.	
EnDat überhitzt.	
Schleppfehler (rechnerisch).	
Schleppfehler (Nutzer).	
Schleppfehler (Präsentation).	
Tamagawa Encoder Batterie.	
Multiturn Überlauf wird vom Feedback nicht unterstützt.	
Tamagawa Encoder: Kommunikationsfehler.	
Tamagawa Encoder: Überdrehzahl.	
Tamagawa Encoder: Zählfehler.	
Tamagawa Encoder: Zählerüberlauf.	
Tamagawa Encoder: Überhitzung.	
Tamagawa Encoder: Multitum-Fehler.	
Starke Erschütterung von Feedbacksystem erkannt.	

Fehler	Meldung/Warnung
F467	Feedback Fehler an Feedback 1.
F468	FB2.SOURCE nicht eingestellt, Remote Kommutierung nicht möglich.
F469	FB1.ENCRES ist keine Zweierpotenz, Remote Kommutierung nicht möglich.
F470	Feedback Fehler an Feedback 3.
F473	Wake und Shake. Zu kleine Bewegung.
F475	Wake und Shake. Zu große Bewegung.
F476	Wake und Shake. Grob-Fein-Abweichung zu groß.
F478, n478	Wake und Shake. Überdrehzahl.
F479	Wake und Shake. Schleifenwinkel-Abweichung zu groß.
F480	Feldbus-Geschwindigkeits-Sollwert zu hoch.
F481	Feldbus-Geschwindigkeits-Sollwert zu niedrig.
F482	Kommutierung nicht initialisiert
F483	Motor U Phase fehlt.
F484	Motor V Phase fehlt.
F485	Motor W Phase fehlt.
F486	Umschaltfrequenz am Eingang übersteigt maximale EMU-Drehzahl.
F487	Wake & Shake - Validierung: positive Bewegung meldet Fehler.
F489	Wake & Shake - Validierung: negative Bewegung meldet Fehler.
F490	Wake & Shake - Validierung: Komm. Winkel Timeout.
F491	Wake & Shake - Validierung: Komm. Winkel zu weit gefahren - Schlechter Winkel.
F492	Wake & Shake - Validierung: Komm. Winkel braucht mehr Strom als MOTOR.ICONT.
F493	Ungültige Kommutierung - Motor beschleunigt in die falsche Richtung.
F501, n501	Überspannung Bus.
F502	Unterspannung Bus. Warnung bevor Fehler auftritt.
F503, n503	Überlast Bus-Kondensator.
F504-F518	Interner Versorgungsspannungsfehler
F519	Kurzschluss Bremswiderstand.
F521, n521	Überstrom Bremswiderstand.
F523	Überspannung Bus FPGA
F524, n524	Verstärker Foldback.
F525	Überstrom am Ausgang.
F526	Kurzschluss am Stromsensor
F529	Iu-Strom-Offset-Grenze überschritten
F530	Iv-Strom-Offset-Grenze überschritten
F531	Endstufenfehler
F532	Konfiguration der Antriebs-Parameter unvollständig.
F534	Lesen der Motorparameter vom Rückführsystem fehlgeschlagen.
F535	Übertemperatur des Leistungsteils.
F536	Fehler Standby Spannungsversorgung.
F537	Fehler Ladeschaltung.
F560	Bremschopper an der Kapazitätsgrenze, kann Überspannung nicht verhindern.
F570	Netzphasenverlust.

Fehler	Meldung/Warnung
n580	Verwendet Ableitung der Position bei Feedback-Typ Sensorlos im Positionsmodus.
n581	Geschwindigkeit 0 bei Feedback-Typ Asynchron Sensorlos im Positionsmodus.
n582	Geschwindigkeit wurde begrenzt. Kommutierungsfrequenz max 599 Hz, um unter den Grenzwerten von ECCN-3A225 / AL-3A225 zu bleiben.
n601	Modbus Übertragungsrate zu hoch.
F602	Safe torque off (STO).
n603	OPMODE und CMDSOURCE unverträglich.
n604	EMUEMODE inkompatibel mit DRV.HANDWHEELSRC.
F621	Fehler beim Lesen des CRC der Steuerungskarte.
F623	Fehler beim Lesen des CRC der Leistungskarte.
F624	Leistungskarte-Watchdog-Fehler.
F625	Leistungskarte Kommunikationsfehler.
F626	Leistungskarte FPGA nicht konfiguriert.
F627	Steuerkarte-Watchdog-Fehler.
F630	FPGA zyklischer Lesefehler.
F701	Feldbus-Laufzeit.
F702, n702	Feldbus-Kommunikation unterbrochen.
F703	Eine Not-Halt-Verzögerung ist aufgetreten, während die Achse abschalten sollte.

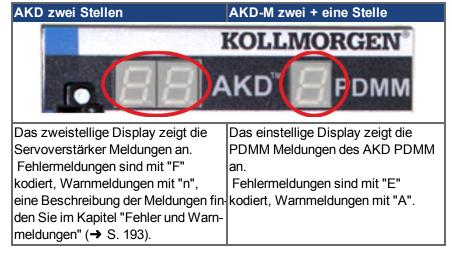
9.4.2 Zusätzliche Fehlermeldungen AKD-T

AKD BASIC Runtime Fehler werden in der zweistelligen 7-Segmentanzeige des Servoverstärkers angezeigt:

Das zweistellige Display zeigt die Fehlercodes.

Die zusätzlichen Runtime Fehlermeldungen für AKD-T beginnen mit "F801". Alle Fehler aktivieren das Fehlerrelais und können mit DRV.CLRFAULTS zurückgesetzt werden.

INFO


Weitere Informationen zu Fehlermeldungen und zum Löschen von Fehlern finden Sie in der WorkBench-Onlinehilfe.

Alle Runtime Fehler beheben Sie mit: Fehler löschen, Programm korrigieren, neu kompilieren und downloaden, Programm neu starten.

Fehler	Beschreibung
F801	Division durch Null.
F802	Stack Overflow.
F803	Zu wenig Speicher.
F804	Kein Interrupt Handler definiert.
F805	Interrupt Fehler.
F806	Maximal String Länge überschritten.
F807	String Überlauf.
F808	Array Grenzen überschritten.
F809	Eigenschaft nicht unterstützt.
F810	Interner Firmware/Hardware Fehler.
F812	Parameter nicht unterstützt.
F813	Parameter Zugriffsfehler.
F814	Daten nicht gefunden.
F815	Daten ungültig.
F816	Daten zu groß.
F817	Daten zu klein.
F818	Bereich des Parametertyps überschritten.
F819	Daten nicht durch 2 teilbar.
F820	Fehlerhafte Module Einstellung.
F821	Kann vom Kommando nicht lesen.
F823	Verstärker zuerst freigeben.
F824	DRV.OPMODE muss auf 2 gesetzt sein (Position).
F825	DRV.CMDSOURCE muss auf 5 gesetzt sein (Programm).
F826	Kann nicht während einer Bewegung ausgeführt werden.
F827	Schreiben auf Read-Only Parameter.
F828	Verstärker zuerst sperren (disable).
F829	Programmcode nicht unterstützt - Firmware aktualisieren.
F830	Keine negativen Werte erlaubt.
F831	BASIC Programm ungültig. Eventuell Firmware Upgrade erforderlich.
F832	BASIC Programm fehlt.
F901	Zu viele Nocken.

9.4.3 Zusätzliche Fehler- und Warnmeldungen AKD-M

Fehler und Warnungen werden mit den 7-Segment Anzeigen des Gerätes angezeigt:

Um die Handhabung zu vereinfachen, sind Fehler und Warnmeldungen gleich zu handhaben. Wenn ein Fehler oder eine Warnung auftritt, wird er im einstelligen Display angezeigt, Sie können den Fehler in der Tabelle unten identifizieren, den Grund erkennen und die Maßnahmen zum Entfernen der Ursache durchführen.

Aktive Fehler und Warnungen können mit dem Controller Kommando *ClearCtrlErrors* gelöscht werden (Hinweis: nicht löschbare Fehler bleiben bestehen).

9.4.3.1 Warnungen

Warnung	Beschreibung
A01	Temperaturgrenze überschritten
A02	Wenig Speicher.
A04	Eingangsspannung niedrig
A12	Wenig Flash Speicher.
A21	Wiederherstellbarer Prozess hat während des Betriebs nicht geantwortet.
A23	CPU ist überlastet
A30	EtherCAT Sende-Frames in Betriebsmodus verloren.
A38	EtherCAT Empfangs-Frame in Betriebsmodus verloren.
A40	Lokale digitale I/Os haben kein zyklisches Update erhalten.
A53	AKD-M-MC wurde durch das leistungsfähigere Modell M1 ersetzt.

9.4.3.2 Fehler

Prüfen Sie immer die Logdatei des Controllers, wenn ein Fehler oder eine Warnung auftritt. Die Log Meldungen enthalten detailliertere Informationen über den Fehler und das Verhalten des Antriebs, bevor der Fehler auftrat. Versteckte Fehlerursachen können mit diesen Logbuch Informationen leichter gefunden werden.

INFO

Weitere Informationen zu Fehlermeldungen, Fehlerbeseitigung und zum Löschen von Fehlern finden Sie in der WorkBench-Onlinehilfe.

Fehler	Beschreibung
E01	Temperaturgrenze überschritten. PDMM Betrieb gestoppt. CPU wird deaktiviert.
E02	Speicherüberlauf. KAS Laufzeitsystem wurde gestoppt.
E03	Lüfterfehler
E10	Firmware ist fehlerhaft.
E11	Flash ist fehlerhaft, Filesystem nicht verfügbar.
E12	Nicht genügend Flash Speicher verfügbar.
E13	Nichtflüchtiger Speicher für Variablen voll.
E14	Zurücksetzen auf Herstellerdaten fehlgeschlagen.
E15	Dateien können nicht von/zur SD-Karte gelesen oder geschrieben werden.
E16	Nicht genügend Platz auf der SD-Karte verfügbar.
E20	Runtime Code, Prozess, oder Applikation startet nicht.
E21	Runtime Code, Prozess, oder Applikation anwortet nicht während der Ausführung.
E22	Schwerer Fehler im PLC Programm, Applikation gestoppt.
E23	CPU ist überlastet
E24	SPS Anwendung kann nicht gestartet werden.
E30	EtherCAT Kommunikation während des operational Modus ausgefallen.
E31	EtherCAT Kommunikation während des preop Modus ausgefallen.
E32	EtherCAT Kommunikation während des bootstrap Modus ausgefallen.
E33	Initialisierung von EtherCAT in den operational Modus fehlgeschlagen.
E34	Initialisierung von EtherCAT in den preop Modus fehlgeschlagen.
E35	Initialisierung von EtherCAT in den bootstrap Modus fehlgeschlagen.
E36	EtherCAT konnten die erwarteten Geräte nicht finden.
E37	EtherCAT Rückkehr zum Intialisierungsstatus fehlgeschlagen.
E50	Backup auf die SD-Karte gescheitert.
E51	Restore von der SD-Karte gescheitert.
E52	SD Backup Dateien fehlen oder sind fehlerhaft.
E53	SD Backup Dateien sind nicht kompatibel.

9.5 Fehlersuche und -behebung beim AKD

Fehler können aus den verschiedensten Gründen auftreten, die von den Bedingungen in Ihrer Anwendung abhängen. Die Ursachen für Fehler in Mehrachsensystemen können besonders komplex sein. Wenn Sie einen Fehler nicht mit der nachstehenden Anleitung zur Fehlerbehebung beheben können, bietet Ihnen unser Kundendienst weitere Unterstützung.

INFO Weitere Informationen zur Fehlerbeseitigung finden Sie in der WorkBench-Onlinehilfe.

Problem	Mögliche Ursachen	Abhilfe
MMI-Meldung: Kommunikationsfehler Servoverstärker wird nicht freigegeben	 falsches Kabel verwendet, Kabel an Servoverstärker oder PC falsch eingesteckt falsche PC-Schnittstelle gewählt HW Enable nicht verdrahtet HW oder SW Enable nicht aktiviert 	 Kabel in die richtigen Anschlüsse am Servoverstärker und am PC einstecken richtige Schnittstellen wählen HW Enable (X8 Pin 4) anschließen 24V an HW Enable anlegen und SW Enable aktivieren in WorkBench / Fieldbus
Motor dreht nicht	 Servoverstärker gesperrt Softwarefreigabe nicht eingestellt Bruch in Sollwertkabel Motorphasen vertauscht Bremse nicht gelöst Antrieb ist mechanisch blockiert Motor-Polzahl falsch eingestellt Feedback falsch eingestellt 	 Freigabesignal anwenden Softwarefreigabe einstellen Sollwertkabel prüfen Motorphasensequenz korrigieren Bremssteuerung prüfen Mechanik prüfen Motor-Polzahl einstellen Feedback korrekt konfigurieren
Motor schwingt	 Verstärkung zu hoch (Drehzahlregler) Schirmung des Rückführkabels unterbrochen AGND nicht verdrahtet 	 VL.KP (Drehzahlregler) reduzieren Rückführkabel ersetzen AGND an CNC-GND anschließen
Verstärker meldet Schleppfehler	 leff oder Ipeak zu klein Strom- oder Geschwindigkeitsgrenzen erreicht Beschleunigungs-/Verzögerungsrampe zu lang 	 Motor-/Verstärkerauslegung prüfen Prüfen, dass IL.LIMITN, IL.LIMITP, VL.LIMITN oder VL.LIMITP den Verstärkerbetrieb nicht einschränken DRV.ACC/DRV.DEC verringern
Überhitzung des Motors	Motor-Nennleistung überschrittenMotorstrom Einstellung fehlerhaft	 Motor-/Verstärkerauslegung prüfen Dauer- und Spitzenstromwerte des Motors korrekt einstellen
Verstärker zu weich	 Kp (Drehzahlregler) zu klein Ki (Drehzahlregler) zu klein Filter zu hoch eingestellt 	 VL.KP (Drehzahlregler) erhöhen VL.KI (Drehzahlregler) erhöhen Hinweise zur Reduzierung der Filterung in Dokumentation lesen (VL.AR*)
Verstärker läuft ungleichmäßig	 Kp (Drehzahlregler) zu groß Ki (Drehzahlregler) zu groß Filter zu niedrig eingestellt 	 VL.KP (Drehzahlregler) reduzieren VL.KI (Drehzahlregler) reduzieren Hinweise zur Erhöhung der Filterung in der Dokumentation lesen (VL.AR*)
Während der Installation erscheint ein Dialogfenster (Seicherplatz) und bleibt sichtbar.	 MSI Installer Eigenschaft. Nicht genug Platz auf der Festplatte 	 Installation abbrechen und erneut starten (möglicherweise mehrfach versuchen, Problem taucht zufällig auf). Genügend Speicherplatz auf Ihrer Festplatte sicherstellen (~500MB).

10 Bisher erschienene Ausgaben:

Ausgabe	Bemerkungen
-, 11/2009	Beta Startversion
-, 12/2009	Nur Englisch: Digital I/O corrections, several updates
A, 03/2010	Nur Englisch: CAN termination connector "optional", data dynamic brake updated, resolver signals renamed, CE certificate, X9 description updated, technical data completed
B, 06/2010	Erstausgabe Deutsch: Diverse Updates, Maße korrigiert, Ein-/Ausschaltdiagramme
C, 07/2010	Layout Titelseite, Timing Diagramme Ein-/Ausschalten
D, 01/2011	Hardware Revision C, STO zertifiziert, Digital In Pegel geändert
E, 04/2011	Analog In/Out Spezifikation erweitert, einphasige Einspeisung erweitert
F, 10/2011	PROFINET RT, Modbus TCP, Layout Titelseite
G, 03/2012	AKD PDMM neu, Einschränkung 270 V AC Netzversorgung entfernt, Typenschlüssel erweitert, EnDat 2.2 @ X9, Stopp Kapitel überarbeitet, Maßzeichnungen
H, 05/2012	AKD-T-IC neu, Signale der I/O Optionskarte neu , PDMM Fehlercodes erweitert
J, 08/2012	Smart Abs (Tamagawa) neu, BiSS C neu, X21 & X22 Pinbelegung korrigiert
K, 11/2012	Feedback Anschlusspläne korrigiert, Hinweis Schriftgröße, Absicherung Bremswiderstand, Fehlertabellen aktualisiert
L, 05/2013	Hiperface DSL Feedback neu (ab FW 1.9), Fehlertabelle aktualisiert, KCM Module neu
M, 09/2013	24A AKD-M neu, Fehlertabelle aktualisiert, Außenmaße aktualisiert
N, 12/2013	sercos [®] III Option neu, SFD3 Feedback neu, SinCos Grenzfrequenz, Hinweise Wiederanlauf
P, 05/2014	KCM X4 und Ready Kontakte neu, KCM Einschaltreihenfolge, AKD-M-M1 neu, Up/Down umbenannt in CW/CCW, primäres Feedback an X7/X9, ISO Warnsymbole
R, 08/2014	Thermosensor Pinout aktualisiert für alle Feedbacks, "NB" Hinweis für Tamagawa, Hinweise Zwischenkreis-Topology, Absicherung Zwischenkreis
T, 12/2014	48A Gerät neu, CE Zertifikat entfernt, neue HR wegen Export Klassifizierung

11 Stichwortverzeichnis

2	
24V Hilfsspannung, Schnittstelle	99
A	
Abkürzungen	13
Ableitstrom	
ABMESSUNGEN	
Erhöhte Breite	7
Standard Breite	
Abschirmung	75
AKD Familie	
Analoge Eingänge	142
Analoge Sollwerte	.142
Anforderungen für Kabel und Verdrahtung	
Anschluss der Rückführung	. 116
Anschlussbilder	
B, P, T Varianten	
M Varianten	88
Anschlüsse	70
B, P, T Varianten	
M Varianten Anzugsmoment, Stecker	
Ausgänge	30
Analog	1/13
Basisdaten	
Digital alle Varianten	
Digital M Variante	
Digital, I/O Option	
Fehlerrelais	
Relais, I/O Option	
, ,	
В	
Basis Test	
B, P, T Varianten	. 180
M Varianten	. 186
Belüftung	
Mechanische Installation	
Umgebungsbedingungen	
Berührungsschutz	62
Bestimmungsgemäße Verwendung	
ANTRIEB	
KAS IDE Setup Software	
Safe Torque Off	
WorkBench Setup Software	.177
Betriebssysteme	40
KAS IDE	
WorkBench	
BiSS Encoder	
Brems-Chopper	40

C

CAN-Bus	
Baudrate1	68
Busabschluss	69
CAN-Schnittstelle1	66
Kabel1	
Knoten-Adresse	
CE-Konformität	
Comcoder Schnittstelle	
CW/CCW Eingang1	
5 5	
D	
Domontogo	20
Demontage Digital Inputs	20
•	11
alle Varianten	
I/O Option1	
M Variante	
Dokument Revisionen	
DSL1	
Dynamisches Bremsen	40
E	
_	
Ein- und Ausschaltverhalten	43
Einbaulage	32
Eingänge	
Analog1	42
Basisdaten	33
Digital alle Varianten1	
Digital M Variante1	
Digital, I/O Option1	
ENABLE1	46
Programmierbar	
Safe Torque Off	
Einsatzhöhe	
Emulated Encoder Stecker1	
ENABLE	
Encoder Emulation Ausgang	
Encoder Emulation, Schnittstelle	
EnDat 2.1 Encoder Schnittstelle	
EnDat 2.2 Encoder Schnittstelle	
Entsorgung	
Erdung	
EtherCAT 1	
Ethernet	-
EtherCAT Protokoll	72
Ethernet/IP Protokoll	
Modbus TCP Protokoll	
PROFINET RT Protokoll	
sercos® III Protokoll	
SynqNet Protokoll	
EtherNet/IP	

F	N	
Fehlerbehebung201	Netzspannung, Schnittstelle	100
Fehlerrelais	Nicht bestimmungsgemäße Verwendun	g
Feuchtigkeit	Allgemeines	
im Betrieb32	Safe Torque Off	
Lagerung19	Normen	
Transport19	NOT-AUS	
Formieren	Not-Halt Funktionen	50
G	P	
Gehäuseschutzart32	PC Anschluss	
Geräuschemission32	PROFINET	
н	Puls Richtung, Schnittstelle	134
	R	
Hardware-Anforderungen	Dalaia Amanana UO Ostian	45
KAS IDE	Relais Ausgang, I/O Option	
WorkBench	Reparatur	
Hiperface DSL 121	Resolver Schnittstelle	
Hiperface Encoder Schnittstelle126	ROD 5V mit Hall Schnittstelle	
I .	Rückführung (Feedback)	116
	S	
I/O Anschluss		
Inbetriebnahme	Safe Torque Off	
B, P, T Varianten	Safe Torque Off (STO)	52
M Varianten	Schaltschrankeinbau	00
Installation 70	Erhöhte Breite	
Electrisch	Standard Breite	
Software KAS IDE	Schirmanschluss	
Software WorkBench	Schirmbleche	
	Schwingungen	
B, P, T Varianten	sercos® III	
ivi variante105	Service Schnittstelle	
K	Setup-Software	102
	KAS IDE	187
KAS IDE183	WorkBench	
KCM	SFD	
Kondensator Module	SFD3	
	Sicherheit	
L	Sicherheitshinweise	
	Safe Torque Off	53
Lagerung19	Sicherungen	37
Lieferumfang	SinCos Encoder mit Hall	127
	Stapelhöhe	
M	Stapelhöhe, Lagerung	
Master-Slave	Stecker	
Modbus 166	Steckerzuordnungen	
Motor-Haltebremse	B, P, T Varianten	79
Motor Leistungsanschluss	M Varianten	87
Motor Schnittstelle	Stopp Funktion	
HIOLOI OCIIIILISICIIC110	SynqNet	173
	Systemkomponenten, Übersicht	77

T

Taster	158
Temperatur	
im Betrieb	
Lagerung	
Transport	
Transport	
Typenschild	27
U	
UL Hinweise	
Umgebungstemperatur	32
V	
Verdrahtung	76
Verpackung	19
Verschmutzungsgrad	32
Versorgungsnetze	
Verwendete Normen	
Verwendete Symbole	12
W	
Wartung	20
Z	
Zwischenkreis-Kapazität	41
Zwiechonkroie Schnittetollo	

Diese Seite wurde bewusst leer gelassen.

WISSENSWERTES ÜBER KOLLMORGEN

Kollmorgen ist ein führender Anbieter von Antriebssystemen und Komponenten für den Maschinenbau. Dank großem Know-how im Bereich Antriebssysteme, höchster Qualität und umfassender Fachkenntnisse bei der Verknüpfung und Integration von standardisierten und spezifischen Produkten liefert Kollmorgen optimale Lösungen, die mit Leistung, Zuverlässigkeit und Bedienerfreundlichkeit bestechen und Maschinenbauern einen wichtigen Wettbewerbsvorteil bieten.

Besuchen Sie www.kollmorgen.com für Unterstützung bei der Lösung Ihrer Applikationsaufgabe oder kontaktieren Sie uns unter:

Nordamerika Asien Europa **KOLLMORGEN** KOLLMORGEN Europe GmbH **KOLLMORGEN** Rm 2205, Scitech Tower, China 203A West Rock Road Pempelfurtstraße 1 Radford, VA 24141 USA 40880 Ratingen, Germany 22 Jianguomen Wai Street www.kollmorgen.com Web: www.kollmorgen.com Web: Web: www.kollmorgen.com E-Mail: support@kollmorgen.com E-Mail: technik@kollmorgen.com E-Mail: sales.asia@kollmorgen.com Tel.: +1 - 540 - 633 - 3545 Tel.: +49 - 2102 - 9394 - 0 Tel.: +86 - 400 666 1802 Fax: +1 - 540 - 639 - 4162 Fax: +49 - 2102 - 9394 - 3155 Fax: +86 - 10 6515 0263